
Bayesian Learning and Learning
Bayesian Networks

Chapter 20
some slides by
Cristina Conati

Overview
Ø  Full Bayesian Learning

Ø MAP learning

Ø Maximun Likelihood Learning

Ø Learning Bayesian Networks
•  Fully observable

•  With hidden (unobservable) variables

Full Bayesian Learning
Ø  In the learning methods we have seen so far, the idea was always

to find the best model that could explain some observations

Ø  In contrast, full Bayesian learning sees learning as Bayesian
updating of a probability distribution over the hypothesis space,
given data
•  H is the hypothesis variable

•  Possible hypotheses (values of H) h1…, hn

•  P(H) = prior probability distribution over hypothesis space

Ø  jth observation dj gives the outcome of random variable Dj

•  training data d= d1,..,dk

Ø  Suppose we have 5 types of candy bags
•  10% are 100% cherry candies (h100)
•  20% are 75% cherry + 25% lime candies (h75)
•  40% are 50% cherry + 50% lime candies (h50)
•  20% are 25% cherry + 75% lime candies (h25)
•  10% are 100% lime candies (h0)

•  Then we observe candies drawn from some bag

Example

Ø Let’s call θ the parameter that defines the fraction of cherry
candy in a bag, and hθ the corresponding hypothesis

Ø Which of the five kinds of bag has generated my 10
observations? P(h θ |d).

Ø What flavour will the next candy be? Prediction P(X|d)

Ø Given the data so far, each hypothesis hi has a posterior
probability:
•  P(hi |d) = αP(d| hi) P(hi) (Bayes theorem)

•  where P(d| hi) is called the likelihood of the data under each hypothesis

Ø  Predictions over a new entity X are a weighted average over the
prediction of each hypothesis:
•  P(X|d) =

 = ∑i P(X, hi |d)

 = ∑i P(X| hi,d) P(hi |d)

 = ∑i P(X| hi) P(hi |d)

 ~ ∑i P(X| hi) P(d| hi) P(hi)

•  The weights are given by the data likelihood and prior of each h

Ø No need to pick one
best-guess hypothesis!

The data does
not add
anything to a
prediction
given an hp

Full Bayesian Learning

Example
Ø  If we re-wrap each candy and return it to the bag, our 10

observations are independent and identically distributed, i.i.d, so
•  P(d| hθ) = ∏j P(dj| hθ) for j=1,..,10

Ø  For a given hθ , the value of P(dj| hθ) is
•  P(dj = cherry| hθ) = θ; P(dj = lime|hθ) = (1-θ)

Ø And given N observations, of which c are cherry and l = N-c lime
ℓℓ)1()1(|(

11
θθθθ −=−= ∏∏ ==

c
j

c

jθ)hP d

•  Binomial distribution: probability of # of successes in a sequence of N
independent trials with binary outcome, each of which yields success with
probability θ.

Ø  For instance, after observing 3 lime candies in a row:
•  P([lime, lime, lime] | h 50) = 0.53 because the probability of seeing lime for

each observation is 0.5 under this hypotheses

Ø  Initially, the hp with higher priors dominate (h50 with prior = 0.4)

Ø  As data comes in, the finally best hypothesis (h0) starts dominating, as the
probability of seeing this data given the other hypotheses gets increasingly
smaller

•  After seeing three lime candies in a row, the probability that the bag is the
all-lime one starts taking off

P(h100|d)
P(h75|d)
P(h50|d)
P(h25|d)
P(h0|d)

P(hi |d) = αP(d| hi) P(hi)

All-limes: Posterior Probability of H

Prediction Probability

Ø The probability that the next candy is lime increases with the
probability that the bag is an all-lime one

∑i P(next candy is lime| hi) P(hi |d)

Overview
Ø  Full Bayesian Learning

Ø MAP learning

Ø Maximun Likelihood Learning

Ø Learning Bayesian Networks
•  Fully observable

•  With hidden (unobservable) variables

MAP approximation
Ø  Full Bayesian learning seems like a very safe bet, but

unfortunately it does not work well in practice
•  Summing over the hypothesis space is often intractable (e.g.,

18,446,744,073,709,551,616 Boolean functions of 6 attributes)

