
Inductive
Learning

Chapter 18

Material adopted from
Yun Peng,

Chuck Dyer,
Gregory Piatetsky-Shapiro & Gary Parker

Chapters 3 and 4

3

Inductive Learning Framework

Induce a conclusion from the examples

§  Raw input data from sensors are preprocessed to obtain a feature
vector, X, that adequately describes all of the relevant features for
classifying examples.

§  Each x is a list of (attribute, value) pairs. For example,

X = [Person:Sue, EyeColor:Brown, Age:Young, Sex:Female]

§  The number of attributes (aka features) is fixed (finite).

§  Each attribute has a fixed, finite number of possible values.

§  Each example can be interpreted as a point in an n-dimensional
feature space, where n is the number of attributes.

4

Inductive Learning by
Nearest-Neighbor Classification

§  One simple approach to inductive learning is to save each training
example as a point in feature space

§  Classify a new example by giving it the same classification (+ or -) as
its nearest neighbor in Feature Space.

§  A variation involves computing a weighted sum of class of a set of
neighbors where the weights correspond to distances

§  The problem with this approach is that it doesn't necessarily
generalize well if the examples are not well "clustered."

5

KNN example

6

Simplicity first

§  Simple algorithms often work very well!

§  There are many kinds of simple structure, eg:

§  One attribute does all the work

§  All attributes contribute equally & independently

§  A weighted linear combination might do

§  Instance-based: use a few prototypes

§  Use simple logical rules

§  Success of method depends on the domain

witten & frank

7

Inferring rudimentary rules

§  1R: learns a 1-level decision tree
§  I.e., rules that all test one particular attribute

§  Basic version

§  One branch for each value

§  Each branch assigns most frequent class

§  Error rate: proportion of instances that don’t belong to the
majority class of their corresponding branch

§  Choose attribute with lowest error rate

 (assumes nominal attributes)

witten & frank

8

Evaluating the weather attributes

Attribute Rules Errors Total
errors

Outlook Sunny → No 2/5 4/14

Overcast → Yes 0/4

Rainy → Yes 2/5

Temp Hot → No* 2/4 5/14

Mild → Yes 2/6

Cool → Yes 1/4

Humidity High → No 3/7 4/14

Normal → Yes 1/7

Windy False → Yes 2/8 5/14

True → No* 3/6

Outlook Temp Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No * indicates a tie

Classification

witten & frank

9

Dealing with
numeric attributes

§  Discretize numeric attributes

§  Divide each attribute’s range into intervals

§  Sort instances according to attribute’s values

§  Place breakpoints where the class changes
(the majority class)

§  This minimizes the total error

§  Example: temperature from weather data

 64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes | No | Yes Yes Yes | No No Yes | Yes Yes | No | Yes Yes | No

witten & frank

10

The problem of overfitting

§  This procedure is very sensitive to noise
§  One instance with an incorrect class label will probably

produce a separate interval

§  Also: time stamp attribute will have zero errors

§  Simple solution:
enforce minimum number of instances in majority class
per interval

witten & frank

11

Discretization example

§  Example (with min = 3):

§  Final result for temperature attribute

64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes | No | Yes Yes Yes | No No Yes | Yes Yes | No | Yes Yes | No

64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes No Yes Yes Yes | No No Yes Yes Yes | No Yes Yes No

witten & frank

12

With overfitting avoidance

§  Resulting rule set:

Attribute Rules Errors Total errors

Outlook Sunny → No 2/5 4/14

Overcast → Yes 0/4

Rainy → Yes 2/5

Temperature ≤ 77.5 → Yes 3/10 5/14

> 77.5 → No* 2/4

Humidity ≤ 82.5 → Yes 1/7 3/14

> 82.5 and ≤ 95.5 → No 2/6

> 95.5 → Yes 0/1

Windy False → Yes 2/8 5/14

True → No* 3/6

witten & frank

13

Discussion of 1R
§  1R was described in a paper by Holte (1993)

§  Contains an experimental evaluation on 16 datasets
(using cross-validation so that results were representative
of performance on future data)

§  Minimum number of instances was set to 6 after some
experimentation

§  1R’s simple rules performed not much worse than much
more complex decision trees

§  Simplicity first pays off!

Very Simple Classification Rules Perform Well on Most Commonly Used
Datasets
Robert C. Holte, Computer Science Department, University of Ottawa

witten & frank

Classification:

Decision Trees

15

Outline

§ Top-Down Decision Tree Construction

§ Choosing the Splitting Attribute ????

