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Issues 

 If a state is described by n propositions, 
then a belief space contains 2n states 
(possibly, some have probability 0) 

 → Modeling difficulty: many numbers 
must be entered in the first place 

 → Computational issue: memory size and 
time 



  Toothache and pcatch are independent given 
cavity (or ¬cavity), but this relation is hidden 
in the numbers ! [Verify this] 

  Bayesian networks explicitly represent 
independence among propositions to reduce 
the number of probabilities defining a belief 
state 

pcatch ¬pcatch pcatch ¬pcatch 

cavity 0.108 0.012 0.072 0.008 
¬cavity 0.016 0.064 0.144 0.576 

toothache ¬toothache 



Verification 

P(toothache, pcatch| cavity) = P(toothache| cavity)*P(pcatch| cavity) 

P(toothache, pcatch,cavity)/ = P(toothache, cavity)/ *P(pcatch, cavity)/ 
   P(cavity)   P(cavity)  P(cavity) 
P(toothache, pcatch,cavity) = P(toothache, cavity) *P(pcatch, cavity)/ 
     P(cavity) 

0,108 = ((0,108+0,012 )* (0,108+0,072)) /(0,108+ 0,012+0,072+0,008 ) 

0,108 = 0,12*0,18/0,2 

0,108 = 0,0216/0,2  = 216/2000 =0,108 



Bayes rule 

•  Applying the bayes rule (chain rule) does 
not help so much. 

P(X1, …,Xn)  = P(X1,...,Xn-1) P(Xn | X1,...,Xn-1) 
                  = P(X1,...,Xn-2) P(Xn-1 | X1,...,Xn-2) P(Xn | X1,...,Xn-1) 
                   = … 

P(toothache, cavity, pcatch) = P(toothache)* P(cavity| toothache) 
  *P(pcatch | toothache, cavity) 



Bayesian networks 
•  A simple, graphical notation for conditional 

independence assertions and hence for compact 
specification of full joint distributions 

•  Syntax: 
–  a set of nodes, one per variable 

–  a directed, acyclic graph (link ≈ "directly influences") 
–  a conditional distribution for each node given its parents: 

P (Xi | Parents (Xi)) 

•  In the simplest case, conditional distribution represented 
as a conditional probability table (CPT) giving the 
distribution over Xi for each combination of parent values 
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Example (1) 
•  Topology of network encodes conditional independence 

assertions: 

•  Weather is independent of the other variables 
•  Toothache and Catch are conditionally independent 

given Cavity 



P(c∧t∧pc)  = ? 

Bayesian Network 
  Notice that Cavity is the “cause” of both Toothache  

and PCatch, and represent the causality links explicitly 
  Give the prior probability distribution of Cavity 
  Give the conditional probability tables of Toothache 

and  PCatch 

Cavity 

Toothache 

P(Cavity) 

0.2 

P(Toothache|c) 

Cavity 
¬Cavity 

0.6 
0.1 

PCatch 

P(PCatch|c) 

Cavity 
¬Cavity 

0.9 
0.02 

5 probabilities, instead of 7 

P(c∧t∧pc)  =(Product Rule) 
        P(t∧pc|c) P(c) 
P(c∧t∧pc)  = P(t∧pc|c) P(c) 
Cond. Ind   = P(t|c) P(pc|c) P(c) 



Example (2) 
•  I'm at work, neighbor John calls to say my alarm is ringing, but neighbor 

Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a 
burglar? 

•  Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls 

•  Network topology reflects "causal" knowledge: 
–  A burglar can set the alarm off 
–  An earthquake can set the alarm off 
–  The alarm can cause Mary to call 
–  The alarm can cause John to call 



A More Complex BN 

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 

causes 

effects 

Directed  
acyclic graph 

Intuitive meaning of 
arc from x to y: “x 

has direct influence 
on y” 



B E P(A|…) 

T
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0.95 
0.94 
0.29 
0.001 

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 

P(B) 

0.001 

P(E) 

0.002 

A P(J|…) 

T
F 

0.90 
0.05 

A P(M|…) 

T
F

0.70 
0.01 

Size of the 
CPT for a  
node with k 
parents: 2k 

(∑row=1) 

A More Complex BN 

10 probabilities, instead of 31 



What does the BN encode? 

