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Inductive Learning Framework 

Induce a conclusion from the examples 

§  Raw input data from sensors are preprocessed to obtain a feature 
vector, X, that adequately describes all of the relevant features for 
classifying examples.  

§  Each x is a list of (attribute, value) pairs. For example,  

X = [Person:Sue, EyeColor:Brown, Age:Young, Sex:Female]  

§  The number of attributes (aka features) is fixed (finite). 

§  Each attribute has a fixed, finite number of possible values.  

§  Each example can be interpreted as a point in an n-dimensional 
feature space, where n is the number of attributes.  



4 

Inductive Learning by  
Nearest-Neighbor Classification 

§  One simple approach to inductive learning is to save each training 
example as a point in feature space 

§  Classify a new example by giving it the same classification (+ or -) as 
its nearest neighbor in Feature Space. 

§  A variation involves computing a weighted sum of class of a set of 
neighbors where the weights correspond to distances 

§  The problem with this approach is that it doesn't necessarily 
generalize well if the examples are not well "clustered."  
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KNN example 
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Simplicity first 

§  Simple algorithms often work very well!  

§  There are many kinds of simple structure, eg: 

§  One attribute does all the work 

§  All attributes contribute equally & independently 

§  A weighted linear combination might do 

§  Instance-based: use a few prototypes 

§  Use simple logical rules 

§  Success of method depends on the domain 

witten & frank 
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Inferring rudimentary rules 

§  1R: learns a 1-level decision tree 
§  I.e., rules that all test one particular attribute 

§  Basic version 

§  One branch for each value 

§  Each branch assigns most frequent class 

§  Error rate: proportion of instances that don’t belong to the 
majority class of their corresponding branch 

§  Choose attribute with lowest error rate 

 (assumes nominal attributes) 

witten & frank 
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Evaluating the weather attributes 

Attribute  Rules Errors Total 
errors 

Outlook Sunny → No 2/5 4/14 

Overcast → Yes 0/4 

Rainy → Yes 2/5 

Temp Hot → No* 2/4 5/14 

Mild →  Yes 2/6 

Cool →  Yes 1/4 

Humidity High →  No 3/7 4/14 

Normal → Yes 1/7 

Windy False → Yes 2/8 5/14 

True → No* 3/6 

Outlook Temp Humidity Windy Play 

Sunny Hot High False No 

Sunny Hot  High  True No 

Overcast  Hot   High False Yes 

Rainy Mild High False Yes 

Rainy Cool Normal False Yes 

Rainy Cool Normal True No 

Overcast Cool Normal True Yes 

Sunny Mild High False No 

Sunny Cool Normal False Yes 

Rainy Mild Normal False Yes 

Sunny Mild Normal True Yes 

Overcast Mild High True Yes 

Overcast Hot Normal False Yes 

Rainy Mild High True No *  indicates a tie 

Classification 

witten & frank 
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Dealing with 
numeric attributes 

§  Discretize numeric attributes 

§  Divide each attribute’s range into intervals 

§  Sort instances according to attribute’s values 

§  Place breakpoints where the class changes 
(the majority class) 

§  This minimizes the total error 

§  Example: temperature from weather data 

 64       65       68     69    70       71   72   72       75    75        80      81      83        85 

Yes | No | Yes Yes Yes | No No Yes | Yes Yes | No | Yes  Yes | No 

witten & frank 
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The problem of overfitting 

§  This procedure is very sensitive to noise 
§  One instance with an incorrect class label will probably 

produce a separate interval 

§  Also: time stamp attribute will have zero errors 

§  Simple solution: 
enforce minimum number of instances in majority class 
per interval 

witten & frank 
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Discretization example 

§  Example (with min = 3): 

§  Final result for temperature attribute 

64        65       68     69    70       71   72   72       75    75        80      81       83       85 

Yes | No | Yes Yes Yes | No No Yes | Yes Yes | No | Yes  Yes | No 

64        65       68     69    70       71   72   72       75     75       80      81       83       85 