16

DECISION TREE

§  An internal node is a test on an attribute.

§  A branch represents an outcome of the test, e.g.,
Color=red.

§  A leaf node represents a class label or class label
distribution.

§  At each node, one attribute is chosen to split
training examples into distinct classes as much
as possible

§  A new case is classified by following a matching
path to a leaf node.

17

Example Tree for “Play?”
Outlook

Temperatur
e

Humidi
ty Windy Play?

sunny hot high false No

sunny hot high true No

overcast hot high false Yes

rain mild high false Yes

rain cool normal false Yes

rain cool normal true No

overcast cool normal true Yes

sunny mild high false No

sunny cool normal false Yes

rain mild normal false Yes

sunny mild normal true Yes

overcast mild high true Yes

overcast hot normal false Yes

rain mild high true No

18

Building Decision Tree [Q93]

§  Top-down tree construction
§  At start, all training examples are at the root.

§  Partition the examples recursively by choosing one
attribute each time.

§  Bottom-up tree pruning

§  Remove subtrees or branches, in a bottom-up
manner, to improve the estimated accuracy on new
cases.

19

Choosing the Best Attribute
§ The key problem is choosing which attribute to split a

given set of examples.

§ Some possibilities are:

§ Random: Select any attribute at random

§ Least-Values: Choose the attribute with the
smallest number of possible values

§ Most-Values: Choose the attribute with the
largest number of possible values

§ Information gain: Choose the attribute that has
the largest expected information gain, i.e. select
attribute that will result in the smallest expected
size of the subtrees rooted at its children.

20

Which attribute to select?

witten & frank

21

A criterion for attribute selection

§  Which is the best attribute?
§  The one which will result in the smallest tree

§  Heuristic: choose the attribute that produces the
“purest” nodes

§  Popular impurity criterion: information gain
§  Information gain increases with the average purity of

the subsets that an attribute produces

§  Strategy: choose attribute that results in greatest
information gain

witten & frank

22

Choosing the Splitting Attribute

§  At each node, available attributes are evaluated
on the basis of separating the classes of the
training examples. A goodness function is used
for this purpose.

§  Typical goodness functions used for DTrees:
§  information gain (ID3/C4.5)

§  information gain ratio

§  gini index (CART)

witten & frank

23

Preference Bias: Ockham's Razor
§  Aka Occam’s Razor, Law of Economy, or Law of Parsimony

§  Principle stated by William of Ockham (1285-1347/49), an English
philosopher, that

§  “non sunt multiplicanda entia praeter necessitatem”

§  or, entities are not to be multiplied beyond necessity.

§  The simplest explanation that is consistent with all observations is
the best.

§  Therefore, the smallest decision tree that correctly classifies all of
the training examples is the best.

§  Finding the provably smallest decision tree is intractable (NP-hard),
so instead of constructing the absolute smallest tree consistent
with the training examples, construct one that is pretty small.

24

Inductive Learning and Bias

§  Suppose that we want to learn a function f(x) = y and we are
given some sample (x,y) pairs, as points in figure (a).

§  There are several hypotheses we could make about this function,
e.g.: (b), (c) and (d).

§  A preference for one over the others reveals the bias of our
learning technique, e.g.:

§  prefer piece-wise functions

§  prefer a smooth function

§  prefer a simple function and treat outliers as noise

25

26

Example: Huffman code

§  In 1952 MIT student David Huffman devised, in the course of doing
a homework assignment, an elegant coding scheme which is optimal
in the case where all symbols’ probabilities are integral powers of
1/2.

§  A Huffman code can be built in the following manner:

§  Rank all symbols in order of probability of occurrence.

§  Successively combine the two symbols of the lowest probability to
form a new composite symbol; eventually we will build a binary
tree where each node is the probability of all nodes beneath it.

§  Trace a path to each leaf, noticing the direction at each node.

27

Huffman code example

.5 .5

1

.125 .125

.25

A

C

B

D
.25

0 1

0

0 1

1

M code length prob
A 000 3 0,125 0,375
B 001 3 0,125 0,375
C 01 2 0,250 0,500
D 1 1 0,500 0,500

average message length 1,750

If we need to send many messages
(A,B,C or D) and they have this
probability distribution and we
use this code, then over time, the
average bits/message should
approach 1.75

28

Information Theory Background

§  If there are n equally probable possible messages, then the
probability p of each is 1/n

§  Information conveyed by a message is -log(p) = log(n)

§  Eg, if there are 16 messages, then log(16) = 4 and we need 4 bits to
identify/send each message.

