

Bayesian Networks

Chapter 14 Section 1 – 2

Issues

- If a state is described by n propositions, then a belief space contains 2ⁿ states (possibly, some have probability 0)
- Modeling difficulty: many numbers must be entered in the first place
- Computational issue: memory size and time

	toothache		toothache	
	pcatch	¬pcatch	pcatch	¬pcatch
cavity	0.108	0.012	0.072	0.008
-cavity	0.016	0.064	0.144	0.576

- Toothache and pcatch are independent given cavity (or ¬cavity), but this relation is hidden in the numbers ! [Verify this]
- Bayesian networks explicitly represent independence among propositions to reduce the number of probabilities defining a belief state

Verification

P(toothache, pcatch| cavity) = P(toothache| cavity)*P(pcatch| cavity)

P(toothache, pcatch,cavity)/ = P(toothache, cavity)/ *P(pcatch, cavity)/ P(cavity) P(cavity) P(cavity) P(toothache, pcatch,cavity) = P(toothache, cavity) *P(pcatch, cavity)/ P(cavity)

- 0,108 = ((0,108+0,012)*(0,108+0,072))/(0,108+0,012+0,072+0,008)
- 0,108 = 0,12*0,18/0,2
- 0,108 = 0,0216/0,2 = 216/2000 = 0,108

	toothache		-,toothache	
	pcatch	-pcatch	pcatch	-pcatch
cavity	0.108	0.012	0.072	0.008
-cavity	0.016	0.064	0.144	0.576

Bayes rule

 Applying the bayes rule (chain rule) does not help so much.

$$\mathbf{P}(X_1, ..., X_n) = \mathbf{P}(X_1, ..., X_{n-1}) \mathbf{P}(X_n \mid X_1, ..., X_{n-1}) = \mathbf{P}(X_1, ..., X_{n-2}) \mathbf{P}(X_{n-1} \mid X_1, ..., X_{n-2}) \mathbf{P}(X_n \mid X_1, ..., X_{n-1}) = ...$$

P(toothache, cavity, pcatch) = P(toothache)* P(cavity| toothache) *P(pcatch | toothache, cavity)

Bayesian networks

- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
 - a set of nodes, one per variable
 - a directed, acyclic graph (link ≈ "directly influences")
 - a conditional distribution for each node given its parents:

 $\mathbf{P}(X_i | \text{Parents}(X_i))$

• In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over *X_i* for each combination of parent values

Example (1)

 Topology of network encodes conditional independence assertions:

- Weather is independent of the other variables
- Toothache and Catch are conditionally independent given Cavity

Bayesian Network

- Notice that Cavity is the "cause" of both Toothache and PCatch, and represent the causality links explicitly
- Give the prior probability distribution of Cavity
- Give the conditional probability tables of Toothache and PCatch

5 probabilities, instead of 7

Example (2)

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call

A More Complex BN

A More Complex BN

10 probabilities, instead of 31

What does the BN encode?

Each of the beliefs JohnCalls and MaryCalls is independent of Burglary and Earthquake given Alarm or ¬Alarm

For example, John does not observe any burglaries directly

Alarm or ¬Alarm

John and Mary may not call if there is an alarm are unrelated

What does the BN encode?

The beliefs JohnCalls and MaryCalls are independent given Alarm or ¬Alarm

For instance, the reasons why John and Mary may not call if there is an alarm are unrelated

Locally Structured World

- A world is locally structured (or sparse) if each of its components interacts directly with relatively few other components
- In a sparse world, the CPTs are small and the BN contains much fewer probabilities than the full joint distribution
- If the # of entries in each CPT is bounded by a constant, i.e., O(1), then the # of probabilities in a BN is linear in n - the # of propositions - instead of 2ⁿ for the joint distribution

• $P(J \land M \land A \land \neg B \land \neg E) = P(J|A)P(M|A)P(A|\neg B, \neg E)P(\neg B)P(\neg E)$

Semantics of a BN: Full Joint Distribution

The full joint distribution is defined as the product of the local conditional distributions:

$$\boldsymbol{P}(X_1, \ldots, X_n) = \prod_{i=1}^n \boldsymbol{P}(X_i | Parents(X_i))$$

e.g., **P**(j ∧ m ∧ a ∧ ¬b ∧ ¬e)

 $= \mathbf{P}(j \mid a) \mathbf{P}(m \mid a) \mathbf{P}(a \mid \neg b, \neg e) \mathbf{P}(\neg b) \mathbf{P}(\neg e)$

Encoding conditional independence via d-separation

- Bayesian networks encode the independence properties of a density.
- We can determine if a conditional independence $X \perp \!\!\!\perp Y \mid \{Z_1, \ldots, Z_k\}$ holds by appealing to a graph separation criterion called *d*-separation (which stands for *direction-dependent separation*).
- X and Y are d-separated if there is no *active path* between them.
- The formal definition of active paths is somewhat involved. The *Bayes Ball* Algorithm gives a nice graphical definition.

