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Introduction


•  Game Theory

 Given a game we are 

able to analyze the 
strategies agents 
will follow


•  Social Choice 
Theory

 Given a set of agents’ 

preferences we can 
choose some 
outcome


So far we have looked at 

Ballot 
X>Y>Z 

H
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Introduction


•  Now: Mechanism Design

 Game Theory + Social Choice


•  Goal of Mechanism Design is to 

 Obtain some outcome (function of agents’ 

preferences)

 But agents are rational


 They may lie about their preferences


•  Goal: Define the rules of a game so that in 
equilibrium the agents do what we want




Fundamentals


•  Set of possible outcomes, O

•  Agents i∈I, |I|=n, each agent i has type  θi∈Θi


  Type captures all private information that is relevant to 
agent’s decision making


•  Utility ui(o, θi), over outcome o∈O

•  Recall: goal is to implement some system-wide 

solution

  Captured by a social choice function (SCF)


f:Θ1 x … x Θn  O 
f(θ1,…θn)=o is a collective choice 



Examples of social choice functions


•  Voting: choose a candidate among a group


•  Public project: decide whether to build a swimming 
pool whose cost must be funded by the agents 
themselves


•  Allocation: allocate a single, indivisible item to one 
agent in a group




Mechanisms


•  Recall: We want to implement a social choice function

  Need to know agents’ preferences 

  They may not reveal them to us truthfully


•  Example:

  1 item to allocate, and want to give it to the agent who 

values it the most

  If we just ask agents to tell us their preferences, they may lie


I like the 
bear the 
most! 

No, I do! 



Mechanism Design Problem


•  By having agents interact through an 
institution we might be able to solve 
the problem


• Mechanism:

M=(S1,…,Sn, g(.)) 

Strategy spaces of agents Outcome function 

g:S1x…x Sn O 



Implementation


•  A mechanism 

implements social choice function 

if there is an equilibrium strategy 

profile 

of the game induced by M such that


for all 


M=(S1,…,Sn,g(.)) 
f(θ) 

s*(.)=(s*1(.),…,s*n(.)) 

g(s1*(θ1),…,sn*(θn))=f(θ1,…,θn) 

(θ1,…,θn) ∈ Θ1x … x Θn 



Implementation


• We did not specify the type of 
equilibrium in the definition


• Nash


•  Bayes-Nash


• Dominant


ui(si*(θi),s*-i(θ-i),θi)¸ ui(si’(θi),s*-i(θ-i),θi), ∀ i, ∀ θ, ∀ si’ ≠ si* 

E[ui(si*(θi),s*-i(θ-i),θi)]¸ E[ui(si’(θi),s*-i(θ-i),θi)], ∀ i, ∀ θ, ∀ si’ ≠ si* 

ui(si*(θi),s-i(θi),θi)¸ ui(si’(θi),s-i(θ-i),θi), ∀ i, ∀ θ, ∀ si’≠ si*, ∀ s-i 



Direct Mechanisms


•  Recall that a mechanism specifies the 
strategy sets of the agents

 These sets can contain complex strategies


•  Direct mechanisms:

 Mechanism in which Si=Θi for all i, and g(θ)=f(θ) 

for all θ∈Θ1x…xΘn 

•  Incentive-compatible:


 A direct mechanism is incentive-compatible if it 
has an equilibrium s*  where s*

i(θi)=θi for all θi∈Θi 
and all i


 (truth telling by all agents is an equilibrium)

 Strategy-proof if dominant-strategy equilibrium




Dominant Strategy 
Implementation


•  Is a certain social choice function 
implementable in dominant strategies?

 In principle we would need to consider all possible 

mechanisms


•  Revelation Principle (for Dom Strategies)

 Suppose there exists a mechanism M=(S1,…,Sn,g(.)) 

that implements social choice function f() in 
dominant strategies. Then there is a direct 
strategy-proof mechanism, M’,  which also 
implements f().