§  In general, if we are given a probability distribution

P = (p1, p2, .., pn)

§  the information conveyed by distribution (aka entropy of P) is:

I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn))

 = - ∑i pi*log(pi)

29

Information Theory Background

§  Information conveyed by distribution (aka Entropy of P) is:

I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn))

§  Examples:

§  if P is (0.5, 0.5) then I(P) is 1

§  if P is (0.67, 0.33) then I(P) is 0.92,

§  if P is (1, 0) or (0,1) then I(P) is 0.

§  The more uniform is the probability distribution, the greater is its
information.

§  The entropy is the average number of bits/message needed to
represent a stream of messages.

30

Example: attribute “Outlook”, 1

Outlook Temperature Humidity Windy Play?
sunny hot high false No
sunny hot high true No
overcast hot high false Yes
rain mild high false Yes
rain cool normal false Yes
rain cool normal true No
overcast cool normal true Yes
sunny mild high false No
sunny cool normal false Yes
rain mild normal false Yes
sunny mild normal true Yes
overcast mild high true Yes
overcast hot normal false Yes
rain mild high true No

witten & frank

31

Example: attribute “Outlook”, 2

§  “Outlook” = “Sunny”:

§  “Outlook” = “Overcast”:

§  “Outlook” = “Rainy”:

§  Expected information for attribute:

bits 971.0)5/3log(5/3)5/2log(5/25,3/5)entropy(2/)info([2,3] =−−==

bits 0)0log(0)1log(10)entropy(1,)info([4,0] =−−==

bits 971.0)5/2log(5/2)5/3log(5/35,2/5)entropy(3/)info([3,2] =−−==

Note: log(0) is
not defined, but
we evaluate
0*log(0) as zero

971.0)14/5(0)14/4(971.0)14/5([3,2])[4,0],,info([3,2] ×+×+×=

bits 693.0=
witten & frank

32

Computing the information gain

§  Information gain:

(information before split) – (information after split)

0.693-0.940[3,2])[4,0],,info([2,3]-)info([9,5])Outlook"gain(" ==
bits 247.0=

witten & frank

33

Computing the information gain

§  Information gain:

(information before split) – (information after split)

§  Information gain for attributes from weather
data:

0.693-0.940[3,2])[4,0],,info([2,3]-)info([9,5])Outlook"gain(" ==
bits 247.0=

bits 247.0)Outlook"gain(" =

bits 029.0)e"Temperaturgain(" =

bits 152.0)Humidity"gain(" =

bits 048.0)Windy"gain(" =

witten & frank

34

Continuing to split

bits 571.0)e"Temperaturgain(" =
bits 971.0)Humidity"gain(" =

bits 020.0)Windy"gain(" =

witten & frank

Schematicly

35

Root
 Play: 9
¬Play: 5

Outlook Play: 9
¬Play: 5

1 2 3 Play: 2
¬Play: 3

 Play: 4
¬Play: 0

 Play: 3
¬Play: 2

Info: 0.94

Info: 0.94

€

Gain = 0.94 − (5 /14) × 0.971+ (4 /14) × 0 + (5 /14) × 0.971 = 0.693

sunny
overcast rainy

Info: 0.971 Info: 0 Info: 0.971

36

The final decision tree

§  Note: not all leaves need to be pure; sometimes
identical instances have different classes

⇒ Splitting stops when data can’t be split any further

witten & frank

37

*Wish list for a purity measure

§  Properties we require from a purity measure:
§  When node is pure, measure should be zero

§  When impurity is maximal (i.e. all classes equally likely),
measure should be maximal

§  Measure should obey multistage property (i.e. decisions can be
made in several stages):

§  Entropy is a function that satisfies all three properties!

,4])measure([3(7/9),7])measure([2,3,4])measure([2 ×+=

witten & frank

38

*Properties of the entropy

§  The multistage property:

§  Simplification of computation:

§  Note: instead of maximizing info gain we could just
minimize information

)entropy()()entropy()entropy(
rq
r,

rq
qrqrp,qp,q,r

++
×+++=

)9/4log(9/4)9/3log(9/3)9/2log(9/2])4,3,2([info ×−×−×−=

9/]9log94log43log32log2[+−−−=

witten & frank

39

outlook
play

40

How well does it work?

Many case studies have shown that decision trees are at least as
accurate as human experts.

