Artificial Intelligence

A Modern Approach
SECOND EDITION

Stuart Russell • Peter Norvig
Fiemice Pall serim in Arviticial Intollisence

Bayesian Networks

Chapter 14
Section 1 - 2

Issues

- If a state is described by n propositions, then a belief space contains 2^{n} states (possibly, some have probability 0)
- \rightarrow Modeling difficulty: many numbers must be entered in the first place
- \rightarrow Computational issue: memory size and time

	toothache		-toothache	
	pcatch	\neg pcatch	pcatch	\neg pcatch
cavity	0.108	0.012	0.072	0.008
-cavity	0.016	0.064	0.144	0.576

- Toothache and pcatch are independent given cavity (or acavity), but this relation is hidden in the numbers! [Verify this]
- Bayesian networks explicitly represent independence among propositions to reduce the number of probabilities defining a belief state

Verification

$$
\begin{aligned}
& P(\text { toothache, pcatch| cavity })=P(\text { toothache } \mid \text { cavity }) * P(\text { pcatch } \mid \text { cavity }) \\
& \mathrm{P} \text { (toothache, pcatch, cavity)/ = } \mathrm{P} \text { (toothache, cavity)/ * } \mathrm{P} \text { (pcatch, cavity)/ } \\
& \text { P(cavity) } \\
& \text { P(cavity) } \\
& \text { P(cavity) } \\
& P \text { (toothache, pcatch, cavity) }=P \text { (toothache, cavity) * } P(\text { pcatch, cavity }) / \\
& P \text { (cavity) } \\
& 0,108=\left((0,108+0,012)^{*}(0,108+0,072)\right) /(0,108+0,012+0,072+0,008) \\
& 0,108=0,12 * 0,18 / 0,2 \\
& 0,108=0,0216 / 0,2=216 / 2000=0,108
\end{aligned}
$$

Bayes rule

- Applying the bayes rule (chain rule) does not help so much.

$$
\begin{aligned}
\mathbf{P}\left(X_{1}, \ldots, X_{n}\right) & =\mathbf{P}\left(X_{1}, \ldots, X_{n-1}\right) \mathbf{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& =\mathbf{P}\left(X_{1}, \ldots, X_{n-2}\right) \mathbf{P}\left(X_{n-1} \mid X_{1}, \ldots, X_{n-2}\right) \mathbf{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& =\ldots
\end{aligned}
$$

$P($ toothache, cavity, pcatch $)=P(\text { toothache })^{*} P($ cavity \mid toothache $)$

* P (pcatch | toothache, cavity)

Bayesian networks

- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
- a set of nodes, one per variable
- a directed, acyclic graph (link \approx "directly influences")
- a conditional distribution for each node given its parents:

$$
\mathbf{P}\left(\mathrm{X}_{\mathrm{i}} \mid \text { Parents }\left(\mathrm{X}_{\mathrm{i}}\right)\right)
$$

- In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_{i} for each combination of parent values

Example (1)

- Topology of network encodes conditional independence assertions:

- Weather is independent of the other variables
- Toothache and Catch are conditionally independent given Cavity

Bayesian Network

- Notice that Cavity is the "cause" of both Toothache and PCatch, and represent the causality links explicitly
- Give the prior probability distribution of Cavity
- Give the conditional probability tables of Toothache and PCatch

5 probabilities, instead of 7

Example (2)

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

A More Complex BN

A More Complex BN

10 probabilities, instead of 31

What does the BN encode?

Each of the beliefs JohnCalls and MaryCalls is independent of Burglary and Earthquake given Alarm or \neg Alarm

For example, John does not observe any burglaries directly

What does the BN encode?

JohnCalls
The beliefs JohnCalls and MaryCalls are independent given Alarm or \neg Alarm

A node is independent of its non-descendants given its parents

For instance, the reasons why John and Mary may not call if there is an alarm are unrelated

What does the BN encode?

