Machine Learning in Real World: C4.5

Industrial-strength algorithms

- For an algorithm to be useful in a wide range of realworld applications it must:
- Permit numeric attributes with adaptive discretization
- Allow missing values
- Be robust in the presence of noise
- Be able to approximate arbitrary concept descriptions (at least in principle)
- Basic schemes need to be extended to fulfill these requirements

C4.5 History

- ID3, CHAID - 1960s
- C4.5 innovations (Quinlan):
- permit numeric attributes
- deal sensibly with missing values
- pruning to deal with noisy data
- C4.5 - one of best-known and most widely-used learning algorithms
- Last research version: C4.8, implemented in Weka as J4.8 (Java)
- Commercial successor: C5.0 (available from Rulequest)

Numeric attributes

- Standard method: binary splits
- E.g. temp < 45
- Unlike nominal attributes, every attribute has many possible split points
- Solution is straightforward extension:
- Evaluate info gain (or other measure) for every possible split point of attribute
- Choose "best" split point
- Info gain for best split point is info gain for attribute
- Computationally more demanding

Example

- Split on temperature attribute:

64	65	68	69	70	71	72	72	75	75	80	81	83	85
Yes	No	Yes Yes	Yes	No	No	Yes	Yes	Yes	No	Yes	Yes	No	

- E.g. temperature < 71.5: yes/4, no/2 temperature ≥ 71.5 : yes/5, no/3
- Info([4,2],[5,3])
$=6 / 14 \operatorname{info}([4,2])+8 / 14 \operatorname{info}([5,3])$
$=0.939$ bits
- Place split points halfway between values
- Can evaluate all split points in one pass!

Avoid repeated sorting!

- Sort instances by the values of the numeric attribute
- Time complexity for sorting: $O(n \log n)$
- Q. Does this have to be repeated at each node of the tree?
- A: No! Sort order for children can be derived from sort order for parent
- Time complexity of derivation: $O(n)$
- Drawback: need to create and store an array of sorted indices for each numeric attribute

Example

Sort order of temperature created on startup

outlook				会			家			充	公			交
temperature	64	65	68	69	70	71	72	72	75	75	80	81	83	85
tuple number	7	6	5	9	4	14	8	12	10	11	2	13	3	

We decide to split on outlook first（sunny，rainy，overcast）
$\begin{array}{lllll}9 & 8 & 11 & 2 & 1\end{array}$

More speeding up

- Entropy only needs to be evaluated between points of different classes (Fayyad \& Irani, 1992)

Missing as a separate value

- Missing value denoted "?" in C4.X (Null value)
- Simple idea: treat missing as a separate value
- Q: When this is not appropriate?
- A: When values are missing due to different reasons
- Example 1: blood sugar value could be missing when it is very high or very low
- Example 2: field IsPregnant missing for a male patient should be treated differently (no) than for a female patient of age 25 (unknown)

Missing values - advanced

Questions:

- How should tests on attributes with different unknown values be handled?
- How should the partitioning be done in case of examples with unknown values?
- How should an unseen case with missing values be handled?

Missing values - advanced

- Info gain with unknown values during learning
- Let T be the training set and X a test on an attribute with unknown values and F be the fraction of examples where the value is known.
- Rewrite the gain:

$$
\begin{aligned}
\text { Gain }(\mathrm{X})= & \text { probability that } \mathrm{A} \text { is known } *\left(\operatorname{info}(\mathrm{~T})-\operatorname{info}_{\mathrm{x}}(\mathrm{~T})\right)+ \\
& \operatorname{probability} \text { that } \mathrm{A} \text { is unknown } * 0^{=} \mathrm{F}^{*}\left(\operatorname{info}(\mathrm{~T})-\operatorname{info}_{x}(\mathrm{~T})\right)
\end{aligned}
$$

Missing values - advanced

Assume splitting is done with respect to attribute X Consider instances w/o missing values

Split w.r.t. those instances
Distribute instances with missing values proportionally

- Goal: Prevent overfitting to noise in the data
- Two strategies for "pruning" the decision tree:
- Postpruning - take a fully-grown decision tree and discard unreliable parts
- Prepruning - stop growing a branch when information becomes unreliable
- Postpruning preferred in practiceprepruning can "stop too early"

Post-pruning

- First, build full tree
- Then, prune it
- Fully-grown tree shows all attribute interactions
- Two pruning operations:

1. Subtree replacement
2. Subtree raising

- Bottom-up
- Consider replacing a tree only after considering all

*Subtree raising

- Delete node
- Redistribute instances
- Slower than subtree replacement
(Worthwhile?)