Each of the beliefs JohnCalls 
and MaryCalls is independent of 
Burglary and Earthquake given 
Alarm or ¬Alarm 

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 

For example, John does 
not observe any burglaries 
directly 

P(b∧j) ≠ P(b) P(j) 
P(b∧j|a) = P(b|a) P(j|a) 



The beliefs JohnCalls 
and MaryCalls are 
independent given 
Alarm or ¬Alarm 

For instance, the reasons why  
John and Mary may not call if  
there is an alarm are unrelated  

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 

What does the BN encode? 

A node is independent of 
its non-descendants 
given its parents 

P(b∧j|a) = P(b|a) P(j|a) 
P(j∧m|a) = P(j|a) P(m|a) 



The beliefs JohnCalls 
and MaryCalls are 
independent given 
Alarm or ¬Alarm 

For instance, the reasons why  
John and Mary may not call if  
there is an alarm are unrelated  

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 

What does the BN encode? 

A node is independent of 
its non-descendants 
given its parents 

Burglary and  
Earthquake are  
independent 



Locally Structured World 
  A world is locally structured (or sparse) if each of its components 

interacts directly with relatively few other components 
  In a sparse world, the CPTs are small and the BN contains much 

fewer probabilities than the full joint distribution 
  If the # of entries in each CPT is bounded by a constant, i.e., O(1), 

then the # of probabilities in a BN is linear in n – the # of 
propositions – instead of 2n for the joint distribution 



Calculation of Joint Probability 
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P(J∧M∧A∧¬B∧¬E) = ?? 



  P(J∧M∧A∧¬B∧¬E) 
= P(J∧M|A,¬B,¬E) × P(A∧¬B∧¬E) 
= P(J|A,¬B,¬E) × P(M|A,¬B,¬E) × P(A∧¬B∧¬E) 
(J and M are independent given A) 

  P(J|A,¬B,¬E) = P(J|A) 
(J and ¬B∧¬E are independent given A) 

  P(M|A,¬B,¬E) = P(M|A) 
  P(A∧¬B∧¬E) = P(A|¬B,¬E) × P(¬B|¬E) × P(¬E) 

                   = P(A|¬B,¬E) × P(¬B) × P(¬E) 
(¬B and ¬E are independent) 

  P(J∧M∧A∧¬B∧¬E) = P(J|A)P(M|A)P(A|¬B,¬E)P(¬B)P(¬E) 

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 



Calculation of Joint Probability 
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P(J∧M∧A∧¬B∧¬E) 
= P(J|A)P(M|A)P(A|¬B,¬E)P(¬B)P(¬E) 
= 0.9 x 0.7 x 0.001 x 0.999 x 0.998 
= 0.00062 



Calculation of Joint Probability 
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P(J∧M∧A∧¬B∧¬E) 
= P(J|A)P(M|A)P(A|¬B,¬E)P(¬B)P(¬E) 
= 0.9 x 0.7 x 0.001 x 0.999 x 0.998 
= 0.00062 

P(x1∧x2∧…∧xn) = Πi=1,…,nP(xi|parents(Xi)) 
 full joint distribution table 



Calculation of Joint Probability 

B E P(A|…) 
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P(J∧M∧A∧¬B∧¬E) 
= P(J|A)P(M|A)P(A|¬B,¬E)P(¬B)P(¬E) 
= 0.9 x 0.7 x 0.001 x 0.999 x 0.998 
= 0.00062 

Since a BN defines the 
full joint distribution of a 
set of propositions, it 
represents a belief space 

P(x1∧x2∧…∧xn) = Πi=1,…,nP(xi|parents(Xi)) 
 full joint distribution table 



Semantics of a BN: 
Full Joint Distribution 

The full joint distribution is defined as the product of the local 
conditional distributions: 

  P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi)) 

e.g., P(j ∧ m ∧ a ∧ ¬b ∧ ¬e) 

 = P (j | a) P (m | a) P (a | ¬b, ¬e) P (¬b) P (¬e) 

n 



Encoding conditional independence via 
d-separation 



The ten rules of Bayes Ball 



A double-header: two games of Bayes Ball 



Demonstration of CI 

a 

b c 

P(b=true) ? 
P(c=true) ? 