Ø Very common approximation: Maximum a posterior (MAP)
learning:
§  Instead of doing prediction by considering all possible hypotheses , as in

o  P(X|d) = ∑i P(X| hi) P(hi |d)

§  Make predictions based on hMAP that maximises P(hi |d)
o  I.e., maximize P(d| hi) P(hi)

o P(X|d)~ P(X| hMAP)

MAP approximation
Ø MAP is a good approximation when P(X |d) ≈ P(X| hMAP)

•  In our example, hMAP is the all-lime bag after only 3 candies, predicting
that the next candy will be lime with p =1

•  the bayesian learner gave a prediction of 0.8, safer after seeing only 3
candies

P(h100|d)
P(h75|d)
P(h50|d)
P(h25|d)
P(h0|d)

Bias
Ø As more data arrive, MAP and Bayesian prediction become

closer, as MAP’s competing hypotheses become less likely

Ø Often easier to find MAP (optimization problem) than deal with a
large summation problem

Ø P(H) plays an important role in both MAP and Full Bayesian
Learning
•  Defines the learning bias, i.e. which hypotheses are favoured

Ø Used to define a tradeoff between model complexity and its
ability to fit the data
•  More complex models can explain the data better => higher P(d| hi)

danger of overfitting

•  But they are less likely a priory because there are more of them than
simpler model => lower P(hi)

•  I.e. common learning bias is to penalize complexity

Overview
Ø  Full Bayesian Learning

Ø MAP learning

Ø Maximun Likelihood Learning

Ø Learning Bayesian Networks
•  Fully observable

•  With hidden (unobservable) variables

Maximum Likelihood (ML)Learning
Ø  Further simplification over full Bayesian and MAP learning

•  Assume uniform priors over the space of hypotheses

•  MAP learning (maximize P(d| hi) P(hi)) reduces to maximize P(d| hi)

Ø When is ML appropriate?

Maximum Likelihood (ML) Learning
Ø  Further simplification over Full Bayesian and MAP learning

•  Assume uniform prior over the space of hypotheses

•  MAP learning (maximize P(d| hi) P(hi)) reduces to maximize P(d| hi)

Ø When is ML appropriate?
•  Used in statistics as the standard (non-bayesian) statistical learning method

by those who distrust subjective nature of hypotheses priors

•  When the competing hypotheses are indeed equally likely (e.g. have same
complexity)

•  With very large datasets, for which P(d| hi) tends to overcome the
influence of P(hi)

Overview
Ø  Full Bayesian Learning

Ø MAP learning

Ø Maximun Likelihood Learning

Ø Learning Bayesian Networks
•  Fully observable (complete data)

•  With hidden (unobservable) variables

Learning BNets: Complete Data
Ø We will start by applying ML to the simplest type of BNets

learning:
•  known structure

•  Data containing observations for all variables

ü All variables are observable, no missing data

Ø The only thing that we need to learn are the network’s
parameters

ML learning: example
Ø Back to the candy example:

•  New candy manufacturer that does not provide data on the probability of
fraction θ of cherry candy in its bags

•  Any θ is possible: continuum of hypotheses hθ
•  Reasonable to assume that all θ are equally likely (we have no evidence

of the contrary): uniform distribution P(hθ)

•  θ is a parameter for this simple family of models, that we need to learn

Ø  Simple network to represent this problem
•  Flavor represents the event of drawing a cherry vs. lime candy

from the bag

•  P(F=cherry), or P(cherry) for brevity, is equivalent to the
fraction θ of cherry candies in the bag

Ø We want to infer θ by unwrapping N candies from the bag

Ø Unwrap N candies, c cherries and l = N-c lime (and return each
candy in the bag after observing flavor)

Ø  As we saw earlier, this is described by a binomial distribution
•  P(d| h θ) = ∏j P(dj| h θ) = θ c (1- θ) l

Ø With ML we want to find θ that maximizes this expression, or
equivalently its log likelihood (L)
•  L(P(d| h θ))

 = log (∏j P(dj| h θ))

 = log (θ c (1- θ) l)

 = clogθ + l log(1- θ)

ML learning: example (cont’d)

Ø To maximise, we differentiate L(P(d| h θ) with respect to θ and
set the result to 0

ML learning: example (cont’d)