Yes   No   Yes Yes Yes | No No Yes   Yes Yes | No   Yes  Yes   No 

witten & frank 
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With overfitting avoidance 

§  Resulting rule set: 

Attribute  Rules Errors Total errors 

Outlook Sunny → No 2/5 4/14 

Overcast → Yes 0/4 

Rainy → Yes 2/5 

Temperature ≤ 77.5  → Yes 3/10 5/14 

> 77.5 →  No* 2/4 

Humidity ≤ 82.5 →  Yes 1/7 3/14 

> 82.5 and ≤ 95.5 → No 2/6 

> 95.5 → Yes 0/1 

Windy False → Yes 2/8 5/14 

True → No* 3/6 

witten & frank 
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Discussion of 1R 
§  1R was described in a paper by Holte (1993) 

§  Contains an experimental evaluation on 16 datasets 
(using cross-validation so that results were representative 
of performance on future data) 

§  Minimum number of instances was set to 6 after some 
experimentation 

§  1R’s simple rules performed not much worse than much 
more complex decision trees 

§  Simplicity first pays off!  

Very Simple Classification Rules Perform Well on Most Commonly Used 
Datasets 
Robert C. Holte, Computer Science Department, University of Ottawa 

witten & frank 



Classification:  

Decision Trees  
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Outline 

§ Top-Down Decision Tree Construction 

§ Choosing the Splitting Attribute ???? 
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DECISION TREE 

§  An internal node is a test on an attribute. 

§  A branch represents an outcome of the test, e.g., 
Color=red. 

§  A leaf node represents a class label or class label 
distribution. 

§  At each node, one attribute is chosen to split 
training examples into distinct classes as much 
as possible 

§  A new case is classified by following a matching 
path to a leaf node.  
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Example Tree for “Play?” 
Outlook 

Temperatur
e 

Humidi
ty Windy Play? 

sunny hot high false No 

sunny hot high true No 

overcast hot high false Yes 

rain mild high false Yes 

rain cool normal false Yes 

rain cool normal true No 

overcast cool normal true Yes 

sunny mild high false No 

sunny cool normal false Yes 

rain mild normal false Yes 

sunny mild normal true Yes 

overcast mild high true Yes 

overcast hot normal false Yes 

rain mild high true No 
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Building Decision Tree [Q93] 

§  Top-down tree construction 
§  At start, all training examples are at the root. 

§  Partition the examples recursively by choosing one 
attribute each time. 

§  Bottom-up tree pruning 

§  Remove subtrees or branches, in a bottom-up 
manner, to improve the estimated accuracy on new 
cases. 
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Choosing the Best Attribute 
§ The key problem is choosing which attribute to split a 

given set of examples.  

§ Some possibilities are: 

§ Random: Select any attribute at random  

§ Least-Values: Choose the attribute with the 
smallest number of possible values  

§ Most-Values: Choose the attribute with the 
largest number of possible values  

§ Information gain: Choose the attribute that has 
the largest expected information gain, i.e. select 
attribute that will result in the smallest expected 
size of the subtrees rooted at its children.  
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Which attribute to select? 

witten & frank 
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A criterion for attribute selection 

§  Which is the best attribute? 
§  The one which will result in the smallest tree 

§  Heuristic: choose the attribute that produces the 
“purest” nodes 

§  Popular impurity criterion: information gain 
§  Information gain increases with the average purity of 

the subsets that an attribute produces 

§  Strategy: choose attribute that results in greatest 
information gain 

witten & frank 
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Choosing the Splitting Attribute  

§  At each node, available attributes are evaluated 
on the basis of separating the classes of the 
training examples. A goodness function is used 
for this purpose. 

§  Typical goodness functions used for DTrees: 
§  information gain (ID3/C4.5) 

§  information gain ratio  

§  gini index (CART) 

witten & frank 
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Preference Bias: Ockham's Razor 
§  Aka Occam’s Razor, Law of Economy, or Law of Parsimony 

§  Principle stated by William of Ockham (1285-1347/49), an English 
philosopher, that  

§  “non sunt multiplicanda entia praeter necessitatem”  

§  or, entities are not to be multiplied beyond necessity.  