§  A study for diagnosing breast cancer had humans correctly
classifying the examples 65% of the time, and the decision tree
classified 72% correct.

§  British Petroleum designed a decision tree for gas-oil separation
for offshore oil platforms that replaced an earlier rule-based
expert system.

§  Cessna designed an airplane flight controller using 90,000
examples and 20 attributes per example.

41

Highly-branching attributes

§  Problematic: attributes with a large number of
values (extreme case: ID code)

§  Subsets are more likely to be pure if there is a
large number of values

⇒ Information gain is biased towards choosing attributes
with a large number of values

⇒ This may result in overfitting (selection of an attribute
that is non-optimal for prediction)

witten & frank

42

Weather Data with ID code
ID Outlook Temperature Humidity Windy Play?
A sunny hot high false No
B sunny hot high true No
C overcast hot high false Yes
D rain mild high false Yes
E rain cool normal false Yes
F rain cool normal true No
G overcast cool normal true Yes
H sunny mild high false No
I sunny cool normal false Yes
J rain mild normal false Yes
K sunny mild normal true Yes
L overcast mild high true Yes
M overcast hot normal false Yes
N rain mild high true No

43

Split for ID Code Attribute

0.940)info([9,5] =

Entropy of split = 0 (since each leaf node is “pure”, having only
one case.
Information gain is maximal for ID code.
Customers are not different because of different credit car number.

?)info([0,1] =

witten & frank

Schematicly

44

Root
 Play: 9
¬Play: 5

ID code Play: 9
¬Play: 5

 Play: 0
¬Play: 1

 Play: 0
¬Play: 1

 Play: 0
¬Play: 1

Info: 0.94

Info: 0.94

94.00)14/1(...0)14/1(94.0G =×++×−=ain

A
B N

Info: 0 Info: 0 Info: 0

… no no no

45

Gain ratio

§  Gain ratio: a modification of the information gain
that reduces its bias on high-branch attributes

§  Gain ratio should be
§  Large when data is evenly spread
§  Small when all data belong to one branch

§  Gain ratio takes number and size of branches
into account when choosing an attribute
§  It corrects the information gain by taking the intrinsic

information of a split into account (i.e., how much info
do we need to tell which branch an instance belongs
to)

witten & frank

46

§  Intrinsic information: entropy of distribution of
instances into branches

For Information Gain we summed over the info
of each resulting node not the info of the split

§  Gain ratio (Quinlan’86) normalizes info gain by:

.||
||

2log||
||

||||,...,|||
2
|,|||

1
|(),(

S
iS

S
iS

SnSSSSSInfoASnfoIntrinsicI

∑−=

≡

.),(
),(),(ASnfoIntrinsicI
ASGainASGainRatio =

Gain Ratio and
Intrinsic Info./Split Info

47

Computing the gain ratio

§  Example: intrinsic information for ID code

§  Importance of attribute decreases as
intrinsic information gets larger

§  Example of gain ratio:

§  Example:

€

info([1,1,…,1]) =14 × (−1/14 × log1/14) = 3.807 bits

)Attribute"info("intrinsic_
)Attribute"gain(")Attribute"("gain_ratio =

246.0
bits 3.807
bits 0.940)ID_code"("gain_ratio ==

witten & frank

Schematicly

48

Root
 Play: 9
¬Play: 5

ID code Play: 9
¬Play: 5

 Play: 0
¬Play: 1

 Play: 0
¬Play: 1

 Play: 0
¬Play: 1

Info: 0.94

Info: 0.94

A
B

N

Info: 0

Info: 0
Info: 0

… no
no

no

Take into account how
much information is
needed to identify
where an object goes to

 { Approximately 3.807

49

Gain ratios for weather data

Outlook Temperature

Info: 0.693 Info: 0.911

Gain: 0.940-0.693 0.247 Gain: 0.940-0.911 0.029

Split info: info([5,4,5]) 1.577 Split info: info([4,6,4]) 1.362

Gain ratio: 0.247/1.577 0.156 Gain ratio: 0.029/1.362 0.021

Humidity Windy

Info: 0.788 Info: 0.892

Gain: 0.940-0.788 0.152 Gain: 0.940-0.892 0.048

Split info: info([7,7]) 1.000 Split info: info([8,6]) 0.985

Gain ratio: 0.152/1 0.152 Gain ratio: 0.048/0.985 0.049

246.0
bits 3.807
bits 0.940)ID_code"("gain_ratio ==

witten & frank

50

More on the gain ratio
§  “Outlook” still comes out top

§  However: “ID code” has high gain ratio
§  Standard fix: ad hoc test to prevent splitting on that

type of attribute

§  Problem with gain ratio: it may overcompensate
§  May choose an attribute just because its intrinsic

information is very low. Note how close humidity and
outlook became. Maybe that's not such a good thing?