Estimating error rates

- Prune only if it reduces the estimated error
- Error on the training data is NOT a useful estimator Q: Why would it result in very little pruning?
- Use hold-out set for pruning ("reduced-error pruning")

Expected Error Pruning

- Approximate expected error assuming that we prune at a particular node.
- Approximate backed-up error from children assuming we did not prune.
- If expected error is less than backed-up error, prune.

Static Expected Error

- If we prune a node, it becomes a leaf labeled, C
- What will be the expected classification error at this leaf?

$$
E(S)=\frac{N-n+k-1}{N+k}
$$

S is the set of examples in a node
k is the number of classes
N examples in S
C the majority class in S
n out of N examples in S belong to C
This is called Laplace error estimate - it is based on the assumption that the distribution of probabilities that examples will belong to different classes is uniform.

Backed-Up Error

- For a non-leaf node
- Let children of Node be Node1, Node2, etc

$$
\text { BackedUpError }(\text { Node })=\sum_{i} P_{i} \times \operatorname{Error}\left(\text { Node }_{i}\right)
$$

Probabilities can be estimated by relative frequencies of attribute values in sets of examples that fall into child nodes

$$
\text { Error }(\text { Node })=\min (E(\text { Node }), \text { BackedUpError }(\text { Node })
$$

Example Calculation

Error Calculation for Pruning Example

- Left child of b has class frequencies [3, 2]

$$
E=\frac{N-n+k-1}{N+k}=\frac{5-3+2-1}{5+2}=0.429
$$

- Right child has error of 0.333 , calculated in the same way
- Static error estimate $E(b)$ is 0.375 , again calculated using the Laplace error estimate formula, with $N=6, n=4$, and $k=2$.
- Backed-up error is:

$$
\text { BackedUpError }(b)=(5 / 6) \times 0.429+(1 / 6) \times 0.333=0.413
$$

($5 / 6$ and $1 / 6$ because there are $4+2=6$ examples handled by node b, of which $3+2=5$ go to the left subtree and 1 to the right subtree.

- Since backed-up estimate of 0.413 is greater than static estimate of 0.375 , we prune the tree and use the static error of $\mathbf{0 . 3 7 5}$

Example

*Complexity of tree induction

- Assume
- mattributes
- n training instances
- tree depth $O(\log n)$
- Building a tree
- Subtree replacement
- Subtree raising
- Every instance may have to be redistributed at every node between its leaf and the root: $O(n \log n)$
- Cost for redistribution (on average): $O(\log n)$
- Total cost: $O(m n \log n)+O\left(n(\log n)^{2}\right)$
- ID3 can deal with very large data sets by performing induction on subsets or windows onto the data

1. Select a random subset of the whole set of training instances
2. Use the induction algorithm to form a rule to explain the current window
3. Scan through all of the training instances looking for exceptions to the rule
4. Add the exceptions to the window

- Repeat steps 2 to 4 until there are no exceptions left

[^0]| | | Condition
 (as determined by "Gold standard") | | |
| :---: | :---: | :---: | :---: | :---: |
| | | Condition Positive | Condition Negative | |
| Test Outcome | Test Outcome Positive | True Positive | False Positive (Type I error) | Positive predictive value $=$ Σ True Positive |
| | | | | Σ Test Outcome Positive |
| | Test Outcome Negative | False Negative (Type II error) | True Negative | Negative predictive value $=$
 Σ True Negative |
| | | | | Σ Test Outcome Negative |
| | | Sensitivity =
 Σ True Positive | Specificity =
 Σ True Negative | |
| | | $\bar{\Sigma}$ Condition Positive | Σ Condition Negative | |

[^0]: http://
 www.cse.unsw.edu.au/