§  The simplest explanation that is consistent with all observations is 
the best.  

§  Therefore, the smallest decision tree that correctly classifies all of 
the training examples is the best.  

§  Finding the provably smallest decision tree is intractable (NP-hard), 
so instead of constructing the absolute smallest tree consistent 
with the training examples, construct one that is pretty small.  
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Inductive Learning and Bias 

§  Suppose that we want to learn a function f(x) = y and we are 
given some sample (x,y) pairs, as points in figure (a). 

§  There are several hypotheses we could make about this function, 
e.g.: (b),  (c) and (d).  

§  A preference for one over the others reveals the bias of our 
learning technique, e.g.: 

§  prefer piece-wise functions 

§  prefer a smooth function 

§  prefer a simple function and treat outliers as noise 



25 
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Example: Huffman code 

§  In 1952 MIT student David Huffman devised, in the course of doing 
a homework assignment, an elegant coding scheme which is optimal 
in the case where all symbols’ probabilities are integral powers of 
1/2.   

§  A Huffman  code can be built in the following manner: 

§  Rank all symbols in order of probability of occurrence. 

§  Successively combine the two symbols of the lowest probability to 
form a new composite symbol; eventually we will build a binary 
tree where each node is the probability of all nodes beneath it. 

§  Trace a path to each leaf, noticing the direction at each node. 
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Huffman code example 

.5 .5 

1 

.125 .125 

.25 

A 

C 

B 

D 
.25 

0 1 

0 

0 1 

1 

M code length prob
A 000 3 0,125 0,375
B 001 3 0,125 0,375
C 01 2 0,250 0,500
D 1 1 0,500 0,500

average message length 1,750

If we need to send many messages 
(A,B,C or D) and they have this 
probability distribution and we 
use this code, then over time, the 
average bits/message should 
approach 1.75 
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Information Theory Background 

§  If there are n equally probable possible messages, then the 
probability p of each is 1/n 

§  Information conveyed by a message is -log(p) = log(n) 

§  Eg, if there are 16 messages, then log(16) = 4 and we need 4 bits to 
identify/send each message. 

§  In general, if we are given a probability distribution  

P = (p1, p2, .., pn) 

§  the information conveyed by distribution (aka entropy of P) is:  

I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn)) 

       = - ∑i pi*log(pi) 
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Information Theory Background 

§  Information conveyed by distribution (aka Entropy of P) is:  

I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn)) 

§  Examples: 

§   if P is (0.5, 0.5) then I(P) is 1 

§  if P is (0.67, 0.33) then I(P) is 0.92,  

§  if P is (1, 0) or (0,1) then I(P) is 0.  

§  The more uniform is the probability distribution, the greater is its 
information. 

§  The entropy is the average number of bits/message needed to 
represent a stream of messages. 
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Example: attribute “Outlook”, 1  

Outlook Temperature Humidity Windy Play? 
sunny hot high false No 
sunny hot high true No 
overcast hot high false Yes 
rain mild high false Yes 
rain cool normal false Yes 
rain cool normal true No 
overcast cool normal true Yes 
sunny mild high false No 
sunny cool normal false Yes 
rain mild normal false Yes 
sunny mild normal true Yes 
overcast mild high true Yes 
overcast hot normal false Yes 
rain mild high true No 

witten & frank 
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Example: attribute “Outlook”, 2  

§  “Outlook” = “Sunny”: 

§  “Outlook” = “Overcast”: 

§  “Outlook” = “Rainy”: 

§  Expected information for attribute: 

bits 971.0)5/3log(5/3)5/2log(5/25,3/5)entropy(2/)info([2,3] =−−==

bits 0)0log(0)1log(10)entropy(1,)info([4,0] =−−==

bits 971.0)5/2log(5/2)5/3log(5/35,2/5)entropy(3/)info([3,2] =−−==

Note: log(0) is 
not defined, but 
we evaluate 
0*log(0) as zero 

971.0)14/5(0)14/4(971.0)14/5([3,2])[4,0],,info([3,2] ×+×+×=

bits 693.0=
witten & frank 
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Computing the information gain 