N
c

=θ

θθ −
−=
1
ℓc
θ

θθ
∂

+∂)) -log(1 log(ℓc

Ø Doing the math gives

0
1

=
−

−
−=

θθ
cNc

Frequencies as Priors

Ø  So this says that the proportion of cherries in the bag is equal
to the proportion (frequency) of cherries in the data

Ø Now we have justified why this approach provides a
reasonable estimate of node priors

General ML procedure

Ø Express the likelihood of the data as a function of the
parameters to be learned

Ø Take the derivative of the log likelihood with respect of each
parameter

Ø  Find the parameter value that makes the derivative equal to 0

Ø The last step can be computationally very expensive in real-
world learning tasks

More complex example
Ø The manufacturer chooses the color of the wrapper

probabilistically for each candy based on flavor, following an
unknown distribution

•  If the flavour is cherry, it chooses a red wrapper with probability θ1

•  If the flavour is lime, it chooses a red wrapper with probability θ2

Ø The Bayesian network for this problem includes 3 parameters to
be learned
•  θ θ 1 θ 2

More complex example
Ø The manufacturer choses the color of the wrapper

probabilistically for each candy based on flavor, following an
unknown distribution

•  If the flavour is cherry, it chooses a red wrapper with probability θ1

•  If the flavour is lime, it chooses a red wrapper with probability θ2

Ø The Bayesian network for this problem includes 3 parameters to
be learned
•  θ θ 1 θ 2

Another example (cont’d)
Ø  P(W=green, F = cherry| hθθ1θ2) = (*)

 = P(W=green|F = cherry, hθθ1θ2) P(F = cherry| hθθ1θ2)

 = θ (1-θ 1)

Ø We unwrap N candies
•  c are cherry and l are lime

•  rc cherry with red wrapper, gc cherry with green wrapper

•  rl lime with red wrapper, g l lime with green wrapper

•  every trial is a combination of wrapper and candy flavor similar to event (*) above, so

Ø  P(d| hθθ1θ2)

 = ∏j P(dj| hθθ1θ2)

= θc (1-θ) l (θ 1) r
c (1-θ 1) g

c (θ 2) r l (1-θ 2) g l

Another example (cont’d)
Ø  I want to maximize the log of this expression

•  clogθ + l log(1- θ) + rc log θ 1 + gc log(1- θ 1) + rl log θ 2 + g l log(1- θ 2)

Ø Take derivative with respect of each of θ, θ 1 ,θ 2
•  The terms not containing the derivation variable disappear

ML parameter learning in Bayes nets

Ø  Frequencies again!

Ø This process generalizes to every fully observable Bnet.

Ø With complete data and ML approach:
•  Parameters learning decomposes into a separate learning problem for

each parameter (CPT), because of the log likelihood step

•  Each parameter is given by the frequency of the desired child value
given the relevant parents values

Very Popular Application

Ø Naïve Bayes models: very simple Bayesian networks for
classification
•  Class variable (to be predicted) is the root node

•  Attribute variables Xi (observations) are the leaves

Ø  Naïve because it assumes that the attributes are conditionally independent of
each other given the class

Ø  Deterministic prediction can be obtained by picking the most likely class

Ø  Scales up really well: with n boolean attributes we just need…….

C

X1
Xn

X2

∏==
i

n
n

n
n C)(x(C)

),..,x,x(x
),..,x,xx(C),..,x,x(C|x |,

21

21
21 PP

P
PP α

Very Popular Application

Ø Naïve Bayes models: very simple Bayesian networks for
classification
•  Class variable (to be predicted) is the root node

•  Attribute variables Xi (observations) are the leaves

Ø  Naïve because it assumes that the attributes are conditionally independent of
each other given the class

Ø  Deterministic prediction can be obtained by picking the most likely class

Ø  Scales up really well: with n boolean attributes we just need 2n+1 parameters

C

X1
Xn

X2

∏==
i

n
n

n
n C)(x(C)

),..,x,x(x
),..,x,xx(C),..,x,x(C|x |,

21

21
21 PP

P
PP α

Problem with ML parameter learning
Ø With small datasets, some of the frequencies may be 0 just because

we have not observed the relevant data

Ø Generates very strong incorrect predictions:
•  Common fix: initialize the count of every relevant event to 1 before counting

the observations

Probability from Experts
Ø As we mentioned in previous lectures, an alternative to learning

probabilities from data is to get them from experts

Ø  Problems
•  Experts may be reluctant to commit to specific probabilities that cannot be

refined

•  How to represent the confidence in a given estimate

•  Getting the experts and their time in the first place

Ø One promising approach is to leverage both sources when they are
available
•  Get initial estimates from experts

