Statistical Learning Part 2 Nonparametric Learning: The Main Ideas

> R. Marrone, R. Moeller Hamburg University of Technology

Instance-Based Learning

- So far: Statistical learning as parameter learning
- Given a specific parameter-dependent family of probability models fit it to the data by tweaking parameters
 - Often simple and effective
 - Fixed complexity
 - Maybe good for some problem classes
- Adapting the structure of the hypothesis proved to be very difficult

Instance-Based Learning

- Nonparametric learning methods allow hypothesis complexity to grow with the data
 - "The more data we have, the 'wigglier' the hypothesis can be"

Characteristics

- An instance-based learner is a *lazy-learner* and does all the work when the test example is presented. This is opposed to so-called *eager-learners*, which build a parameterised compact model of the target.
- It produces *local* approximation to the target function (*different* with each test instance)

Nearest Neighbor Classifier

• Basic idea

- Store all labelled instances (i.e., the training set) and compare new unlabeled instances (i.e., the test set) to the stored ones to assign them an appropriate label.
- Comparison is performed, for instance, by means of the Euclidean distance, and the labels of the k nearest neighbors of a new instance determine the assigned label
- Other distance measures: Mahalanobis distance (for multidimensional space), ...
- Parameter: k (the number of nearest neighbors)

Nearest Neighbor Classifier

• 1-Nearest neighbor:

Given a query instance x_q,

- first locate the nearest training example x_n
- then $f(x_q) := f(x_n)$
- K-Nearest neighbor:

Given a query instance x_q ,

- First locate the k nearest training examples
- If discrete values target function then take vote among its k nearest nbrs else if real valued target fct then take the mean of the f values of the k nearest nbrs

$$f(x_q) := \frac{\sum_{i=1}^k f(x_i)}{k}$$

Distance Between Examples

- We need a measure of distance in order to know who are the neighbours
- Assume that we have *T* attributes for the learning problem. Then one example point *x* has elements $x_t \in \Re$, t=1, ..., T.
- The distance between two points *x_ix_j* is often defined as the Euclidean distance:

$$d(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{\sum_{t=1}^T [x_{it} - x_{jt}]^2}$$

Difficulties

- For higher dimensionality, neighborhoods must be large in the average case - *curse* of dimensionality
- There may be irrelevant attributes amongst the attributes
- Have to calculate the distance of the test case from <u>all</u> training cases

FIGURE 4.15. The k-nearest-neighbor query starts at the test point x and grows a spherical region until it encloses k training samples, and it labels the test point by a majority vote of these samples. In this k = 5 case, the test point x would be labeled the category of the black points. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

kNN vs 1NN: Voronoi Diagram

FIGURE 4.13. In two dimensions, the nearest-neighbor algorithm leads to a partitioning of the input space into Voronoi cells, each labeled by the category of the training point it contains. In three dimensions, the cells are three-dimensional, and the decision boundary resembles the surface of a crystal. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

When to Consider kNN Algorithms?

- Instances map to points in \Re^n
- Not more then say 20 attributes per instance
- Lots of training data
- Advantages:
 - Training is very fast
 - Can learn complex target functions
 - Don't lose information
- Disadvantages:
 - ? (will see them shortly...)

Training data

Number	Lines	Line types	Rectangles	Colours	Mondrian?
1	6	1	10	4	No
2	4	2	8	5	No
3	5	2	7	4	Yes
4	5	1	8	4	Yes
5	5	1	10	5	No
6	6	1	8	6	Yes
7	7	1	14	5	No

Test instance

Number	Lines	Line types	Rectangles	Colours	Mondrian?
8	7	2	9	4	

Keep Data in Normalized Form

One way to normalize the data $a_r(x)$ to $a'_r(x)$ is

$$x_t' \equiv \frac{x_t - x_t}{\sigma_t}$$

 $x_t \equiv \text{mean of } t^{th} \text{ attribute}$

 $\sigma_t = \text{standard deviation of } t^{th} \text{ attribute}$

average distance of the data values from their mean

Mean and standard deviation

If the random variable X takes on the values x_1, \dots, x_N (which are real numbers) with equal probability, then its standard deviation can be computed as follows. First, the mean of X, \overline{x} , is defined as a summation:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i = \frac{x_1 + x_2 + \dots + x_N}{N}$$

where N is the number of samples taken. Next, the standard deviation simplifies to

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^2}.$$

Source: Wikipedia

Normalized Training Data

Number	Lines	Line	Rectangles	Colours	Mondrian?
		types			
1	0.632	-0.632	0.327	-1.021	No
2	-1.581	1.581	-0.588	0.408	No
3	-0.474	1.581	-1.046	-1.021	Yes
4	-0.474	-0.632	-0.588	-1.021	Yes
5	-0.474	-0.632	0.327	0.408	No
6	0.632	-0.632	-0.588	1.837	Yes
7	1.739	-0.632	2.157	0.408	No

$$d(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sqrt{\sum_{t=1}^{T} [x_{it} - x_{jt}]^{2}}$$

Test instance

Number	Lines	Line	Rectangles	Colours	Mondrian?
		types			
8	1.739	1.581	-0.131	-1.021	