The ten rules of Bayes Ball

An undirected path is active if a Bayes ball travelling along it never encounters the "stop" symbol: \longrightarrow

If there are no active paths from X to Y when $\{Z_1, \ldots, Z_k\}$ are shaded, then $X \perp \!\!\!\perp Y \mid \{Z_1, \ldots, Z_k\}.$

A double-header: two games of Bayes Ball

Demonstration of CI

Suppose a is given. What are the effects on b,c What if also b is given. How does this affect c? What if only c is given. Effects on a on b?

Constructing Bayesian networks

- 1. Choose an ordering of variables X_1, \ldots, X_n
- 2. For *i* = 1 to *n*
 - add X_i to the network

- select parents from
$$X_1, \dots, X_{i-1}$$
 such that
 $P(X_i | Parents(X_i)) = P(X_i | X_1, \dots, X_{i-1})$

This choice of parents guarantees:

$$P(X_{1}, \dots, X_{n}) = \pi_{i=1}^{n} P(X_{i} | X_{1}, \dots, X_{i-1})$$

(chain rule)
$$= \pi_{i=1}^{n} P(X_{i} | Parents(X_{i}))$$

(by construction)

• Suppose we choose the ordering *M*, *J*, *A*, *B*, *E*

MaryCalls	
	JohnCalls

 $\boldsymbol{P}(J \mid M) = \boldsymbol{P}(J)?$

• Suppose we choose the ordering *M*, *J*, *A*, *B*, *E*

$$P(J | M) = P(J)?$$

No
 $P(A | J, M) = P(A | J)? P(A | J, M) = P(A)?$

• Suppose we choose the ordering *M*, *J*, *A*, *B*, *E*

$$P(J | M) = P(J)?$$

No
 $P(A | J, M) = P(A | J)? P(A | J, M) = P(A)?$ No
 $P(B | A, J, M) = P(B | A)?$
 $P(B | A, J, M) = P(B)?$

• Suppose we choose the ordering M, J, A, B, E

• Suppose we choose the ordering M, J, A, B, E

 $\boldsymbol{P}(J \mid M) = \boldsymbol{P}(J)?$

No

 $P(A \mid J, M) = P(A \mid J)$? $P(A \mid J, M) = P(A)$? No $P(B \mid A, J, M) = P(B \mid A)$? Yes $P(B \mid A, J, M) = P(B)$? No $P(E \mid B, A, J, M) = P(E \mid A)$? No $P(E \mid B, A, J, M) = P(E \mid A, B)$? Yes

Example contd.

- Deciding conditional independence is hard in noncausal directions
- (Causal models and conditional independence seem hardwired for humans!)
- Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed

Querying the BN

- The BN gives P(t|c)
- What about P(c|t)?
- P(Cavity|t)

 P(Cavity ^ t)/P(t)
 P(t|Cavity) P(Cavity) / P(t)
 [Bayes' rule]
- $P(c|t) = \alpha P(t|c) P(c)$
- Querying a BN is just applying the trivial Bayes' rule on a larger scale

Slides: Jean Claude Latombe

Querying the BN

- $P(b|j,m) = \alpha P(b,j,m)$
 - = $\alpha \sum_{a} \sum_{e} P(b \wedge j \wedge m \wedge a \wedge e)$ [marginalization]
 - = $\alpha \sum_{a} \sum_{e} P(b)P(e)P(a|b,e)P(j|a)P(m|a)$ [BN]
 - = $\alpha P(b)\Sigma_e P(e)\Sigma_a P(a|b,e)P(j|a)P(m|a)$ [re-ordering]

Querying the BN

- Depth-first evaluation of P(b|j) leads to computing each of the 2 following products twice: P(j|a) P(m|a), P(j|¬a) P(m|¬a)
- Bottom-up (right-to-left) computation + caching e.g., variable elimination algorithm (see R&N) - avoids such repetition
- For <u>singly connected</u> BN, the computation takes time linear in the total number of CPT entries (→ time linear in the # propositions if CPT's size is bounded)

Singly Connected BN

A BN is singly connected if there is at most one undirected path between any two nodes

Comparison to Classical Logic

Burglary \rightarrow Alarm Earthquake \rightarrow Alarm Alarm \rightarrow JohnCalls Alarm \rightarrow MaryCalls

If the agent observes ¬JohnCalls,

it infers ¬Alarm, ¬Burglary, and ¬Earthquake

If it observes JohnCalls, then it infers nothing

 $\phi \Rightarrow \psi$

Т

Ψ

FF

FTT

Т

Summary

- Bayesian networks provide a natural representation for (causally induced) conditional independence
- Topology + CPTs = compact representation of joint distribution
- Generally easy for domain experts to construct