•  Refine them with data

Combining Experts and Data
Ø Get the expert to express her belief on event A as the pair

 <n,m>

i.e. how many observations of A they have seen (or expect to see) in m trials

Ø Combine the pair with actual data
•  If A is observed, increment both n and m

•  If ¬A is observed, increment m alone

Ø The absolute values in the pair can be used to express the expert’s
level of confidence in her estimate
•  Small values (e.g., <2,3>) represent low confidence

•  The larger the values, the higher the confidence

WHY?

Combining Experts and Data
Ø Get the expert to express her belief on event A as the pair

 <n,m>

i.e. how many observations of A they have seen (or expect to see) in m trials

Ø Combine the pair with actual data
•  If A is observed, increment both n and m

•  If ¬A is observed, increment m alone

Ø The absolute values in the pair can be used to express the expert’s
level of confidence in her estimate
•  Small values (e.g., <2,3>) represent low confidence, as they are quickly

dominated by data

•  The larger the values, the higher the confidence as it takes more and more data
to dominate the initial estimate (e.g. <2000, 3000>)

Overview
Ø  Full Bayesian Learning

Ø MAP learning

Ø Maximun Likelihood Learning

Ø Learning Bayesian Networks
•  Fully observable (complete data)

•  With hidden (unobservable) variables

Learning Parameters with Hidden Variables
Ø  So far we have assumed that we can collect data on all variables in

the network

Ø What if this is not true, i.e. the network has hidden variables?

Ø Clearly we can‘t use the frequency approach, because we are
missing all the counts involving H

Quick Fix

•  Each variable has 3 values (low, moderate, high)

•  the numbers by the nodes represent how many parameters need to be specified
for the CPT of that node

•  78 probabilities to be specified overall

Ø Get rid of the hidden variables.

Ø  It may work in the simple network given earlier, but what about
the following one?

Not Necessarily a Good Fix

Ø The symptom variables are no longer conditionally independent
given their parents
•  Many more links, and many more probabilities to be specified: 708 overall

•  Need much more data to properly learn the network

Example: The cherry/lime candy world again

Ø  Two bags of candies (1 and 2) have been mixed together

Ø  Candies are described by 3 features: Flavor and Wrapper as before, plus
Hole (whether they have a hole in the middle)

Ø  Candies‘ features depend probabilistically from the bag they originally came
from

Ø  We want to predict for each candy, which was its original bag, from its
features: Naïve Bayes model

θ= P(Bag = 1)
θFj = P(Flavor = cherry|Bag = j)
θWj = P(Wrapper = red|Bag = j)
θHj = P(Hole = yes|Bag = j)

j =1,2

Expectation-Maximization (EM)
Ø  If we keep the hidden variables, and want to learn the network

parameters from data, we have a form of unsupervised learning
•  The data do not include information on the true nature of each data point

Ø Expectation-Maximization
•  General algorithm for learning model parameters from incomplete data

•  We‘ll see how it works on learning parameters for Bnets with discrete
variables

40

Bayesian learning: Bayes’ rule

Ø Given some model space (set of hypotheses hi) and
evidence (data D):
•  P(hi|D) = α P(D|hi) P(hi)

Ø We assume that observations are independent of each
other, given a model (hypothesis), so:
•  P(hi|D) = α ∏j P(dj|hi) P(hi)

Ø To predict the value of some unknown quantity, X (e.g.,
the class label for a future observation):
•  P(X|D) = ∑i P(X|D, hi) P(hi|D) = ∑i P(X|hi) P(hi|D)

These are equal by our
independence assumption

41

Bayesian learning

Ø We can apply Bayesian learning in three basic ways:
•  BMA (Bayesian Model Averaging): Don’t just choose one

hypothesis; instead, make predictions based on the weighted
average of all hypotheses (or some set of best hypotheses)

•  MAP (Maximum A Posteriori) hypothesis: Choose the
hypothesis with the highest a posteriori probability, given the data