Normalized Training Data

Number	Lines	Line	Rectangles	Colours	Mondrian?
		types			
1	0.632	-0.632	0.327	-1.021	No
2	-1.581	1.581	-0.588	0.408	No
3	-0.474	1.581	-1.046	-1.021	Yes
4	-0.474	-0.632	-0.588	-1.021	Yes
5	-0.474	-0.632	0.327	0.408	No
6	0.632	-0.632	-0.588	1.837	Yes
7	1.739	-0.632	2.157	0.408	No

$\sqrt{(0+4,89+5,23+2,04)} = 3,489$

Test instance

Number	Lines	Line	Rectangles	Colours	Mondrian?
		types			
8	1.739	1.581	-0.131	-1.021	

Distances of Test Instance From Training Data

Example	Distance of test from example	Mondrian?
1	2.517	No
2	3.644	No
3	2.395	Yes
4	3.164	Yes
5	3.472	No
6	3.808	Yes
7	3.490	No

Classification	on
1-NN	Yes
3-NN	Yes
5-NN	No
7-NN	No

 The k-nearest neighbor algorithm would just calculate the mean of the k nearest neighbours

• We might want to weight nearer neighbors more heavily

$$f(\mathbf{x}_q) \coloneqq \frac{\sum_{i=1}^k w_i f(\mathbf{x}_i)}{\sum_{i=1}^k w_i} \text{ where } w_i = \frac{1}{d(\mathbf{x}_q, \mathbf{x}_i)^2}$$

 Then it makes sense to use *all* training examples instead of just k

Variant of kNN: Distance-Weighted kNN

k-NN using a weighted-sum voting scheme

$$kNN (k = 5)$$

Assign "white" to x because the weighted sum of "whites" is larger then the sum of "blacks".

Each neighbor is given a weight according to its nearness.

Remarks

- Very simple approach
- Behaves well if data cannot be easily separated
- Rank 7 of top 10 data mining algorithms
- In 1993 outperformed all others in handwritten digit recognition
- In 1994 outperformed all in land usage recognition

Neural Networks

- Feed-forward networks
- Single-layer networks (Perceptrons)
 - Perceptron learning rule
 - Easy to train
 - Fast convergence, few data required
 - Cannot learn "complex" functions
- Multi-Layer networks
 - Backpropagation learning
 - Hard to train
 - Slow convergence, many data required

Sometimes we'll use simpler vector notation:

$$o(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} > 0 \\ -1 & \text{otherwise.} \end{cases}$$

Decision Surface of a Perceptron

Represents some useful functions

• What weights represent $g(x_1, x_2) = AND(x_1, x_2)$?

But some functions not representable

• e.g., not linearly separable

XOR problem

Perceptron training rule

$$w_i \leftarrow w_i + \Delta w_i$$

where

$$\Delta w_i = \eta (t - o) x_i$$

Where:

- $y = c(\vec{x})$ is target value
- $\bullet~o~{\rm is~perceptron~output}$
- η is small constant (e.g., .1) called *learning rate*

Can prove it will converge

- \bullet If training data is linearly separable
- and η sufficiently small (learning rate)

XOR problem

XOR problem

Multilayer Networks of Sigmoid Units

 $\sigma(x)$ is the sigmoid function

$$\frac{1}{1+e^{-x}}$$

Nice property: $\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$

We can derive gradient decent rules to train

- One sigmoid unit
- Multilayer networks of sigmoid units \rightarrow Backpropagation

FIGURE 6.2. A 2-4-1 network (with bias) along with the response functions at different units; each hidden output unit has sigmoidal activation function $f(\cdot)$. In the case shown, the hidden unit outputs are paired in opposition thereby producing a "bump" at the output unit. Given a sufficiently large number of hidden units, any continuous function from input to output can be approximated arbitrarily well by such a network. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

FIGURE 6.3. Whereas a two-layer network classifier can only implement a linear decision boundary, given an adequate number of hidden units, three-, four- and higher-layer networks can implement arbitrary decision boundaries. The decision regions need not be convex or simply connected. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

Support Vector Machine Classifier

Basic idea

- Mapping the instances from the two classes into a space where they become linearly separable. The mapping is achieved using a kernel function that operates on the instances near to the margin of separation.
- Parameter: kernel type

Nonlinear Separation

 $(x_1^2, x_2^2, \sqrt{2x_1x_2})$

Support Vectors

Literature

Mitchell (1989). Machine Learning. <u>http://</u> www.cs.cmu.edu/~tom/mlbook.html

Duda, Hart, & Stork (2000). Pattern Classification. http://rii.ricoh.com/~stork/DHS.html

Hastie, Tibshirani, & Friedman (2001). The Elements of Statistical Learning. <u>http://www-stat.stanford.edu/~tibs/ElemStatLearn/</u>

Literature (cont.)

Staart Rassell + Peter Norvig

Shawe-Taylor & Cristianini. Kernel Methods for Pattern Analysis. http://www.kernel-methods.net/

Russell & Norvig (2004). Artificial Intelligence. http://aima.cs.berkeley.edu/