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Issues

= If a state is described by n propositions,
then a belief space contains 2" states
(possibly, some have probability O)

= — Modeling difficulty: many numbers
must be entered in the first place

= — Computational issue: memory size and
time



toothache -toothache

pcatch | -pcatch |pcatch |-pcatch
cavity |0.108 0.012 0.072 |0.008
~cavity [0.016 0.064 |0.144 0.576

= Toothache and pcatch are independent given
cavity (or -cavity), but this relation is hidden

in the numbers | [Verify this]

= Bayesian networks explicitly represent

independence among propositions to reduce
the number of probabilities defining a belief

state




Verification

P(toothache, pcatch| cavity) = P(toothache| cavity)*P(pcatch| cavity)

P(toothache, pcatch,cavity)/ = P(toothache, cavity)/ *P(pcatch, cavity)/

P(cavity) P(cavity)

P(toothache, pcatch,cavity) = P(toothache, cavity) *P(pcatch, cavity)/
P(cavity)

P(cavity)

0,108 = ((0,108+0,012 )* (0,108+0,072)) /(0,108+ 0,012+0,072+0,008 )

0,108 =0,12%0,18/0,2
0,108 =0,0216/0,2 =216/2000 =0,108

toothache

—toothache

pcatch |—pcatch

pcatch

—pcatch

cavity

0.108 0.012

0.072

0.008

—~cavity

0.016 0.064

0.144

0.576




Bayes rule

Applying the bayes rule (chain rule) does

not help so much.
P(X,, ...X.)  =PXq...X ) POX | Xqpeon X o)
= P(Xq, 0, X0) POX 4 | Xy, X0) POX | Xqyees X0 q)

P(toothache, cavity, pcatch) = P(toothache)* P(cavity| toothache)
*P(pcatch | toothache, cavity)



Bayesian networks

« A simple, graphical notation for conditional
independence assertions and hence for compact
specification of full joint distributions

« Syntax:

— a set of nodes, one per variable

— a directed, acyclic graph (link = "directly influences")
— a conditional distribution for each node given its parents:
P (X;| Parents (X))

* |In the simplest case, conditional distribution represented
as a conditional probability table (CPT) giving the
distribution over X; for each combination of parent values

Following slides by Hwee Tou Ng (Singapore)



Example (1)

Topology of network encodes conditional independence

assertions: . @
Toothache @

Weather is independent of the other variables

Toothache and Catch are conditionally independent
given Cavity



Bayesian Network

= Notice that Cavity is the "cause” of both Toothache
and PCatch, and represent the causality links explicitly

= Give the prior probability distribution of Cavity

= Give the conditional probability tables of Toothache
and PCatch

P(catapc) = P(tapc|c) P(c) P(Cavity)

Cond. Ind = P(t|c) P(pc|c) P(c) @ 0.2

P(Toothache|c)

Cavity
-Cavity

0.6
0.1

Toothache

P(PCatch|c)

Cavity
-Cavity

0.9
0.02

5 probabilities, instead of 7




Example (2)

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a

burglar?

Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects "causal" knowledge:
— Aburglar can set the alarm off
— An earthquake can set the alarm off
— The alarm can cause Mary to call
— The alarm can cause John to call



A More Complex BN

causes

Intuitive meaning of

arc from x foy: "x

has direct influence
ony"

Directed
acyclic graph

effects



A More Complex BN

P(E)
0.002

Size of the €
CPT for a tlooe
node with k e
parents: 2K

(Orow=1)

P(J]...) Al P(M]..)
T10.90 T(0.70
F | 0.05 F| 0.01

10 probabilities, instead of 31



What does the BN encode?

(baj) = P(b) P(j)
(bajla) =P(bla) P(jla)

© O

Each of the beliefs JohnCalls
and MaryCalls is independent of
Burglary and Earthquake given

Alarm or = Alarm For example, John does

not observe any burglaries
directly



What does the BN encode?

P(bajla) = P(bla) P(jla)
P(jam|a) = P(jla) P(m|a)

The beliefs JohnCalls
and MaryCalls are
independent given
Alarm or = Alarm

A node is independent of
its non-descendants
given its parents

For instance, the reasons why
John and Mary may not call if
there is an alarm are unrelated




What does the BN encode?