•  MLE (Maximum Likelihood Estimate): Assume that all
hypotheses are equally likely a priori; then the best hypothesis is
just the one that maximizes the likelihood (i.e., the probability of
the data given the hypothesis)

Ø MDL (Minimum Description Length) principle: Use
some encoding to model the complexity of the hypothesis,
and the fit of the data to the hypothesis, then minimize the
overall description length of hi + D

42

Parameter estimation
Ø Assume known structure

Ø Goal: estimate BN parameters θ
•  entries in local probability models, P(X | Parents(X))

Ø A parameterization θ is good if it is likely to generate the
observed data:

Ø Maximum Likelihood Estimation (MLE) Principle: Choose θ* so
as to maximize Score

Score(θ) = P(D | θ) = P(x[m] | θ)
m
∏

i.i.d. samples

EM: general idea

Ø  If we had data for all the variables in the network, we could learn the
parameters by using ML (or MAP) models
•  Frequencies of the relevant events as we saw in previous examples

Ø  If we had the parameters in the network, we could estimate the
posterior probability of any event, including the hidden variables
P(H|A,B,C)

EM: General Idea
Ø The algorithm starts from “invented” (e.g., randomly

generated) information to solve the learning problem, i.e.
•  Determine the network parameters

Ø  It then refines this initial guess by cycling through two basic
steps
•  Expectation (E): update the data with predictions generated via the

current model

•  Maximization (M): given the updated data, update the model
parameters using the Maximum Likelihood (ML) approach

ü This is the same step that we described when learning parameters
for fully observable networks

EM: How it Works on Naive Bayes
Ø Consider the following data,

•  N examples with Boolean attributes X1, X2, X3, X4

Ø which we want to categorize in one of three possible values of
class C = {1,2,3}

Ø We use a Naive Bayes classifier with hidden variable C

?
?
?
?
?

EM: Initialization
Ø The algorithm starts from “invented” (e.g., randomly

generated) information to solve the learning problem, i.e.
•  Determine the network parameters

?
?
?
?
?

Define
arbitrary
parameters

EM: Expectation Step (Get Expected Counts)

Ø What would we need to learn the network parameters using ML
approach?
•  for P(C) = Count(datapoints with C=i)/Count(all datapoints) i=1,2,3

•  for P(Xh|C) = Count(datapoints with Xh = valk and C=i)/Count(data with C=i)

 for all values valk of Xh and i=1,2,3

?
?
?
?
?

EM: Expectation Step (Get Expected Counts)
Ø We only have Count(all datapoints) =N.

Ø We approximate all other necessary counts with expected
counts derived from the model with “invented” parameters

Ø Expected count is the sum, over all N examples in my
dataset, of the probability that each example is in category i

) x4, x3, x2,x1|iP(C

)e example of attributes|iP(C i) (CN̂

N

1j
jjjj

N

1j
j

∑

∑

=

=

==

===

i) (CN̂ =

EM: Expectation Step (Get Expected Counts)
Ø  How do we get the necessary probabilities from the model?

Ø  Easy with a Naïve bayes network

) x4, x3, x2,x1|iP(C

)e example of attributes|iP(C i) (CN̂

N

1j
jjjj

N

1j
j

∑

∑

=

=

==

===

) x4, x3, x2,P(x1
)ii)P(CC|P(x4 i)..,C|P(x1

) x4, x3, x2,P(x1
) x4, x3, x2, x1i,P(C

) x4, x3, x2,x1|iP(C

jjjj

jj

jjjj

jjjj
jjjj

===
=

=
==

Naïve bayes “invented
parameters”

Also available from Naïve Bayes. You
do the necessary transformations

Ø By a similar process we obtain the expected counts of examples
with attibute Xh= valk and belonging to category i.