Locally Structured World

- A world is locally structured (or sparse) if each of its components interacts directly with relatively few other components
- In a sparse world, the CPTs are small and the BN contains much fewer probabilities than the full joint distribution
- If the \# of entries in each CPT is bounded by a constant, i.e., O(1), then the \# of probabilities in a BN is linear in n - the \# of propositions - instead of 2^{n} for the joint distribution

Calculation of Joint Probability

- $P(J \wedge M \wedge A \wedge \neg B \wedge \neg E)$

$=P(J \wedge M \mid A, \neg B, \neg E) \times P(A \wedge \neg B \wedge \neg E)$
$=P(J \mid A, \neg B, \neg E) \times P(M \mid A, \neg B, \neg E) \times P(A \wedge \neg B \wedge \neg E)$
(J and M are independent given A)
- $P(J \mid A, \neg B, \neg E)=P(J \mid A)$
(J and $\neg B \wedge \neg E$ are independent given A)
- $P(M \mid A, \neg B, \neg E)=P(M \mid A)$
- $P(A \wedge \neg B \wedge \neg E)=P(A \mid \neg B, \neg E) \times P(\neg B \mid \neg E) \times P(\neg E)$ $=P(A \mid \neg B, \neg E) \times P(\neg B) \times P(\neg E)$
($\neg B$ and $\neg E$ are independent)
- $P(J \wedge M \wedge A \wedge \neg B \wedge \neg E)=P(J \mid A) P(M \mid A) P(A \mid \neg B, \neg E) P(\neg B) P(\neg E)$

Calculation of Joint Probability

Calculation of Joint Probability

\rightarrow full joint distribution table

Calculation of Joint Probability

\rightarrow full joint distribution table

Semantics of a BN: Full Joint Distribution

The full joint distribution is defined as the product of the local conditional distributions:

$$
\boldsymbol{P}\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} \boldsymbol{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

$$
\begin{aligned}
& \text { e.g., } \boldsymbol{P}(j \wedge m \wedge a \wedge \neg b \wedge \neg e) \\
& \quad=\boldsymbol{P}(j \mid a) \boldsymbol{P}(m \mid a) \boldsymbol{P}(a \mid \neg b, \neg e) \boldsymbol{P}(\neg b) \boldsymbol{P}(\neg e)
\end{aligned}
$$

Encoding conditional independence via d-separation

- Bayesian networks encode the independence properties of a density.
- We can determine if a conditional independence $X \Perp Y \mid\left\{Z_{1}, \ldots, Z_{k}\right\}$ holds by appealing to a graph separation criterion called d-separation (which stands for direction-dependent separation).
- X and Y are d-separated if there is no active path between them.
- The formal definition of active paths is somewhat involved. The Bayes Ball Algorithm gives a nice graphical definition.

The ten rules of Bayes Ball

An undirected path is active if a Bayes ball travelling along it never encounters the "stop" symbol: \longrightarrow 1

If there are no active paths from X to Y when $\left\{Z_{1}, \ldots, Z_{k}\right\}$ are shaded, then $X \Perp Y \mid\left\{Z_{1}, \ldots, Z_{k}\right\}$.

A double-header: two games of Bayes Ball

no active paths
$X \Perp Y \mid Z$

one active path
$X \not \Perp Y \mid\{W, Z\}$

Demonstration of Cl

Suppose a is given. What are the effects on b,c What if also b is given. How does this affect c ?
What if only c is given. Effects on a on b ?

Constructing Bayesian networks

- 1. Choose an ordering of variables X_{1}, \ldots, X_{n}
- 2. For $i=1$ to n
- add X_{i} to the network
- select parents from X_{1}, \ldots, X_{i-1} such that

$$
\boldsymbol{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)=\boldsymbol{P}\left(X_{i} \mid X_{1}, \ldots X_{i-1}\right)
$$

This choice of parents guarantees:
$\boldsymbol{P}\left(X_{1}, \ldots, X_{n}\right)=\pi_{i=1}^{n} \boldsymbol{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)$
(chain rule)

$$
=\pi_{i=1}^{n} \boldsymbol{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

(by construction)

Example

- Suppose we choose the ordering M, J, A, B, E

> MaryCalls

Johncalls

$$
P(J \mid M)=P(J) ?
$$

Example

- Suppose we choose the ordering M, J, A, B, E

Alarm

$$
\begin{aligned}
& \boldsymbol{P}(J \mid M)=\boldsymbol{P}(J) ? \\
& \text { No } \\
& \boldsymbol{P}(A \mid J, M)=\boldsymbol{P}(A \mid J) ? \boldsymbol{P}(A \mid J, M)=\boldsymbol{P}(A) ?
\end{aligned}
$$

Example

- Suppose we choose the ordering M, J, A, B, E

$\boldsymbol{P}(J \mid M)=\boldsymbol{P}(J)$?
No
$\boldsymbol{P}(A \mid J, M)=\boldsymbol{P}(A \mid J) ? \boldsymbol{P}(A \mid J, M)=\boldsymbol{P}(A)$? No
$\boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B \mid A) ?$
$\boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B)$?

