Machine Learning in Real World: C4.5
Industrial-strength algorithms

- For an algorithm to be useful in a wide range of real-world applications it must:
 - Permit numeric attributes with adaptive discretization
 - Allow missing values
 - Be robust in the presence of noise
 - Be able to approximate arbitrary concept descriptions (at least in principle)
- Basic schemes need to be extended to fulfill these requirements
C4.5 History

- ID3, CHAID – 1960s
- C4.5 innovations (Quinlan):
 - permit numeric attributes
 - deal sensibly with missing values
 - pruning to deal with noisy data
- C4.5 - one of best-known and most widely-used learning algorithms
 - Last research version: C4.8, implemented in Weka as J4.8 (Java)
 - Commercial successor: C5.0 (available from Rulequest)
Numeric attributes

- Standard method: binary splits
 - E.g. temp < 45
- Unlike nominal attributes, every attribute has many possible split points
- Solution is straightforward extension:
 - Evaluate info gain (or other measure) for every possible split point of attribute
 - Choose “best” split point
 - Info gain for best split point is info gain for attribute
- Computationally more demanding
Example

- Split on temperature attribute:

 64 65 68 69 70 71 | 72 72 75 75 80 81 83 85
 Yes No Yes Yes Yes No No Yes Yes Yes Yes No Yes No

 - E.g. temperature < 71.5: yes/4, no/2
 temperature ≥ 71.5: yes/5, no/3

 - Info([4,2],[5,3])
 = \(\frac{6}{14} \text{info}([4,2]) + \frac{8}{14} \text{info}([5,3])\)
 = 0.939 bits

- Place split points halfway between values

- Can evaluate all split points in one pass!
Avoid repeated sorting!

- Sort instances by the values of the numeric attribute
 - Time complexity for sorting: $O(n \log n)$

- *Q. Does this have to be repeated at each node of the tree?*

- A: No! Sort order for children can be derived from sort order for parent
 - Time complexity of derivation: $O(n)$
 - Drawback: need to create and store an array of sorted indices for each numeric attribute
Example

Sort order of temperature created on startup

<table>
<thead>
<tr>
<th>outlook</th>
<th>sunny</th>
<th>sunny</th>
<th>sunny</th>
<th>sunny</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature tuple number</td>
<td>64</td>
<td>65</td>
<td>68</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>71</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>75</td>
<td>80</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>83</td>
<td>85</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We decide to split on outlook first (sunny, rainy, overcast)
More speeding up

- Entropy only needs to be evaluated between points of different classes (Fayyad & Irani, 1992)

<table>
<thead>
<tr>
<th>value</th>
<th>64</th>
<th>65</th>
<th>68</th>
<th>69</th>
<th>70</th>
<th>71</th>
<th>72</th>
<th>72</th>
<th>75</th>
<th>75</th>
<th>80</th>
<th>81</th>
<th>83</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>class</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Potential optimal breakpoints

Breakpoints between values of the same class cannot be optimal
Missing as a separate value

- Missing value denoted “?” in C4.X (Null value)
- Simple idea: treat missing as a separate value
- Q: When this is not appropriate?
- A: When values are missing due to different reasons
 - Example 1: blood sugar value could be missing when it is very high or very low
 - Example 2: field IsPregnant missing for a male patient should be treated differently (no) than for a female patient of age 25 (unknown)
Questions:

- How should tests on attributes with different unknown values be handled?
- How should the partitioning be done in case of examples with unknown values?
- How should an unseen case with missing values be handled?
Missing values - advanced

- Info gain with unknown values during learning
 - Let T be the training set and X a test on an attribute with unknown values and F be the fraction of examples where the value is known.
 - Rewrite the gain:
 $\text{Gain}(X) = \text{probability that } A \text{ is known} \times (\text{info}(T) - \text{info}_X(T)) + \text{probability that } A \text{ is unknown} \times 0$
 $= F \times (\text{info}(T) - \text{info}_X(T))$
Missing values - advanced

Assume splitting is done with respect to attribute X

Consider instances w/o missing values

Split w.r.t. those instances

Distribute instances with missing values proportionally
Pruning

- Goal: Prevent overfitting to noise in the data

- Two strategies for “pruning” the decision tree:
 - Postpruning - take a fully-grown decision tree and discard unreliable parts
 - Prepruning - stop growing a branch when information becomes unreliable

- Postpruning preferred in practice—prepruning can “stop too early”
Post-pruning

- First, build full tree
- Then, prune it
 - Fully-grown tree shows all attribute interactions
- Two pruning operations:
 1. *Subtree replacement*
 2. *Subtree raising*
Subtree replacement

- **Bottom-up**
- Consider replacing a tree only after considering all its subtrees
Subtree raising

- Delete node
- Redistribute instances
- Slower than subtree replacement

(Worthwhile?)
Estimating error rates

- Prune only if it reduces the estimated error
- Error on the training data is NOT a useful estimator

 Q: Why would it result in very little pruning?

