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Issues 

 If a state is described by n propositions, 
then a belief space contains 2n states 
(possibly, some have probability 0) 

 → Modeling difficulty: many numbers 
must be entered in the first place 

 → Computational issue: memory size and 
time 



  Toothache and pcatch are independent given 
cavity (or ¬cavity), but this relation is hidden 
in the numbers ! [Verify this] 

  Bayesian networks explicitly represent 
independence among propositions to reduce 
the number of probabilities defining a belief 
state 

pcatch ¬pcatch pcatch ¬pcatch 

cavity 0.108 0.012 0.072 0.008 
¬cavity 0.016 0.064 0.144 0.576 

toothache ¬toothache 



Verification 

P(toothache, pcatch| cavity) = P(toothache| cavity)*P(pcatch| cavity) 

P(toothache, pcatch,cavity)/ = P(toothache, cavity)/ *P(pcatch, cavity)/ 
   P(cavity)   P(cavity)  P(cavity) 
P(toothache, pcatch,cavity) = P(toothache, cavity) *P(pcatch, cavity)/ 
     P(cavity) 

0,108 = ((0,108+0,012 )* (0,108+0,072)) /(0,108+ 0,012+0,072+0,008 ) 

0,108 = 0,12*0,18/0,2 

0,108 = 0,0216/0,2  = 216/2000 =0,108 



Bayes rule 

•  Applying the bayes rule (chain rule) does 
not help so much. 

P(X1, …,Xn)  = P(X1,...,Xn-1) P(Xn | X1,...,Xn-1) 
                  = P(X1,...,Xn-2) P(Xn-1 | X1,...,Xn-2) P(Xn | X1,...,Xn-1) 
                   = … 

P(toothache, cavity, pcatch) = P(toothache)* P(cavity| toothache) 
  *P(pcatch | toothache, cavity) 



Bayesian networks 
•  A simple, graphical notation for conditional 

independence assertions and hence for compact 
specification of full joint distributions 

•  Syntax: 
–  a set of nodes, one per variable 

–  a directed, acyclic graph (link ≈ "directly influences") 
–  a conditional distribution for each node given its parents: 

P (Xi | Parents (Xi)) 

•  In the simplest case, conditional distribution represented 
as a conditional probability table (CPT) giving the 
distribution over Xi for each combination of parent values 
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Example (1) 
•  Topology of network encodes conditional independence 

assertions: 

•  Weather is independent of the other variables 
•  Toothache and Catch are conditionally independent 

given Cavity 



P(c∧t∧pc)  = ? 

Bayesian Network 
  Notice that Cavity is the “cause” of both Toothache  

and PCatch, and represent the causality links explicitly 
  Give the prior probability distribution of Cavity 
  Give the conditional probability tables of Toothache 

and  PCatch 

Cavity 

Toothache 

P(Cavity) 

0.2 

P(Toothache|c) 

Cavity 
¬Cavity 

0.6 
0.1 

PCatch 

P(PCatch|c) 

Cavity 
¬Cavity 

0.9 
0.02 

5 probabilities, instead of 7 

P(c∧t∧pc)  =(Product Rule) 
        P(t∧pc|c) P(c) 
P(c∧t∧pc)  = P(t∧pc|c) P(c) 
Cond. Ind   = P(t|c) P(pc|c) P(c) 



Example (2) 
•  I'm at work, neighbor John calls to say my alarm is ringing, but neighbor 

Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a 
burglar? 

•  Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls 

•  Network topology reflects "causal" knowledge: 
–  A burglar can set the alarm off 
–  An earthquake can set the alarm off 
–  The alarm can cause Mary to call 
–  The alarm can cause John to call 



A More Complex BN 

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 

causes 

effects 

Directed  
acyclic graph 

Intuitive meaning of 
arc from x to y: “x 

has direct influence 
on y” 



B E P(A|…) 

T
T
F
F

T
F
T
F

0.95 
0.94 
0.29 
0.001 

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 

P(B) 

0.001 

P(E) 

0.002 

A P(J|…) 

T
F 

0.90 
0.05 

A P(M|…) 

T
F

0.70 
0.01 

Size of the 
CPT for a  
node with k 
parents: 2k 

(∑row=1) 

A More Complex BN 

10 probabilities, instead of 31 



What does the BN encode? 