§  Information gain:  

(information before split) – (information after split) 

0.693-0.940[3,2])[4,0],,info([2,3]-)info([9,5])Outlook"gain(" ==
bits 247.0=

witten & frank 
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Computing the information gain 

§  Information gain:  

(information before split) – (information after split) 

§  Information gain for attributes from weather 
data: 

0.693-0.940[3,2])[4,0],,info([2,3]-)info([9,5])Outlook"gain(" ==
bits 247.0=

bits 247.0)Outlook"gain(" =

bits 029.0)e"Temperaturgain(" =

bits 152.0)Humidity"gain(" =

bits 048.0)Windy"gain(" =

witten & frank 
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Continuing to split 

bits 571.0)e"Temperaturgain(" =
bits 971.0)Humidity"gain(" =

bits 020.0)Windy"gain(" =

witten & frank 



Schematicly 
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Root 
  Play: 9 
¬Play: 5 

Outlook   Play: 9 
¬Play: 5 

1 2 3   Play: 2 
¬Play: 3 

  Play: 4 
¬Play: 0 

  Play: 3 
¬Play: 2 

Info: 0.94 

Info: 0.94 

€ 

Gain = 0.94 − (5 /14) × 0.971+ (4 /14) × 0 + (5 /14) × 0.971 = 0.693

sunny 
overcast rainy 

Info: 0.971 Info: 0  Info: 0.971 
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The final decision tree 

§  Note: not all leaves need to be pure; sometimes 
identical instances have different classes 

⇒ Splitting stops when data can’t be split any further 

witten & frank 



37 

*Wish list for a purity measure 

§  Properties we require from a purity measure: 
§  When node is pure, measure should be zero 

§  When impurity is maximal (i.e. all classes equally likely), 
measure should be maximal 

§  Measure should obey multistage property (i.e. decisions can be 
made in several stages): 
 

§  Entropy is a function that satisfies all three properties!
  

,4])measure([3(7/9),7])measure([2,3,4])measure([2 ×+=

witten & frank 
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*Properties of the entropy 

§  The multistage property: 

§  Simplification of computation: 

§  Note: instead of maximizing info gain we could just 
minimize information 

)entropy()()entropy()entropy(
rq
r,

rq
qrqrp,qp,q,r

++
×+++=

)9/4log(9/4)9/3log(9/3)9/2log(9/2])4,3,2([info ×−×−×−=

9/]9log94log43log32log2[ +−−−=

witten & frank 
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outlook 
play 
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How well does it work? 

Many case studies have shown that decision trees are at least as 
accurate as human experts.  

§  A study for diagnosing breast cancer had humans correctly 
classifying the examples 65% of the time, and the decision tree 
classified 72% correct. 

§  British Petroleum designed a decision tree for gas-oil separation 
for offshore oil platforms that  replaced an earlier  rule-based 
expert system. 

§  Cessna designed an airplane flight controller using 90,000 
examples and 20 attributes per example.  
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Highly-branching attributes 

§  Problematic: attributes with a large number of 
values (extreme case: ID code) 

§  Subsets are more likely to be pure if there is a 
large number of values 

⇒ Information gain is biased towards choosing attributes 
with a large number of values 

⇒ This may result in overfitting (selection of an attribute 
that is non-optimal for prediction) 

 

witten & frank 
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Weather Data with ID code 
ID Outlook Temperature Humidity Windy Play? 
A sunny hot high false No 
B sunny hot high true No 
C overcast hot high false Yes 
D rain mild high false Yes 
E rain cool normal false Yes 
F rain cool normal true No 
G overcast cool normal true Yes 
H sunny mild high false No 
I sunny cool normal false Yes 
J rain mild normal false Yes 
K sunny mild normal true Yes 
L overcast mild high true Yes 
M overcast hot normal false Yes 
N rain mild high true No 
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Split for ID Code Attribute 

0.940)info([9,5] =

Entropy of split = 0 (since each leaf node is “pure”, having only 
one case. 
Information gain is maximal for ID code. 
Customers are not different because of different credit car number. 
 

