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Agents and environments

percepts

actions

actuators

The agent function maps from percept histories to
actions: [, P* > 4]

The agent program runs on the physical
architecture to produce f

agent = architecture + program
architecture: PC, robotic car, ...



Uncertainty

Let action A, = leave for airport t minutes before flight
Will A, get me there on time?

Problems:
1. partial observability (road state, other drivers' plans, etc.)
2. noisy sensors (traffic reports)
3. uncertainty in action outcomes (flat tire, etc.)
4 immense complexity of modeling and predicting traffic

Hence, it seems that a purely logical approach either
1. risks falsehood: “A,: will get me there on time”, or
2. leads to conclusions that are too weak for decision making:

“A,: will get me there on time if there's no accident on the bridge and it doesn't
rain and my tires remain intact etc etc.”

(A;,40 Might reasonably be said to get me there on time but I'd have to stay
overnight in the airport ...)



Problems of Logic in certain
Domains

 Diagnosis:
* Toothache => Cavity v GumProblem v Abscess v ...

+ Cavity => Toothache

« The connection between toothaches and cavities is
just not a logical consequence. For medical
diagnosis logic does not seem to be appropriate.



Methods for handling uncertainty

Logic:
+ Assume my car does not have a flat tire
+ Assume A,; works unless contradicted by evidence

Issues: What assumptions are reasonable? How to handle
contradiction?

Rules with fudge factors (belief in the rule):
¢ A,s [, 3 get there on time
¢ Sprinkler [— 9 WetGrass
¢ WetGrass [ o, Rain

Issues: Problems with combination, e.q., Sprinkler causes
Rain??

Probability
+ Model agent's degree of belief
+ Given the available evidence,
+ A,:will get me there on time with probability 0.04



Probability

Probabilistic assertions summarize effects of
+ laziness: failure to enumerate exceptions, qualifications, etc.

* theoretical ignorance: no complete theory
+ practical ignorance: lack of relevant facts, initial conditions, tests,
etc.

Subjective probability:
» Probabilities relate propositions to agent's own state of
knowledge
e.d., P(A,c | no reported accidents) = 0.06

These are not assertions about the world

Probabilities of propositions change with new evidence:
e.g., P(A,s | no reported accidents, 5 a.m.) = 0.15



Making decisions under uncertainty

Suppose | believe the following:
P(A,: gets me there ontime | ...) = 0.04
P(Agy gets me there on time | ...) = 0.70
P(A,,,gets me there on time | ...) = 0.95
P(A1440 gets me there on time | ...) = 0.9999

e Which action to choose?

Depends on my preferences for missing flight vs.
time spent waiting, etc.
+ Utility theory is used to represent and infer preferences
+ Decision theory = probability theory + utility theory



Decision theoretic agent

function DT-AGENT( percept) returns an action
static: belicf_state, probabilistic beliefs about the current state of the world
action, the agent’s action

update belicf_state based on action and percept
calculate outcome probabilities for actions,

given action descriptions and current belicf_state
select action with highest expected utility

given probabilities of outcomes and utility information
return action

Figure 13.1 A decision-theoretic agent that selects rational actions. The steps will be
fleshed out in the next five chapters.




Probability theory: syntax

Basic element: random variable

Similar to propositional logic: possible worlds defined by assignment of
values to random variables.

Boolean random variables
e.g., Cavity (do | have a cavity?). Domain is <true, false>

Discrete random variables
e.g., Weather is one of <sunny,rainy,cloudy,snow>

Domain values must be exhaustive and mutually exclusive

Elementary proposition constructed by assignment of a value to a
random variable: e.qg.,

+  Weather = sunny,

* Cavity = false (abbreviated as - cavity)

+ Cavity = true (abbreviated as cavity)

Complex propositions formed from elementary propositions and standard
logical connectives e.qg., Weather = sunny v Cavity = false



Syntax

« Atomic event: A complete specification of
the state of the world about which the agent
IS uncertain

E.g., if the world is described by only two Boolean
variables Cavity and Toothache, then there are 4
distinct atomic events:

Cavity = false n Toothache = false
Cavity = false n Toothache = true
Cavity = true A Toothache = false
Cavity = true n Toothache = true

« Atomic events are mutually exclusive and
exhaustive



Axioms of probability

e For any propositions A, B
*+0=<PA =<1
* P(true) = 1 and P(false) = 0
*P(Av B) = P(A) + P(B) - P(A A B

True




Example world

Example: Dentist problem with four variables:
Toothache (I have a toothache)

Cavity (I have a cavity)
Catch (steel probe catches in my tooth)

Weather (sunny,rainy,cloudy,snow )




Prior probability

e Prior or unconditional probabilities of propositions

e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72
correspond to belief prior to arrival of any (new) evidence

* Probability distribution
gives values for all possible assignments:

P(Weather) = <0.72,0.1,0.08,0.1>
(normalized, i.e., sums to 1 because one must be the case)



Full joint probability distribution

* Joint probability distribution for a set of random variables gives the
probability of every atomic event on those random variables

P(Weather,Cavity) = a 4 X 2 matrix of values:

Weather = |sunny rainy cloudy snow
Cavity = true ‘ 0.144 0.02 0.016 0.02

Cavity = false 0.576 0.08 0.064 0.08

* Full joint probability distribution: all random variables involved
+ P(Toothache, Catch, Cavity, Weather)

e Every question about a domain can be answered by the full joint
distribution



Probability for continuous
variables

Express distribution as a parameterized function of value:
P(X =) = UJ[18,26](x) = uniform density between 18 and 26

0.125

18 26

Here P is a density; integrates to 1.
P(X =20.5) = 0.125 really means

lim P(20.5 < X <205+ dx)/dr = 0.125



Gaussian density




Conditional probability

Conditional or posterior probabilities
e.g., P(cavity | toothache) = 0.8
or: <0.8>
i.e., given that toothache is all | know

(Notation for conditional distributions:
P(Cavity | Toothache) = 2-element vector of 2-element vectors)

If we know more, e.g., cavity is also given, then we have
P(cavity | toothache,cavity) = 1

New evidence may be irrelevant, allowing simplification, e.qg.,
P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8

This kind of inference, sanctioned by domain knowledge, is
crucial



Conditional probability

« Definition of conditional probability (in terms of uncond. prob.):
P@| b) =P(@anab)/Pb)if Pb)>0

e Product rule gives an alternative formulation (A is commutative):
P(@a b) =P(@@ | b) P(b) =P(b | a) P(a)

« A general version holds for whole distributions, e.qg.,
P(Weather,Cavity) = P(Weather | Cavity) P(Cavity)

View as a set of 4 x 2 equations, not matrix mult.
1,1 P(Weather=sunny [Cavity=true) P(Cavity=true)
1,2) P(Weather=sunny [Cavity=false) P(Cavity=false), ....

« Chain rule is derived by successive application of product rule:

P(X]_’ ...,Xn) - P(Xl,...,xn_l) P(Xn | Xl!"'!Xn—l)
P(X1,...,X,5) POX, 1 | Xq,.-0,X20) POX | Xy, X027)

n
= =X | Xq, ..., Xily)



Inference by enumeration

« Start with the joint probability distribution:

toothache - toothache

catch| . catchlcarch| — carch

cavity | .

144 | .576

= cavity

 For any proposition ¢, sum the atomic events

where it is true: P(p) = 2,1, P(W)



Inference by enumeration

Start with the joint probability distribution:

| toothache -1 roothache
catch | = carch|catch| — carch
caviry | .108| .012 . .