Revelation Principle


“the computations that go on within the 
mind of any bidder in the nondirect 
mechanism are shifted to become part of 
the mechanism in the direct 
mechanism” [McAfee&McMillian 87]


•  Consider the incentive-compatible 
direct-revelation implementation of an 
English auction




Revelation Principle: Proof


•  M=(S1,…,Sn,g()) implements SCF f() in dom str. 

  Construct direct mechanism M’=(Θn,f(θ))

  By contradiction, assume

 ∃ θi

’≠θi s.t. ui(f(θi
’,θ-i),θi)>ui(f(θi,θ-i),θi)


for some θi
’≠θi, some θ-i.


  But, because f(θ)=g(s*(θ)), this implies

ui(g(si

*(θi
’),s-i

*(θ-i)),θi)>ui(g(s*(θi),s*(θ-i)),θi)


Which contradicts the strategy-proofness of s* in M




Revelation Principle: Intuition


Agent 1’	

s	


preferences	



Agent |A|’	

s	


preferences	



.	

.	

.	



Strategy	


formulator	



Strategy	


formulator	



Strategy	



Strategy	

 Original!
“complex”!
“indirect”!
mechanism	



Outcome	



Constructed “direct revelation” mechanism	





Theoretical Implications


•  Literal interpretation: Need only study direct 
mechanisms


  This is a smaller space of mechanisms 

  Negative results: If no direct mechanism can implement 

SCF f() then no mechanism can do it


  Analysis tool:

  Best direct mechanism gives us an upper bound on what we 

can achieve with an indirect mechanism

  Analyze all direct mechanisms and  choose the best one




Practical Implications


•  Incentive-compatibility is “free” 
from an implementation perspective


•  BUT!!!

 A lot of mechanisms used in practice 

are not direct and incentive-compatible

 Maybe there are some issues that are 

being ignored here




Quick review


• We now know 

 What a mechanism is

 What is means for a SCF to be 

dominant strategy implementable

 If a SCF is implementable in dominant 

strategies then it can be implemented 
by a direct incentive-compatible 
mechanism


• We do not know

 What types of SCF are dominant 

strategy implementable




Gibbard-Satterthwaite Thm


•  Assume

   O is finite and |O|≥ 3

  Each o∈O can be achieved by social 

choice function f() for some θ	



Then: 
f() is truthfully implementable in dominant 
strategies if and only if f() is dictatorial 



Circumventing G-S


•  Use a weaker equilibrium concept

  Nash, Bayes-Nash


•  Design mechanisms where computing a 
beneficial manipulation is hard

  Many voting mechanisms are NP-hard to manipulate 

(or can be made NP-hard with small “tweaks”) 
[Bartholdi, Tovey, Trick 89] [Conitzer, Sandholm 03] 


•  Randomization

•  Agents’ preferences have special structure


General preferences	



Quasilinear preferences	



Almost need this much 



Quasi-Linear Preferences


•  Example:  x=”joint pool built” or “not”,  mi = $

  E.g. equal sharing of construction cost:  -c / |A|,  so 

vi(x) = wi(x) - c / |A| 

  So, ui = vi (x) + mi


No pool	



Pool	



$0	



ui	

 =5	


ui	

 =10	



No pool	



Pool	



ui	

 =5	


u	

i =10	



$0	



General preferences	

 Quasilinear preferences	





Quasi-Linear Preferences


•  Outcome o=(x,t1,…,tn)

 x is a “project choice” and ti∈R are transfers 

(money)

•  Utility function of agent i


 ui(o,θi)=ui((x,t1,…,tn),θi)=vi(x,θi)-ti


•  Quasi-linear mechanism: M=(S1,…,Sn,g(.)) 
where g(.)=(x(.),t1(.),…,tn(.)) 




