Learning Bayesian networks

- Given training set $D = \{x[1], ..., x[M]\}$
- Find Model that best matches **D**
 - model selection
 - parameter estimation

Model selection

Goal: Select the best network structure, given the data **Input:**

- Training data
- Scoring function

Output:

– A network that maximizes the score

Structure selection: Scoring

- Bayesian: prior over parameters and structure
 - get balance between model complexity and fit to data as a byproduct
 Marginal likelihood
- Score (G:D) = log P(G|D) α log [P(D|G) P(G)]
- Marginal likelihood just comes from our parameter estimates
- Prior on structure can be any measure we want; typically a function of the network complexity

Same key property: Decomposability

Score(structure) = Σ_i Score(family of X_i)

Variations on a theme

- Known structure, fully observable: only need to do parameter estimation
- Known structure, hidden variables: use expectation maximization (EM) to estimate parameters
- Unknown structure, fully observable: do heuristic search through structure space, then parameter estimation
- Unknown structure, hidden variables: too hard to solve!