?)info([0,1] =

witten & frank 



Schematicly 
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Root 
  Play: 9 
¬Play: 5 

ID code   Play: 9 
¬Play: 5 

  Play: 0 
¬Play: 1 

  Play: 0 
¬Play: 1 

  Play: 0 
¬Play: 1 

Info: 0.94 

Info: 0.94 

94.00)14/1(...0)14/1(94.0G =×++×−=ain

A 
B N 

Info: 0 Info: 0  Info: 0 

… no no no 
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Gain ratio 

§  Gain ratio: a modification of the information gain 
that reduces its bias on high-branch attributes 

§  Gain ratio should be  
§  Large when data is evenly spread 
§  Small when all data belong to one branch 

§  Gain ratio takes number and size of branches 
into account when choosing an attribute 
§  It corrects the information gain by taking the intrinsic 

information of a split into account (i.e., how much info 
do we need to tell which branch an instance belongs 
to) 

witten & frank 
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§  Intrinsic information: entropy of distribution of 
instances into branches  

 
For Information Gain we summed over the info 
of each resulting node not the info of the split 

§  Gain ratio (Quinlan’86) normalizes info gain by: 

.||
||

2log||
||

||||,...,|||
2
|,|||

1
|(),(

S
iS

S
iS

SnSSSSSInfoASnfoIntrinsicI

∑−=

≡

.),(
),(),( ASnfoIntrinsicI
ASGainASGainRatio =

Gain Ratio and 
Intrinsic Info./Split Info 
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Computing the gain ratio 

§  Example: intrinsic information for ID code 

 

§  Importance of attribute decreases as 
intrinsic information gets larger 

§  Example of gain ratio: 

§  Example: 

  

€ 

info([1,1,…,1]) =14 × (−1/14 × log1/14) = 3.807 bits

)Attribute"info("intrinsic_
)Attribute"gain(")Attribute"("gain_ratio =

246.0
bits 3.807
bits 0.940)ID_code"("gain_ratio ==

witten & frank 



Schematicly 
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Root 
  Play: 9 
¬Play: 5 

ID code   Play: 9 
¬Play: 5 

  Play: 0 
¬Play: 1 

  Play: 0 
¬Play: 1 

  Play: 0 
¬Play: 1 

Info: 0.94 

Info: 0.94 

A 
B 

N 

Info: 0 

Info: 0  
Info: 0 

… no 
no 

no 

Take into account how 
much information is 
needed to identify 
where an object goes to 

 { Approximately 3.807 
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Gain ratios for weather data 

Outlook Temperature 

Info: 0.693 Info: 0.911 

Gain: 0.940-0.693 0.247  Gain: 0.940-0.911  0.029 

Split info: info([5,4,5]) 1.577   Split info: info([4,6,4]) 1.362 

Gain ratio: 0.247/1.577 0.156 Gain ratio: 0.029/1.362 0.021 

Humidity Windy 

Info: 0.788 Info: 0.892 

Gain: 0.940-0.788 0.152 Gain: 0.940-0.892  0.048 

Split info: info([7,7]) 1.000   Split info: info([8,6]) 0.985 

Gain ratio: 0.152/1 0.152 Gain ratio: 0.048/0.985 0.049 

246.0
bits 3.807
bits 0.940)ID_code"("gain_ratio ==

witten & frank 
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More on the gain ratio 
§  “Outlook” still comes out top 

§  However: “ID code” has high gain ratio 
§  Standard fix: ad hoc test to prevent splitting on that 

type of attribute 

§  Problem with gain ratio: it may overcompensate 
§  May choose an attribute just because its intrinsic 

information is very low. Note how close humidity and 
outlook became. Maybe that's not such a good thing? 