— cavity | 016 .064 ].144 576

For any proposition ¢, sum the atomic events where it is true:
P() = 2.0 ko P(W)

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Unconditional or marginal probability of toothache
Process is called marginalization or summing out



Marginalization and conditioning

* LetY, Z be sequences of random variables
s.th. Y U Z denotes all random variables
describing the world

* Marginalization
* P(Y) =3,.. ,P(Y,2)

« Conditioning
* P(Y) =3,.. ,P(Y|2)P(2)



Inference by enumeration

« Start with the joint probability distribution:

toothache - toothache

catch| — carch|catch| — carch
caviry | .108| .012 072 | .008
- cavity | 016| .064 | .144 | .576

For any proposition ¢, sum the atomic events where it is true:
P() = 2.0 ko P(W)

* P(cavity v toothache) = 0.108 + 0.012 + 0.072 + 0.008+
0.016 + 0.064 = 0.28

(P(cavity v toothache) = P(cavity) + P(toothache) - P(cavity an toothache))



Inference by enumeration

« Start with the joint probability distribution:

toothache - toothache

carch| - carch|catch| — carch
cavity | . .008
— caviry ||.016] . 576

« Can also compute conditional probabilities:

P(-cavity | toothache) = P(-cavity A toothache)
Product rule P(toothache)
= 0.016+0.064
0.108 + 0.012 + 0.016 + 0.064
= 0.4

P(cavity | toothache) = 0.108+0.012/0.2 = 0.6



Normalization

toothache - toothache

catch| — carch)carch| — carch
cavity |1.108] .012 072 | .008
— caviry |1.016|.064 144 | .576

« Denominator P(z) (or P(toothache) in the example before) can be
viewed as a normalization constant «

P(Cavity | toothache) = « P(Cavity,toothache)
= o [P(Cavity,toothache,catch) + P(Cavity,toothache,~ catch)]
= « [<0.108,0.016> + <0.012,0.064>]
=« <0.12,0.08> = <0.6,0.4>

General idea: compute distribution on query variable by fixing evidence
variables (Toothache) and summing over hidden variables (Catch)



Inference by enumeration, contd.

Typically, we are interested in
the posterior joint distribution of the query variables Y

given specific values e for the evidence variables E
(X are all variables of the modeled world)

Let the hidden variables be H = X - Y - E then the required summation of joint
entries is done by summing out the hidden variables:

P(Y | E=e) = aP(Y,E = e) = a%,P(Y,E= e, H = h)

« The terms in the summation are joint entries because Y, E and H together
exhaust the set of random variables (X)

 Obvious problems:

1. Worst-case time complexity O(d") where d is the largest arity and n denotes the
number of random variables

2. Space complexity O(d") to store the joint distribution
3. How to find the numbers for O(d") entries?



Independence

« Aand Bare independent iff
P(A/B) = P(A) or P(B/A) = P(B) or P(A, B) = P(A) P(B)

~cavity

Cavity decomposes into ‘{Toothache Catch
Toothache  Catch ‘ ~__ 7
Heather Weather

P(Toothache, Catch, Cavity, Weather)
= P(Toothache, Catch, Cavity) P(Weather)

e« 32 entries reduced to 12;
« for nindependent biased coins, O(2") = O(n)
« Absolute independence powerful but rare

» Dentistry is a large field with hundreds of variables, none of
which are independent. What to do?



Conditional independence

« P(Toothache, Cavity, Catch) has 23 - 1 = 7 independent entries

« If | have a cavity, the probability that the probe catches in it doesn't
depend on whether | have a toothache:

(1) P(catch | toothache, cavity) = P(catch | cavity)

« The same independence holds if | haven't got a cavity:
(2) P(catch | toothache,- cavity) = P(catch | —cavity)

« (Catch is conditionally independent of Toothache given Cavity:.
P(Catch | Toothache,Cavity) = P(Catch | Cavity)

* Equivalent statements:
P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)



Conditional independence contd.

* Write out full joint distribution using chain rule:

P(Toothache, Catch, Cavity)
= P(Toothache | Catch, Cavity) P(Catch, Cavity)

= P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity)
conditional independence
= P(Toothache | Cavity) P(Catch | Cavity) P(Cavity)

i.e., 2 + 2 + 1 =5 independent numbers

* In most cases, the use of conditional independence
reduces the size of the representation of the joint
distribution from exponential in n to linear in n.

 Conditional independence is our most basic and
robust form of knowledge about uncertain
environments.