Social choice functions and 
quasi-linear settings


•  SCF is efficient if for all types θ=(θ1,…,θn)

  ∑n

i=1vi(x(θ),θi) ≥ ∑n
i=1vi(x’(θ),θi)  ∀ x’(θ)


 Aka social welfare maximizing


•  SCF is budget-balanced (BB) if

  ∑n

i=1ti(θ)=0


 Weakly budget-balanced if

    ∑n

i=1ti(θ)≥0




Groves Mechanisms  
[Groves 1973]


•  A Groves mechanism, 

   M=(S1,…,Sn, (x,t1,…,tn)) is defined by


 Choice rule x*(θ’)=argmaxx ∑i vi(x,θi
’)


 Transfer rules

 ti(θ’)=hi(θ-i

’)-∑j≠ i vj(x*(θ’),θ’
j)


where hi(.) is an (arbitrary) function that does 
not depend on the reported type θi

’ of  
agent i




Groves Mechanisms


•  Thm: Groves mechanisms are strategy-proof and 
efficient (We have gotten around Gibbard-Satterthwaite!)  

Proof:   
Agent i’s utility for strategy θi

’, given θ-i
’ from agents j≠i is


Ui(θi
’)=vi(x*(θ’),θi)-ti(θ’)


        =vi(x*(θi),θi)+∑ j≠ ivj(x*(θ’),θ’
j)-hi(θ’

-i)

Ignore hi(θ-i).  Notice that

x*(θ’)=argmax ∑i vi(x,θ’

i)

i.e. it maximizes the sum of reported values.

Therefore, agent i should announce θi

’=θi to maximize its own 
payoff


•  Thm: Groves mechanisms are unique (up to hi(θ-i)) 



VCG Mechanism 
(aka Clarke tax mechanism  aka Pivotal mechanism)


•  Def: Implement efficient outcome,

x*=argmaxx∑ i vi(x,θi

’)

Compute transfers


ti(θ’)=∑j≠ i vj(x-i,θ’
j) -∑j≠ ivj(x*, θi

’)

Where x-i=argmaxx ∑j≠ ivj(x,θj

’)

VCGs are efficient and strategy-proof  

Agent’s equilibrium utility is: 

ui(x*,ti,θi
)=vi(x*,θi)-[∑j≠ i vj(x-i,θj) -∑j≠ ivj(x*,θj)]  

              = ∑j vj(x*,θj) - ∑j ≠ i vj(x-i,θj) 

              = marginal contribution to the welfare of the system 



Example: Building a pool


•  The cost of building the pool is $300

•  If together all agents value the pool more than $300 

then it will be built

•  Clarke Mechanism:


  Each agent announces their value, vi

  If ∑ vi≥ 300 then it is built

  Payments ti(θi

’)=∑j≠ i vj(x-i,θ’
j) -∑j≠ ivj(x*, θi

’) if built, 0 
otherwise


v1=50, v2=50, v3=250 

Pool should be built 

t1=(250+50)-(250+50)=0 
t2=(250+50)-(250+50)=0 
t3=(0)-(100)=-100 

Not budget balanced 



Vickrey Auction


•  Highest bidder gets item, and pays second 
highest amount


•  Also a VCG mechanism

 Allocation rule: get item if bi=maxi[bj]

 Every agent pays 


ti(θi
’)=∑j≠ i vj(x-i,θ’

j) -∑j≠ ivj(x*, θi
’) 


maxj≠ i[bj] 
maxj≠ i[bj] if i is not 
the highest bidder,  

0 if it is 



London Bus System  
(as of April 2004)


•  5 million passengers each day

•  7500 buses

•  700 routes


•  The system has been privatized since 
1997 by using competitive tendering


•  Idea: Run an auction to allocate routes to 
companies




The Generalized Vickrey 
Auction (VCG mechanism)


•  Let G be set of all routes, I be set of bidders

•  Agent i submits bids vi*(S) for all bundles S⊆G

•  Compute allocation S* to maximize sum of reported 

bids


•  Compute best allocation without each agent i:


•  Allocate Si* for each agent, each agent pays


V*(I)=max(S1,…,SI)∑ivi*(Si) 

V*(I\i)=max(S1,…,SI)∑j≠ivi*(Si) 

P(i)=vi*(Si*)-[V*(I)-V*(I\i)] 