§  Standard fix:  
§  First, only consider attributes with greater than average 

information gain 

§  Then, compare them on gain ratio witten & frank 



51 

§  Suppose we randomly draw an object from node t and give it the 
class i. What is the error for picking an object of class i if the 
intended object is of class j? 

  p(i|t) p(j|t) 

§  The more homogeneous a set the smaller the error 

§  We get the expected error (for all classes j) if we compute this for 
all possible misclassifications: 
 
 
For 3 classes: 
(p1p2+p1p3+p1p1)+(p2p1+p2p3+p2p2)+(p3p1+p3p2+p3p3) = 
p12+p22+p32+ 2p1p2+2p1p3+2p2p3 = (p1+p2+p3)2 

 
 

 

Gini Index: Measure of Diversity 

p(i | t)
i≠ j
∑ p( j | t)

= ( pi
i
∑ )2 − pi2

i
∑ =1− pi2

i
∑

=1 

p(i | t)
i≠ j
∑ p( j | t)
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After splitting T into two subsets T1 and T2 with sizes 
N1 and N2, the gini index of the split data is defined 
as 

§  The attribute providing smallest ginisplit(T) is chosen 
to split the node. 

€ 

split
gini (T) = 1N

N
gini( 1T ) + 2N

N
gini( 2T )

Gini Index: Used in the CART Learner 
CART = Classification and Regression Tree 

Properties of the goodness function: 
F(0.5,0.5) = max 
F(0,1) = F(1,0) = 0 
Increasing for  [0;0.5] decreasing for [0.5;1] 



Gini, Entropy, Error Examples for a Single Node 
 

  

 
∑−=
j

tjptGINI 2)]|([1)(
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Goodness functions 
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Univariate Splits 
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Multivariate Splits 
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Noisy data and Overfitting 
§ Many kinds of "noise" that could occur in the examples: 

§  Two examples have same attribute/value pairs, but different 
classifications  

§  Some values of attributes are incorrect because of errors in the 
data acquisition process or the preprocessing phase  

§  The classification is wrong (e.g., + instead of -) because of some 
error  

§  Some attributes are irrelevant to the decision-making process, e.g., 
color of a die is irrelevant to its outcome.  



Noisy data and Overfitting 

§ The last problem, irrelevant attributes, can result 
in overfitting  

§  if hypothesis space has many dimensions because of a 
large number of attributes, we may find meaningless 
regularity in the data that is irrelevant to the true, 
important, distinguishing features.  

§ Fix by pruning lower nodes in the decision tree (see 
C4.5 next section) 

§ For example, if Gain of the best attribute at a node is 
below a threshold, stop and make this node a leaf 
rather than generating children nodes.  

58 
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Summary introduction 

§ Top-Down Decision Tree Construction 

§ Choosing the Splitting Attribute 
§  Information Gain biased towards attributes with a large 

number of values 

§ Gain Ratio takes number and size of branches into 
account when choosing an attribute 

§ Gini Index measure the misclassification ratio 

§ Many other impurity measures are available but 
no general better solution 
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Decision Trees to Rules 
§  It is easy to derive a rule set from a decision tree: write a rule for 

each path in the decision tree from the root to a leaf.  

§  In that rule the left-hand side is easily built from the label of the 
nodes and the labels of the arcs. 

§  The resulting rules set can be simplified: 

§  Let LHS be the left hand side of a rule.  

§  Let LHS' be obtained from LHS by eliminating some conditions.  

§  We can certainly replace LHS by LHS' in this rule if the subsets 
of the training set that satisfy respectively LHS and LHS' are 
equal. 

§  A rule may be eliminated by using meta-conditions such as "if 
no other rule applies". 
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From Decision Trees To Rules 

YESYESNONO

NONO

NONO

Yes No

{Married}
{Single, 

Divorced}

< 80K > 80K

Taxable 
Income

Marital 
Status

Refund

Classification Rules

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced},
Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Rules are mutually exclusive and exhaustive 

Rule set contains as much information as the 
tree 
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Rules Can Be Simplified 

YESYESNONO

NONO

NONO

Yes No

{Married}
{Single, 

Divorced}

< 80K > 80K

Taxable 
Income

Marital 
Status

Refund

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Initial Rule:           (Refund=No) ∧ (Status=Married) → No 

Simplified Rule:   (Status=Married) → No 