- Use hold-out set for pruning
 (“reduced-error pruning”)
Expected Error Pruning

- Approximate expected error assuming that we prune at a particular node.
- Approximate backed-up error from children assuming we did not prune.
- If expected error is less than backed-up error, prune.
Static Expected Error

- If we prune a node, it becomes a leaf labeled, C
- What will be the expected classification error at this leaf?

\[E(S) = \frac{N - n + k - 1}{N + k} \]

- \(S \) is the set of examples in a node
- \(k \) is the number of classes
- \(N \) examples in \(S \)
- \(C \) the majority class in \(S \)
- \(n \) out of \(N \) examples in \(S \) belong to \(C \)

This is called Laplace error estimate – it is based on the assumption that the distribution of probabilities that examples will belong to different classes is uniform.

I would have used 1 here instead of \(k-1 \)
Backed-Up Error

- For a non-leaf node
- Let children of Node be Node1, Node2, etc

\[BackedUpError(Node) = \sum_i P_i \times Error(Node_i) \]

Probabilities can be estimated by relative frequencies of attribute values in sets of examples that fall into child nodes

\[Error(Node) = \min(E(Node), BackedUpError(Node)) \]
Example Calculation

Error Calculation for Pruning Example

- Left child of b has class frequencies [3, 2]

$$E = \frac{N - n + k - 1}{N + k} = \frac{5 - 3 + 2 - 1}{5 + 2} = 0.429$$

- Right child has error of 0.333, calculated in the same way.

- Static error estimate $E(b)$ is 0.375, again calculated using the Laplace error estimate formula, with $N=6$, $n=4$, and $k=2$.

- Backed-up error is:

$$BackedUpError(b) = (5/6) \times 0.429 + (1/6) \times 0.333 = 0.413$$

(5/6 and 1/6 because there are 4+2=6 examples handled by node b, of which 3+2=5 go to the left subtree and 1 to the right subtree.

- Since backed-up estimate of 0.413 is greater than static estimate of 0.375, we prune the tree and use the static error of 0.375.
Example

Prune if
Static error estimate <
Backed-up estimate

Prune
Complexity of tree induction

- **Assume**
 - m attributes
 - n training instances
 - tree depth $O(\log n)$

- **Building a tree** $O(mn \log n)$

- **Subtree replacement** $O(n)$

- **Subtree raising** $O(n (\log n)^2)$
 - Every instance may have to be redistributed at every node between its leaf and the root: $O(n \log n)$
 - Cost for redistribution (on average): $O(\log n)$

- **Total cost**: $O(mn \log n) + O(n (\log n)^2)$
Windowing

- ID3 can deal with very large data sets by performing induction on subsets or *windows* onto the data
 1. Select a random subset of the whole set of training instances
 2. Use the induction algorithm to form a rule to explain the current window
 3. Scan through all of the training instances looking for exceptions to the rule
 4. Add the exceptions to the window
- Repeat steps 2 to 4 until there are no exceptions left
<table>
<thead>
<tr>
<th>Condition (as determined by "Gold standard")</th>
<th>(\text{Test Outcome})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition Positive</td>
<td>Condition Negative</td>
</tr>
<tr>
<td>True Positive</td>
<td>False Positive (Type I error)</td>
</tr>
<tr>
<td>False Negative (Type II error)</td>
<td>True Negative</td>
</tr>
</tbody>
</table>

Positive predictive value = \[\frac{\sum \text{True Positive}}{\sum \text{Test Outcome Positive}} \]

Negative predictive value = \[\frac{\sum \text{True Negative}}{\sum \text{Test Outcome Negative}} \]

Sensitivity = \[\frac{\sum \text{True Positive}}{\sum \text{Condition Positive}} \]

Specificity = \[\frac{\sum \text{True Negative}}{\sum \text{Condition Negative}} \]