Clarke tax mechanism… 


•  Pros

 Social welfare maximizing outcome


 Truth-telling is a dominant strategy


 Feasible in that it does not need a 
benefactor (∑i  mi ≤ 0)




Clarke tax mechanism… 


•  Cons

•  Budget balance not maintained  (in pool example, 

generally ∑i  mi < 0)

  Have to burn the excess money that is collected

  Thrm. [Green & Laffont 1979].  Let the agents have 

quasilinear preferences ui(x, m) = mi + vi(x) where vi(x) are 
arbitrary functions.  No social choice function that is (ex post) 
welfare maximizing (taking into account money burning as a 
loss) is implementable in dominant strategies


•  Vulnerable to collusion

  Even by coalitions of just 2 agents




Implementation in Bayes-Nash 
equilibrium


•  Goal is to design the rules of the game (aka mechanism) so that in 
Bayes-Nash equilibrium (s1, …, sn), the outcome of the game is f(θ1,
…,θn)


•  Weaker requirement than dominant strategy implementation

  An agent’s best response strategy may depend on others’ strategies


  Agents may benefit from counterspeculating each others’

•  Preferences, rationality, endowments, capabilities…


  Can accomplish more than under dominant strategy implementation

  E.g., budget balance & Pareto efficiency (social welfare maximization) under 

quasilinear preferences …




Expected externality mechanism  
[d’Aspremont & Gerard-Varet 79; Arrow 79]


•  Like Groves mechanism, but sidepayment is computed based on 
agent’s revelation vi , averaging over possible true types of the 
others v-i

 *


•  Outcome (x, t1,t2,…,tn)

•  Quasilinear preferences:  ui(x, ti) = vi(x)-ti

•  Utilitarian setting:  Social welfare maximizing choice


  Outcome x(v1, v2, ..., vn) = argmaxx ∑i vi(x) 


•  Others’ expected welfare when agent i announces vi is  

ξ(vi) = ∫v-i  p(v-i) ∑j≠i vj(x(vi , v-i))

  Measures change in expected externality as agent i changes her 

revelation


* Assume that an agent’s type is its value function 



Expected externality mechanism  
[d’Aspremont & Gerard-Varet 79; Arrow 79]


•  Thrm. Assume quasilinear preferences and statistically 
independent valuation functions vi.  A utilitarian social choice 
function f: v -> (x(v), t(v)) can be implemented in Bayes-Nash 
equilibrium if ti(vi)= ξ(vi) + hi(v-i) for arbitrary function h


•  Unlike in dominant strategy implementation, budget balance  is 
achievable 

  Intuitively, have each agent contribute an equal share of others’ 

payments

  Formally, set  hi(v-i) = - [1 / (n-1)]  ∑j≠i ξ(vj) 


•  Does not satisfy participation constraints (aka individual 
rationality constraints) in general

  Agent might get higher expected utility by not participating




Participation Constraints


•  Agents cannot be forced to participate 
in a mechanism

 It must be in their own best interest


•  A mechanism is individually rational 
(IR) if an agent’s (expected) utility from 
participating is (weakly) better than 
what it could get by not participating




Participation Constraints


•  Let ui
*(θi) be an agent’s utility if it does not participate and has 

type θi

•  Ex ante IR: An agent must decide to participate before it knows 

its own type

  Eθ2Θ[ui(f(θ),θi)]¸ Eθi2Θi

[ui
*(θi)]


•  Interim IR: An agent decides whether to participate once it 
knows its own type, but no other agent’s type


  Eθ-i2Θ-i
[ui(f(θi,θ-i),θi)]¸ ui

*(θi)

•  Ex post IR: An agent decides whether to participate after it 

knows everyone’s types (after the mechanism has completed)

  ui(f(θ),θi)¸ ui

*(θi)




Quick Review


•  Gibbard-Satterthwaite

  Impossible to get non-dictatorial mechanisms if using 

dominant strategy implementation and general preferences

•  Groves


  Possible to get dominant strategy implementation with quasi-
linear utilities

  Efficient


•  Clarke (or VCG)

  Possible to get dominant strat implementation with quasi-

linear utilities

  Efficient, interim IR


•  D’AGVA

  Possible to get Bayesian-Nash implementation with quasi-

linear utilities

  Efficient, budget balanced, ex ante IR




Other mechanisms


• We know what to do with 

 Voting

 Auctions

 Public projects


•  Are there any other “markets” that are 
interesting?