Bayes’ Rule

Product rule P(a A b) = P(alb)P(b) = P(bla)P(a)

= Bayes' rule P(alb) = P(bg()l;’;(a)
or in distribution form
p(y1x) = EDPM) _ pix vy

P(X)
Useful for assessing diagnostic probability from causal probability:

P(Ef fect|Cause)P(Cause)
P(Effect)

E.g., let M be meningitis, S be stiff neck:

P(slm)P(m) 0.8 x 0.0001
P(sy 01

Note: posterior probability of meningitis still very smalll

P(Cause|Ef fect) =

P(mls) = = 0.0008




Bayes’ Rule (2)

P (Cavity|toothache N catch)
= a P(toothache A catch|Cavity)P(Cavity)
= «a P(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause, Effecty, ..., Ef fect,) = P(Cause)IL,P(Ef fect;|Cause)

/"\\

Total number of parameters is linear in n



Why is Bayes' theorem
Interesting?

e Often you have causal knowledge:
P(symptom | disease)
P(light is off | status of switches and switch positions)
P(alarm | fire)
P(image looks like - | a tree is in front of a car)

@ and want to do evidential reasoning:

P(disease | symptom)

P(status of switches | light is off and switch positions)
P(fire | alarm).
(

P(a tree is in front of a car | image looks like < )



Wumpus World

14 24 34 74
13 23 33 43
12 22 32 42
B

OK

1 2.1 31 41
B
OK OK

P,;j=true iff [i, j] contains a pit

B;;=true iff [2, j] is breezy
Include only B 1, B2, Bo1 in the probability model



Specifying the probability model

The full joint distribution is P(P 4, ..., P4, By 1. B2, Bsy)

Apply product rule: P(By 1, B9, Boy | Piy,..., Piy)P(Py, ..., Pyy)

(Do it this way to get P(Ef fect|Cause).)

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:
P(Pyy,.. . |Pua) =11 _ P(P) = 0.27 x 0.816"

for n pits.



Observations and query

14 24 34 a4
13 23 33 43
We know the following facts:
b==bi1 AbigAbyy g [ P[P
known = —p11 A —pia A —p21 T
B
Query is P( P, s|known, b) = o

Define Unknown = P;;s other than P, 3 and Known
For inference by enumeration, we have
P (P, 3|known,b) = C}:ZunknownP(Pm, unknown, known, b)

Grows exponentially with number of squares!



Using conditional independence

Basic insight: observations are conditionally independent of other hidden
squares given neighbouring hidden squares
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Define Unknown = Fringe U Other
P(b| P, 5, Known, Unknown) = P(b| P, 5, Known, Fringe)

Manipulate query into a form where we can use this!



Using conditional independence

contd.
T EE——.

P (P, 3|known,b) = aunk\%own P(P, 3, unknown, known, b)

o P(b| P, 3, known, unknown)P (P, 3, known, unknown)

= o' " P(blknown, Py, fringe,other)P(Pys, known, fringe, other)
a ¥ X P(blknown, Py 3, fringe)P (P 3, known, fringe, other)

fringe other

a > P(blknown, P, s, fringe) > P(P 3, known, fringe, other)

fringe other
= afZ P(b|known, P, 3, fringe) % P (P, 3)P(known)P( fringe)P(other)
ringe ' other
= a P(known)P(P,3) ¥ P(blknown, P, s, fringe)P(fringe) %j P(other)
' ringe other

= o' P(P13) ¥ P(blknown, P, 3, fringe)P(fringe)

ringe



Using conditional independence
contd.

13 13 13 13

R4 - 1< P 1.2 - 1< - 1.2 -
. . . . . . . . .
0K OK OK OK OK
1.1 21 31 1.1 21 31 1.1 21 31 1.1 21 31 1.1 21 31
\ . . . . \ . .
0K 0K OK OK OK OK OK OK

02x02=0.04 02x08=0.16 08x02=0.16 02x02=0.04 02x08=0.16

P (P, 3|known,b) = o (0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16))

~ (0.31,0.60)

P(Pss|known,b) ~ (0.86,0.14)



Summary

Probability is a rigorous formalism for uncertain knowledge

Joint probability distribution specifies probability of every atomic event
Queries can be answered by summing over atomic events

For nontrivial domains, we must find a way to reduce the joint size

Independence and conditional independence provide the tools