Burglary and

Earthquake are

ind d —

respencen A node is independent of
its non-descendants

The beliefs JohnCalls given its parents

and MaryCalls are

independent given For instance, the reasons why

Alarm or = Alarm John and Mary may not call if

there is an alarm are unrelated



Locally Structured World

A world is locally structured (or sparse) if each of its components
interacts directly with relatively few other components

In a sparse world, the CPTs are small and the BN contains much
fewer probabilities than the full joint distribution

If the # of entries in each CPT is bounded by a constant, i.e., O(1),
then the # of probabilities in a BN is linear in n - the # of
propositions - instead of 2" for the joint distribution



Calculation of Joint Probability

P(B) P(E)
BUf‘gIClr' 0.001 0.002
P(JAMAAA-BA-E) = ?2?
Al P(M]..)
T T10.70
F | 0.05 F1|0.01




P(TAMAAA-BA-E)
= P(JAM|A,-B,-=E) x P(AA=BA=E)
=P(J|A,-B,-E) x P(M|A,-B,=E) x P(AA=BA-E)
(J and M are independent given A)
P(J|A,-B,-E) = P(J|A)
(J and =-BA-E are independent given A)
P(M|A,-B,-E) =P(M|A)
P(AA-BA-E) = P(A|-B,-E) x P(~B|=E) x P(=E)
= P(A|-B,=E) x P(=B) x P(=E)
(=B and -E are independent)
P(TAMAAA-BA-E) = P(TJ|AP(M|A)P(A|-B,-E)P(-B)P(-E)



Calculation of Joint Probability

P(B) P(E)
0.001 Earth uake 0.002

P(JAMAAA-BA-E) Bl E| P(Al.)
= P(J|A)P(M|A)P(A|-B,-E)P(=B)P(=E) |[T|T|0.95
=0.9x0.7 x0.001 x 0.999 x 0.998 T|F|0.94
00067 ke
A | P(J].) Al P(M]..)
M T [ 0.90 @ T[070
F | 0.05 F|0.01




Calculation of Joint Probability

P(B) P(E)
0.001 Earth uake 0.002

P(JAMAAA-BA-E) Bl E| P(Al.)
= P(J|A)P(M|A)P(A|-B,-E)P(=B)P(=E) |[T|T|0.95
=0.9x0.7 x0.001 x 0.999 x 0.998 T|F|0.94
00067 ke

/N

P(xaxon..ax,) = 11y P(x;|parents(X;))
- full joint distribufion Table — |




Calculation of Joint Probability

Since a BN defines the

cpfgc)nfull joint distribution of a

set of propositions, it

P(JAMAAA-BA-E) .
hIAPmMIARAl-5 -B) FEPresents a belief space

= 0.9 x0.7 x 0.001 x 0.999 x 0.998 T| F|0.94
F| T| 0.29

= 0.00062 F| F| 0.001

/N

P(X;AXoA .. AX,) = Hizl, lnP(xilparen’rs(Xi))

- full joint distribution fable



Semantics of a BN:
Full Joint Distribution

The full joint distribution is defined as the product of the local

conditional distributions:
®

P (X, ..., X)) =1._, P (X]| Parents(X)) /@{

g ®

eg.,.Pjrmaan-ba-e

=P(la)P(m|a)P(a]| -b, ~e) P(-b) P(-e)



Encoding conditional independence via
d-separation

Bayesian networks encode the independence properties of a density.

We can determine if a conditional independence X 1LY |{Z;,...,Z)} holds

by appealing to a graph separation criterion called d-separation (which

stands for direction-dependent separation).
X and Y are d-separated if there is no active path between them.

The formal definition of active paths is somewhat involved. The Bayes Ball
Algorithm gives a nice graphical definition.



The ten rules of Bayes Ball

An undirected path is active if a Bayes ball travelling along it never encounters
the “stop” symbol: —|

O—0—0

O—@—0O O

If there are no active paths from X to Y when {Z,,...,Z;} are shaded, then
XUY |{Z,...,Z;}.



A double-header: two games of Bayes Ball

no active paths one active path

X1Y|Z X LY | {W, Z}



Demonstration of CI

P(a=T) P(a=F)

a Prior Probability 0.5 05
a P(b=T) P(b=F) a P(c=T) P(c=F)
i 07 03 T 04 0.6
F 03 0.7 b C F 03 0.7

P(b=true) ?
P(c=true) ?