Bilateral Trade (e.g., B2B)


•  Heart of any exchange 

•  2 agents (one buyer, one seller), quasi-linear utilities

•  Each agent knows its own value, but not the other’s

•  Probability distributions are common knowledge


•  Want a mechanism that is

  Ex post budget balanced

  Ex post Pareto efficient: exchange to occur if vb¸ vs

  (Interim) IR: Higher expected utility from participating than by not participating




Myerson-Satterthwaite Thm


•  Thm: In the bilateral trading problem, 
no mechanism can implement an ex-
post BB, ex post efficient, and interim 
IR social choice function (even in 
Bayes-Nash equilibrium).




Proof


•  Seller’s valuation is sL w.p. α and sH w.p. (1-α)

•  Buyer’s valuation is bL w.p. β and bH w.p. (1-β).  Say bH > sH > bL 

> sL

•  By revelation principle, can focus on truthful direct revelation 

mechanisms

•  p(b,s) = probability that car changes hands given revelations b 

and s

  Ex post efficiency requires:  p(b,s) = 0 if (b = bL and s = sH), 

otherwise p(b,s) = 1

  Thus, E[p|b=bH] = 1 and E[p|b = bL] = α

  E[p|s = sH] = 1-β and E[p|s = sL] = 1 


•  m(b,s) = expected price buyer pays to seller given revelations b 
and s

  Since parties are risk neutral, equivalently m(b,s) = actual price 

buyer pays to seller

  Since buyer pays what seller gets paid, this maintains budget 

balance ex post

  E[m|b] = (1-α) m(b, sH) + α m(b, sL) 

  E[m|s] = (1-β) m(bH, s) + β m(bL, s) 




Proof


•  Individual rationality (IR) requires

  b E[p|b] – E[m|b] ≥ 0 for b = bL, bH  

  E[m|s] – s E[p|s] ≥ 0 for s = sL, sH 


•  Bayes-Nash incentive compatibility (IC) requires

  b E[p|b] – E[m|b] ≥ b E[p|b’] – E[m|b’] for all b, b’

  E[m|s] – s E[m|s] ≥ E[m|s’] – s E[m|s’] for all s, s’


•  Suppose α=β= ½, sL=0, sH=y, bL=x, bH=x+y, where 0 < 3x < y.  Now, 

•  IR(bL):  ½ x – [ ½  m(bL,sH) + ½ m(bL,sL)] ≥ 0 

•  IR(sH):  [½ m(bH,sH) + ½ m(bL,sH)] - ½ y ≥ 0 

•  Summing gives m(bH,sH) - m(bL,sL) ≥ y-x

•  Also, IC(sL):  [½ m(bH,sL) + ½ m(bL,sL)] ≥ [½ m(bH,sH) + ½ m(bL,sH)] 


  I.e., m(bH,sL) - m(bL,sH) ≥ m(bH,sH) - m(bL,sL)

•  IC(bH):  (x+y) - [½ m(bH,sH) + ½ m(bH,sL)] ≥ ½ (x+y) - [½ m(bL,sH) + ½ 

m(bL,sL)]

  I.e., x+y ≥ m(bH,sH) - m(bL,sL) + m(bH,sL) - m(bL,sH)

  So, x+y ≥ 2 [m(bH,sH) - m(bL,sL)] ≥ 2(y-x).  So, 3x ≥ y, contradiction.  QED




Does market design matter?


•  You often here “The market will take care of “it”, if allowed 
to.”


•  Myerson-Satterthwaite shows that under reasonable 
assumptions, the market will NOT take care of efficient 
allocation


•  For example, if we introduced a disinterested 3rd party 
(auctioneer), we could get an efficient allocation