Suppose a is given. What are the effects on b,c 
What if also b is given. How does this affect c? 
What if only c is given. Effects on a on b? 



Constructing Bayesian networks 
•  1. Choose an ordering of variables X1, … ,Xn 
•  2. For i = 1 to n 

–  add Xi to the network 

–  select parents from X1, … ,Xi-1 such that 
 P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1) 

This choice of parents guarantees: 

P (X1, … ,Xn)  = πi =1 P (Xi | X1, … , Xi-1) 
(chain rule) 
   = πi =1P (Xi | Parents(Xi)) 
(by construction) 

n 

n 



•  Suppose we choose the ordering M, J, A, B, E 

P(J | M) = P(J)? 

Example 



•  Suppose we choose the ordering M, J, A, B, E 

P(J | M) = P(J)? 
No 
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? 

Example 



•  Suppose we choose the ordering M, J, A, B, E 

P(J | M) = P(J)? 
No 
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No 
P(B | A, J, M) = P(B | A)?  
P(B | A, J, M) = P(B)? 

Example 



•  Suppose we choose the ordering M, J, A, B, E 

P(J | M) = P(J)? 
No 
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No 
P(B | A, J, M) = P(B | A)? Yes 
P(B | A, J, M) = P(B)? No 
P(E | B, A ,J, M) = P(E | A)? 
P(E | B, A, J, M) = P(E | A, B)? 

Example 



•  Suppose we choose the ordering M, J, A, B, E 

P(J | M) = P(J)? 
No  
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No 
P(B | A, J, M) = P(B | A)? Yes 
P(B | A, J, M) = P(B)? No 
P(E | B, A ,J, M) = P(E | A)? No 
P(E | B, A, J, M) = P(E | A, B)? Yes 

Example 



Example contd. 

•  Deciding conditional independence is hard in noncausal directions 
•  (Causal models and conditional independence seem hardwired for 

humans!) 
•  Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed 



  The BN gives P(t|c) 
  What about P(c|t)? 
  P(Cavity|t)  

 = P(Cavity ∧ t)/P(t) 
 = P(t|Cavity) P(Cavity) / P(t) 
[Bayes’ rule] 

  P(c|t) = α P(t|c) P(c) 

  Querying a BN is just applying the 
trivial Bayes’ rule on a larger scale 

Querying the BN 

Cavity 

Toothache 

P(C) 

0.1 

C P(T|c) 

T
F 

0.4 
0.01111 

Slides: 
Jean Claude Latombe 



  P(b|j,m) = α P(b,j,m) 
 = α ΣaΣeP(b∧j∧m∧a∧e) [marginalization] 

 = α ΣaΣeP(b)P(e)P(a|b,e)P(j|a)P(m|a) [BN] 
 = α P(b)ΣeP(e)ΣaP(a|b,e)P(j|a)P(m|a) [re-ordering] 

Querying the BN 



  Depth-first evaluation of P(b|j) leads to computing each 
of the 2 following products twice: 
P(j|a) P(m|a), P(j|¬a) P(m|¬a) 

  Bottom-up (right-to-left) computation + caching – e.g., 
variable elimination algorithm (see R&N) – avoids such 
repetition 

  For singly connected BN, the computation takes time 
linear in the total number of CPT entries (→ time linear 
in the # propositions if CPT’s size is bounded) 

Querying the BN 



Singly Connected BN 

A BN is singly connected if there is at most one 
undirected path between any two nodes 

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 

is singly connected 



Comparison to Classical Logic 
Burglary → Alarm 
Earthquake → Alarm 
Alarm → JohnCalls 
Alarm → MaryCalls 

If the agent observes  
¬JohnCalls,  
it infers ¬Alarm,  
¬Burglary, and ¬Earthquake 

If it observes JohnCalls, then it 
infers nothing 

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 



Summary 

•  Bayesian networks provide a natural 
representation for (causally induced) 
conditional independence 

•  Topology + CPTs = compact 
representation of joint distribution 

• Generally easy for domain experts to 
construct 