Each of the beliefs JohnCalls 
and MaryCalls is independent of 
Burglary and Earthquake given 
Alarm or ¬Alarm 

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 

For example, John does 
not observe any burglaries 
directly 

P(b∧j) ≠ P(b) P(j) 
P(b∧j|a) = P(b|a) P(j|a) 



The beliefs JohnCalls 
and MaryCalls are 
independent given 
Alarm or ¬Alarm 

For instance, the reasons why  
John and Mary may not call if  
there is an alarm are unrelated  

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 

What does the BN encode? 

A node is independent of 
its non-descendants 
given its parents 

P(b∧j|a) = P(b|a) P(j|a) 
P(j∧m|a) = P(j|a) P(m|a) 



The beliefs JohnCalls 
and MaryCalls are 
independent given 
Alarm or ¬Alarm 

For instance, the reasons why  
John and Mary may not call if  
there is an alarm are unrelated  

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 

What does the BN encode? 

A node is independent of 
its non-descendants 
given its parents 

Burglary and  
Earthquake are  
independent 



Locally Structured World 
  A world is locally structured (or sparse) if each of its components 

interacts directly with relatively few other components 
  In a sparse world, the CPTs are small and the BN contains much 

fewer probabilities than the full joint distribution 
  If the # of entries in each CPT is bounded by a constant, i.e., O(1), 

then the # of probabilities in a BN is linear in n – the # of 
propositions – instead of 2n for the joint distribution 



Calculation of Joint Probability 

B E P(A|…) 

T
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F
F

T
F
T
F

0.95 
0.94 
0.29 
0.001 

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 

P(B) 

0.001 

P(E) 

0.002 

A P(J|…) 

T
F 

0.90 
0.05 

A P(M|…) 

T
F

0.70 
0.01 

P(J∧M∧A∧¬B∧¬E) = ?? 



  P(J∧M∧A∧¬B∧¬E) 
= P(J∧M|A,¬B,¬E) × P(A∧¬B∧¬E) 
= P(J|A,¬B,¬E) × P(M|A,¬B,¬E) × P(A∧¬B∧¬E) 
(J and M are independent given A) 

  P(J|A,¬B,¬E) = P(J|A) 
(J and ¬B∧¬E are independent given A) 

  P(M|A,¬B,¬E) = P(M|A) 
  P(A∧¬B∧¬E) = P(A|¬B,¬E) × P(¬B|¬E) × P(¬E) 

                   = P(A|¬B,¬E) × P(¬B) × P(¬E) 
(¬B and ¬E are independent) 

  P(J∧M∧A∧¬B∧¬E) = P(J|A)P(M|A)P(A|¬B,¬E)P(¬B)P(¬E) 

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 



Calculation of Joint Probability 
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P(J∧M∧A∧¬B∧¬E) 
= P(J|A)P(M|A)P(A|¬B,¬E)P(¬B)P(¬E) 
= 0.9 x 0.7 x 0.001 x 0.999 x 0.998 
= 0.00062 



Calculation of Joint Probability 

B E P(A|…) 
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F
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0.94 
0.29 
0.001 

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 
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P(E) 
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P(J∧M∧A∧¬B∧¬E) 
= P(J|A)P(M|A)P(A|¬B,¬E)P(¬B)P(¬E) 
= 0.9 x 0.7 x 0.001 x 0.999 x 0.998 
= 0.00062 

P(x1∧x2∧…∧xn) = Πi=1,…,nP(xi|parents(Xi)) 
 full joint distribution table 



Calculation of Joint Probability 

B E P(A|…) 
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P(J∧M∧A∧¬B∧¬E) 
= P(J|A)P(M|A)P(A|¬B,¬E)P(¬B)P(¬E) 
= 0.9 x 0.7 x 0.001 x 0.999 x 0.998 
= 0.00062 

Since a BN defines the 
full joint distribution of a 
set of propositions, it 
represents a belief space 

P(x1∧x2∧…∧xn) = Πi=1,…,nP(xi|parents(Xi)) 
 full joint distribution table 



Semantics of a BN: 
Full Joint Distribution 

The full joint distribution is defined as the product of the local 
conditional distributions: 

  P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi)) 

e.g., P(j ∧ m ∧ a ∧ ¬b ∧ ¬e) 

 = P (j | a) P (m | a) P (a | ¬b, ¬e) P (¬b) P (¬e) 

n 



Encoding conditional independence via 
d-separation 



The ten rules of Bayes Ball 



A double-header: two games of Bayes Ball 



Demonstration of CI 

a 

b c 

P(b=true) ? 
P(c=true) ? 