Ø These are needed later for estimating P(Xh | C):

•  for all values valk of Xh and i=1,2,3

EM: Expectation Step (Get Expected Counts)

) x4, x3, x2t,x1|iP(C 1) C t,(XN̂
tXwith e

jjjj1
1j

∑
=

=====

i)C(ˆ
i)C, val X(ˆ

i)C with (examplesExp.Counts
i)C and val X with mplesCounts(exa Exp. C)|P(X khkh

h
=

==
=

=

==
=

N
N

Ø  For instance

Again, get these probabilities from
model with current parameters

EM: General Idea
Ø The algorithm starts from “invented” (e.g., randomly

generated) information to solve the learning problem, i.e.
•  the network parameters

Ø  It then refines this initial guess by cycling through two
basic steps
•  Expectation (E): compute expected counts based on the generated

via the current model

•  Maximization (M): given the expected counts, update the model
parameters using the Maximum Likelihood (ML) approach

ü This is the same step that we described when learning
parameters for fully observable networks

Ø Now we can refine the network parameters by applying ML to
the expected counts

Maximization Step: (Refining Parameters)

•  for all values valk of Xj and i=1,2,3

N

i) (CN̂ i)P(C =
==

i) (CN̂

i) C val (XN̂
 i)C| val P(X kj

kj
=

==
===

EM Cycle
Ø Ready to start the E-step again

Expected Counts
(“Augmented data”) Probabilities

Procedure EM(X,D,k)
 Inputs: X set of features X={X1,...,Xn} ; D data set on features {X1,...,Xn}; k number of classes
 Output: P(C), P(Xi|C) for each i∈{1:n}, where C={1,...,k}.
 Local
 real array A[X1,...,Xn,C]
 real array P[C]
 real arrays Mi[Xi,C] for each i∈{1:n}
 real arrays Pi[Xi,C] for each i∈{1:n}
 s← number of tuples in D
 Assign P[C], Pi[Xi,C] arbitrarily
 repeat
 // E Step
 for each assignment 〈X1=v1,...,Xn=vn〉∈D do
 let m ←|〈X1=v1,...,Xn=vn〉∈D|
 for each c ∈{1:k} do
 A[v1,...,vn,c]←m×P(C=c|X1=v1,...,Xn=vn)
 end for each
 end for each
 // M Step
 for each i∈{1:n} do
 Mi[Xi,C]=∑X1,...,Xi-1,Xi+1,...,Xn A[X1,...,Xn,C]
 Pi[Xi,C]=(Mi[Xi,C])/(∑C Mi[Xi,C])
 end for each
 P[C]=∑X1,...,Xn A[X1,...,Xn,C]/s
 until probabilities do not change significantly
end procedure

Example: Back to the cherry/lime candy world.

Ø  Two bags of candies (1 and 2) have been mixed together

Ø  Candies are described by 3 features: Flavor and Wrapper as before, plus
Hole (whether they have a hole in the middle)

Ø  Candies‘ features depend probabilistically from the bag they originally came
from

Ø  We want to predict for each candy, which was its original bag, from its
features: Naïve Bayes model

θ= P(Bag = 1)
θFj = P(Flavor = cherry|Bag = j)
θWj = P(Wrapper = red|Bag = j)
θHj = P(Hole = yes|Bag = j)

j =1,2

Data
Ø Assume that the true parameters are

•  θ= 0.5;

•  θF1 = θW1 = θH1 = 0.8;

•  θF2 = θW2 = θH2 = 0.3;

Ø The following counts are “generated” from P(C, F, W, H)
(N = 1000)

Ø We want to re-learn the true parameters using EM

EM: Initialization
Ø Assign arbitrary initial parameters

•  Usually done randomly; here we select numbers convenient for
computation

4.0

 ;6.0
 ;6.0

)0()0()0(

)0()0()0(

)0(

222

111

===

===

=

HWF

HWF

θθθ

θθθ

θ

Ø We‘ll work through one cycle of EM to compute θ(1).

E-step

∑
=

==
=

N

j jjj

jjj

holewrapperP(flavor
))P(Bag|BagholewrapperP(flavor

1),,
11,,

Ø  First, we need the expected count of candies from Bag 1,
•  Sum of the probabilities that each of the N data points comes from bag 1

•  Be flavorj, wrapperj, holej the values of the corresponding attributes for the jth
datapoint

==== ∑
=

),whole,wrapper|flavorP(Bag j

N

j
jj

1
1 1) (BagN̂

∑∑= ====

====
=

N

j
i

jjj

jjj

i)i)P(Bag|Bagi)P(hole|Bagri)P(wrappe|BagP(flavor
))P(Bag|Bag)P(hole|Bag)P(wrapper|BagP(flavor

1

1111

E-step

97.227
1552.0
1296.0273

4.00.6
0.6273

)1(

273

44

4

)0()0()0()0()0()0()0()0(

)0()0()0()0(

222111

111

==
+

=
−+

=
θθθθθθθθ

θθθθ

HWFHWF

HWF

Ø  This summation can be broken down into the 8 candy groups in the data table.