Suppose a is given. What are the effects on b,c
What if also b is given. How does this affect c?

What if only c is given. Effects on a on b?



Constructing Bayesian networks

* 1. Choose an ordering of variables X, ... ,.X

n
« 2. Fori=1ton
— add X; to the network

— select parents from X, ... ,X., such that
P (X;| Parents(X))) = P (X;| Xy, ... Xi4)

This choice of parents guarantees:

P(X, ... X,) =m_PX|X,..,X.,)
(chain rule) i

=11, _,P (X;| Parents(X)))
(by construction)



Example

« Suppose we choose the ordering M, J, A, B, E

PJ|M)=P)?



Example

« Suppose we choose the ordering M, J, A, B, E

P(J|M)=P(J)?
No
PA|J M =PA|J)?PA|J M)=PA)?



Example

« Suppose we choose the ordering M, J, A, B, E

P(J|M)=P(J)?

No

PA|J M) =PA|J)?PA|J M)=P(A)? No
PB|A J M)=PB|A)?

PB|A, J M)=P(B)?




Example

« Suppose we choose the ordering M, J, A, B, E

(aryoals)
\ =
(Harm)
P(J| M) = P(J)?
No

PA|J, M) =P(A|J)? P(A|J, M) = P(A)? No
P(B| A, J, M) =P(B|A)? Yes

P(B | A, J, M) = P(B)? No

P(E| B, A,J, M) = P(E| A)?

P(E|B, A, J, M) =P(E|A, B)?




Example

« Suppose we choose the ordering M, J, A, B, E

Burga

Earthquake

P(J|M)=PJ)?
No

PA|J M)=PA|J)? PA|J, M) =P(A)? No
PB|A, J M)=P(B|A)? Yes

P(B|A, J, M) =P(B)? No
P(EE|B,A,J,M)=P(E|A)? No

P(E|B A J M)=P(E|A, B? Yes




Example contd.

Earthquake

Burga

Deciding conditional independence is hard in noncausal directions

(Causal models and conditional independence seem hardwired for
humans!)

Network is less compact: 1 +2 +4 + 2 + 4 = 13 numbers needed



Toothache

Querying the BN

P(C)

0.1

C | P(T|c)

0.4
0.01111

M o

= The BN gives P(t|c)
What about P(c|1)?
P(Cavity|t)
= P(Cavity A 1)/P(t)
= P(t|Cavity) P(Cavity) / P(%)
[Bayes' rule]

P(c|t) = a P(t|c) P(c)

Querying a BN is just applying the
trivial Bayes' rule on a larger scale

Slides:
Jean Claude Latombe



- a Zazep(bAJAmAGAe) [marginalization]

Querying the BN

= P(bljm)=aP(b,jm)

= a 2,2,P(b)P(e)P(alb,e)P(jla)P(m|a) [BN]
= a P(b)ZeP(e)ZGP(alb,e)P(j Ia)P(mla) [re-ordering]

P(jla)
.90

P(mla)
.70

P(alb,e)

O

O

95

P(jl—a)
.05

P(ml—a)
01

P(malb,e)
.05

O

O

P(jla)

.90

P(mla)
.70

Q

O

P(alb—e)
94

06

P(jl—a)
05

P(ml—a)
01

P(malb—e)

O

O



Querying the BN

= Depth-first evaluation of P(b|j) leads to computing each
of the 2 following products twice:
P(jla) P(m|a), P(jl-a) P(m|-a)

= Bottom-up (right-to-left) computation + caching - e.q.,
variable elimination algorithm (see R&N) - avoids such
repetition

= For singly connected BN, the computation takes time
linear in the total number of CPT entries (— time linear
in the # propositions if CPT's size is bounded)




Singly Connected BN

A BN is singly connected if there is at most one
undirected path between any two nodes

is singly connected




Comparison to Classical Logic

Burglary — Alarm ol v o= v
Earthquake — Alarm {11 T
Alarm — JohnCalls el F
Alarm — MaryCalls el T
If the agent observes F|F [ T

~JohnCadlls,
it infers —Alarm,
- Burglary, and -Earthquake

If it observes JohnCalls, then it
infers nothing



Summary

« Bayesian networks provide a natural
representation for (causally induced)
conditional independence

* Topology + CPTs = compact
representation of joint distribution

* Generally easy for domain experts to
construct