Suppose a is given. What are the effects on b,c 
What if also b is given. How does this affect c? 
What if only c is given. Effects on a on b? 



Constructing Bayesian networks 
•  1. Choose an ordering of variables X1, … ,Xn 
•  2. For i = 1 to n 

–  add Xi to the network 

–  select parents from X1, … ,Xi-1 such that 
 P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1) 

This choice of parents guarantees: 

P (X1, … ,Xn)  = πi =1 P (Xi | X1, … , Xi-1) 
(chain rule) 
   = πi =1P (Xi | Parents(Xi)) 
(by construction) 

n 

n 



•  Suppose we choose the ordering M, J, A, B, E 

P(J | M) = P(J)? 

Example 



•  Suppose we choose the ordering M, J, A, B, E 

P(J | M) = P(J)? 
No 
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? 

Example 



•  Suppose we choose the ordering M, J, A, B, E 

P(J | M) = P(J)? 
No 
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No 
P(B | A, J, M) = P(B | A)?  
P(B | A, J, M) = P(B)? 

Example 



•  Suppose we choose the ordering M, J, A, B, E 

P(J | M) = P(J)? 
No 
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No 
P(B | A, J, M) = P(B | A)? Yes 
P(B | A, J, M) = P(B)? No 
P(E | B, A ,J, M) = P(E | A)? 
P(E | B, A, J, M) = P(E | A, B)? 

Example 



•  Suppose we choose the ordering M, J, A, B, E 

P(J | M) = P(J)? 
No  
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No 
P(B | A, J, M) = P(B | A)? Yes 
P(B | A, J, M) = P(B)? No 
P(E | B, A ,J, M) = P(E | A)? No 
P(E | B, A, J, M) = P(E | A, B)? Yes 

Example 



Example contd. 

•  Deciding conditional independence is hard in noncausal directions 
•  (Causal models and conditional independence seem hardwired for 

humans!) 
•  Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed 



  The BN gives P(t|c) 
  What about P(c|t)? 
  P(Cavity|t)  

 = P(Cavity ∧ t)/P(t) 
 = P(t|Cavity) P(Cavity) / P(t) 
[Bayes’ rule] 

  P(c|t) = α P(t|c) P(c) 

  Querying a BN is just applying the 
trivial Bayes’ rule on a larger scale 

Querying the BN 

Cavity 

Toothache 

P(C) 

0.1 

C P(T|c) 

T
F 

0.4 
0.01111 

Slides: 
Jean Claude Latombe 



  P(b|j,m) = α P(b,j,m) 
 = α ΣaΣeP(b∧j∧m∧a∧e) [marginalization] 

 = α ΣaΣeP(b)P(e)P(a|b,e)P(j|a)P(m|a) [BN] 
 = α P(b)ΣeP(e)ΣaP(a|b,e)P(j|a)P(m|a) [re-ordering] 

Querying the BN 



  Depth-first evaluation of P(b|j) leads to computing each 
of the 2 following products twice: 
P(j|a) P(m|a), P(j|¬a) P(m|¬a) 

  Bottom-up (right-to-left) computation + caching – e.g., 
variable elimination algorithm (see R&N) – avoids such 
repetition 

  For singly connected BN, the computation takes time 
linear in the total number of CPT entries (→ time linear 
in the # propositions if CPT’s size is bounded) 

Querying the BN 



Singly Connected BN 

A BN is singly connected if there is at most one 
undirected path between any two nodes 

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 

is singly connected 



Comparison to Classical Logic 
Burglary → Alarm 
Earthquake → Alarm 
Alarm → JohnCalls 
Alarm → MaryCalls 

If the agent observes  
¬JohnCalls,  
it infers ¬Alarm,  
¬Burglary, and ¬Earthquake 

If it observes JohnCalls, then it 
infers nothing 

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 



Summary 

•  Bayesian networks provide a natural 
representation for (causally induced) 
conditional independence 

•  Topology + CPTs = compact 
representation of joint distribution 

• Generally easy for domain experts to 
construct 