•  For instance the sum over the 273 cherry candies with red wrap and hole (first
entry in the data table) gives

∑∑= ====

====N

j
i

jjj

jjj

i)i)P(Bag|Bagi)P(hole|Bagri)P(wrappe|BagP(flavor
))P(Bag|Bag)P(hole|Bag)P(wrapper|BagP(flavor

1

1111

4.0

 ;6.0
 ;6.0

)0()0()0(

)0()0()0(

)0(

222

111

===

===

=

HWF

HWF

θθθ

θθθ

θ

M-step
Ø  If we do compute the sums over the other 7 candy groups we get

4.612 1) (BagN̂ ==

Ø  At this point, we can perform the M-step to refine θ, by taking the expected
frequency of the data points that come from Bag 1

6124.0
N

1) (BagN̂ (1) =
=

=θ

One More Parameter
Ø  If we want to do the same for parameter θF1

Ø  E-step: compute the expected count of cherry candies from Bag 1

N̂(Bag =1 ∧Flavor = cherry) = P(Bag =1 | Flavorj = cherry ,wrapperj
j:Flavorj=cherry
∑ ,holej)

)1(ˆ

)1(ˆ
)1(

1

=

=∧=
=

BagN
cherryFlavorBagN

Fθ

Ø  M-step: refine θF1 by computing the corresponding expected frequencies

Ø  Can compute the above value from the Naïve model as we did earlier

Ø  TRY AS AN EXCERCISE

Ø  For any set of parameters, I can compute the log likelihood as we did in the
previous class

Learning Performance

;3827.0 ;3817.0 ;3887.0

 ;658.0 ;6483.0 ;6684.0
 ;6124.0

)1()1()1(

)1()1()1(

)1(

222

111

===

===

=

HWF

HWF

θθθ

θθθ

θ

Ø  After a complete cycle through all the parameters, we get

Ø  It can be seen that the log likelihood increases with each EM iteration (see
textbook)

Ø  EM tends to get stuck in local maxima, so it is often combined with
gradient-based techniques in the last phase of learning

Ø  For any set of parameters, I can compute the log likelihood as we did in the
previous class

Learning Performance

;3827.0 ;3817.0 ;3887.0

 ;658.0 ;6483.0 ;6684.0
 ;6124.0

)1()1()1(

)1()1()1(

)1(

222

111

===

===

=

HWF

HWF

θθθ

θθθ

θ

)|()|()(
2

)(
2

)(
2

)(
1

)(
1

)(
1

)()(
2

)(
2

)(
2

)(
1

)(
1

)(
1

)(

1000

1
 i

H
i
W

i
F

i
H

i
W

i
F

ii
H

i
W

i
F

i
H

i
W

i
F

i hdPhP
j

j θθθθθθθθθθθθθθ ∏
=

=d

Ø  After a complete cycle through all the parameters, we get

Ø  It can be shown that the log likelihood
increases with each EM iteration,
surpassing even the likelihood of the
original model after only 3 iterations

-2025
-2020
-2015
-2010
-2005
-2000
-1995
-1990
-1985
-1980
-1975

0 20 40 60 80 100 120

Lo
g-

lik
el

ih
oo

d
L

Iteration number

EM: Discussion
Ø  For more complex Bnets the algorithm is basically the same

•  In general, I may need to compute the conditional probability parameter
for each variable Xi given its parents Pai

•  θijk= P(Xi = xij|Pai = paik)

)(ˆ
);(ˆ

iki

ikiiji
ijk paPaN

paPaxXN
=

==
=θ

Ø The expected counts are computed by summing over the
examples, after having computed all the necessary P(Xi = xij,Pai

= paik) using any Bnet inference algorithm

Ø The inference can be intractable, in which case there are
variations of EM that use sampling algorithms for the E-Step

EM: Discussion
Ø The algorithm is sensitive to “degenerated” local maxima due

to extreme configurations
•  e.g., data with outliers can generate categories that include only 1

outlier each because these models have the highest log likelihoods

•  Possible solution: re-introduce priors over the learning hypothesis and
use the MAP version of EM