Example

- Suppose we choose the ordering M, J, A, B, E

$$
\begin{aligned}
& \boldsymbol{P}(J \mid M)=\boldsymbol{P}(J) \text { ? } \\
& \text { No } \\
& \boldsymbol{P}(A \mid J, M)=\boldsymbol{P}(A \mid J) \text { ? } \boldsymbol{P}(A \mid J, M)=\boldsymbol{P}(A) \text { ? No } \\
& \boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B \mid A) \text { ? Yes } \\
& \boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B) \text { ? No } \\
& \boldsymbol{P}(E \mid B, A, J, M)=\boldsymbol{P}(E \mid A) \text { ? } \\
& \boldsymbol{P}(E \mid B, A, J, M)=\boldsymbol{P}(E \mid A, B) \text { ? }
\end{aligned}
$$

Example

- Suppose we choose the ordering M, J, A, B, E

$$
\begin{aligned}
& \boldsymbol{P}(J \mid M)=\boldsymbol{P}(J) ? \\
& \text { No } \\
& \boldsymbol{P}(A \mid J, M)=\boldsymbol{P}(A \mid J) ? \boldsymbol{P}(A \mid J, M)=\boldsymbol{P}(A) \text { ? No } \\
& \boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B \mid A) \text { ? Yes } \\
& \boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B) \text { ? No } \\
& \boldsymbol{P}(E \mid B, A, J, M)=\boldsymbol{P}(E \mid A) \text { ? No } \\
& \boldsymbol{P}(E \mid B, A, J, M)=\boldsymbol{P}(E \mid A, B) \text { ? Yes }
\end{aligned}
$$

Example contd.

- Deciding conditional independence is hard in noncausal directions
- (Causal models and conditional independence seem hardwired for humans!)
- Network is less compact: $1+2+4+2+4=13$ numbers needed

Querying the BN

- The BN gives $\mathrm{P}(\dagger \mid c)$
- What about $P(c \mid t)$?
- P(Cavitylt)
$=P($ Cavity $\wedge t) / P(t)$
$=P(\dagger \mid$ Cavity $) P($ Cavity $) / P(t)$
[Bayes' rule]
- $P(c \mid t)=\alpha P(\dagger \mid c) P(c)$
- Querying a BN is just applying the trivial Bayes' rule on a larger scale

Slides:
Jean Claude Latombe

Querying the BN

- $P(b \mid j, m)=\alpha P(b, j, m)$

$$
\begin{aligned}
& =\alpha \sum_{a} \sum_{e} P(b \wedge j \wedge m \wedge a \wedge e) \text { [marginalization] } \\
& =\alpha \sum_{a} \sum_{e} P(b) P(e) P(a \mid b, e) P(j \mid a) P(m \mid a)[B N] \\
& =\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m \mid a) \text { [re-ordering] }
\end{aligned}
$$

Querying the BN

- Depth-first evaluation of $P(b \mid j)$ leads to computing each of the 2 following products twice: $P(j \mid a) P(m \mid a), P(j \mid-a) P(m \mid-a)$
- Bottom-up (right-to-left) computation + caching - e.g., variable elimination algorithm (see R\&N) - avoids such repetition
- For singly connected BN , the computation takes time linear in the total number of CPT entries (\rightarrow time linear in the \# propositions if CPT's size is bounded)

Singly Connected BN

A BN is singly connected if there is at most one undirected path between any two nodes

is singly connected

Comparison to Classical Logic

If it observes JohnCalls, then it infers nothing

Summary

- Bayesian networks provide a natural representation for (causally induced) conditional independence
- Topology + CPTs = compact representation of joint distribution
- Generally easy for domain experts to construct