§  Standard fix:
§  First, only consider attributes with greater than average

information gain

§  Then, compare them on gain ratio witten & frank

51

§  Suppose we randomly draw an object from node t and give it the
class i. What is the error for picking an object of class i if the
intended object is of class j?

 p(i|t) p(j|t)

§  The more homogeneous a set the smaller the error

§  We get the expected error (for all classes j) if we compute this for
all possible misclassifications:

For 3 classes:
(p1p2+p1p3+p1p1)+(p2p1+p2p3+p2p2)+(p3p1+p3p2+p3p3) =
p12+p22+p32+ 2p1p2+2p1p3+2p2p3 = (p1+p2+p3)2

Gini Index: Measure of Diversity

p(i | t)
i≠ j
∑ p(j | t)

= (pi
i
∑)2 − pi2

i
∑ =1− pi2

i
∑

=1

p(i | t)
i≠ j
∑ p(j | t)

52

After splitting T into two subsets T1 and T2 with sizes
N1 and N2, the gini index of the split data is defined
as

§  The attribute providing smallest ginisplit(T) is chosen
to split the node.

€

split
gini (T) = 1N

N
gini(1T) + 2N

N
gini(2T)

Gini Index: Used in the CART Learner
CART = Classification and Regression Tree

Properties of the goodness function:
F(0.5,0.5) = max
F(0,1) = F(1,0) = 0
Increasing for [0;0.5] decreasing for [0.5;1]

Gini, Entropy, Error Examples for a Single Node

∑−=
j

tjptGINI 2)]|([1)(

54

Goodness functions

55

Univariate Splits

56

Multivariate Splits

57

Noisy data and Overfitting
§ Many kinds of "noise" that could occur in the examples:

§  Two examples have same attribute/value pairs, but different
classifications

§  Some values of attributes are incorrect because of errors in the
data acquisition process or the preprocessing phase

§  The classification is wrong (e.g., + instead of -) because of some
error

§  Some attributes are irrelevant to the decision-making process, e.g.,
color of a die is irrelevant to its outcome.

Noisy data and Overfitting

§ The last problem, irrelevant attributes, can result
in overfitting

§  if hypothesis space has many dimensions because of a
large number of attributes, we may find meaningless
regularity in the data that is irrelevant to the true,
important, distinguishing features.

§ Fix by pruning lower nodes in the decision tree (see
C4.5 next section)

§ For example, if Gain of the best attribute at a node is
below a threshold, stop and make this node a leaf
rather than generating children nodes.

58

59

Summary introduction

§ Top-Down Decision Tree Construction

§ Choosing the Splitting Attribute
§  Information Gain biased towards attributes with a large

number of values

§ Gain Ratio takes number and size of branches into
account when choosing an attribute

§ Gini Index measure the misclassification ratio

§ Many other impurity measures are available but
no general better solution

60 60

Decision Trees to Rules
§  It is easy to derive a rule set from a decision tree: write a rule for

each path in the decision tree from the root to a leaf.

§  In that rule the left-hand side is easily built from the label of the
nodes and the labels of the arcs.

§  The resulting rules set can be simplified:

§  Let LHS be the left hand side of a rule.

§  Let LHS' be obtained from LHS by eliminating some conditions.

§  We can certainly replace LHS by LHS' in this rule if the subsets
of the training set that satisfy respectively LHS and LHS' are
equal.

§  A rule may be eliminated by using meta-conditions such as "if
no other rule applies".

61 61

From Decision Trees To Rules

YESYESNONO

NONO

NONO

Yes No

{Married}
{Single,

Divorced}

< 80K > 80K

Taxable
Income

Marital
Status

Refund

Classification Rules

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Rules are mutually exclusive and exhaustive

Rule set contains as much information as the
tree

62 62

Rules Can Be Simplified

YESYESNONO

NONO

NONO

Yes No

{Married}
{Single,

Divorced}

< 80K > 80K

Taxable
Income

Marital
Status

Refund

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Initial Rule: (Refund=No) ∧ (Status=Married) → No

Simplified Rule: (Status=Married) → No

