
Statistical Learning Part 2
Nonparametric Learning:  

The Main Ideas

R. Marrone, R. Moeller
Hamburg University of Technology

Instance-Based Learning

•  So far: Statistical learning as parameter learning
•  Given a specific parameter-dependent family of

probability models fit it to the data by tweaking
parameters
  Often simple and effective
  Fixed complexity
  Maybe good for some problem classes

•  Adapting the structure of the hypothesis proved to
be very difficult

Instance-Based Learning

• Nonparametric learning methods allow
hypothesis complexity to grow with
the data
 “The more data we have, the ‘wigglier’ the

hypothesis can be”

Characteristics

•  An instance-based learner is a lazy-
learner and does all the work when the
test example is presented. This is
opposed to so-called eager-learners,
which build a parameterised compact
model of the target.

•  It produces local approximation to the
target function (different with each
test instance)

Nearest Neighbor Classifier

•  Basic idea
 Store all labelled instances (i.e., the training set)

and compare new unlabeled instances (i.e., the
test set) to the stored ones to assign them an
appropriate label.

 Comparison is performed, for instance, by
means of the Euclidean distance, and the labels
of the k nearest neighbors of a new instance
determine the assigned label

 Other distance measures: Mahalanobis distance
(for multidimensional space), ...

•  Parameter: k  
(the number of nearest neighbors)

•  1-Nearest neighbor:
Given a query instance xq,
•  first locate the nearest training example xn
•  then f(xq):= f(xn)

•  K-Nearest neighbor:
Given a query instance xq,
•  First locate the k nearest training examples
•  If discrete values target function then take vote

among its k nearest nbrs  
else if real valued target fct then take the mean of the
f values of the k nearest nbrs

Nearest Neighbor Classifier

Distance Between Examples

•  We need a measure of distance in order to know
who are the neighbours

•  Assume that we have T attributes for the
learning problem. Then one example point x has
elements xt ∈ ℜ, t=1,…T.

•  The distance between two points xi xj is often
defined as the Euclidean distance:

Difficulties

•  For higher dimensionality, neighborhoods
must be large in the average case – curse
of dimensionality

•  There may be irrelevant attributes
amongst the attributes

•  Have to calculate the distance of the test
case from all training cases

kNN vs 1NN: Voronoi Diagram

When to Consider kNN Algorithms?

•  Instances map to points in
•  Not more then say 20 attributes per

instance
•  Lots of training data
•  Advantages:

 Training is very fast
 Can learn complex target functions
 Don’t lose information

•  Disadvantages:
 ? (will see them shortly…)

two one

four

three

five six

seven eight ?

Training data

Test instance

Keep Data in Normalized Form

One way to normalize the data
ar(x) to a´r(x) is

average distance of the data values from their mean"

Mean and standard deviation

Source: Wikipedia

Normalized Training Data

Test instance

Normalized Training Data

Test instance

€

(0 + 4,89 + 5,23+ 2,04) = 3,489

Distances of Test Instance  
From Training Data

Classification
1-NN Yes

3-NN Yes

5-NN No

7-NN No

What if the target function is real valued?

•  The k-nearest neighbor algorithm
would just calculate the mean of the
k nearest neighbours

Variant of kNN: Distance-Weighted kNN

• We might want to weight nearer
neighbors more heavily

•  Then it makes sense to use all
training examples instead of just k

Variant of kNN: Distance-Weighted kNN

Remarks

•  Very simple approach
•  Behaves well if data cannot be easily

separated
•  Rank 7 of top 10 data mining

algorithms
•  In 1993 outperformed all others in

handwritten digit recognition
•  In 1994 outperformed all in land

usage recognition

Neural Networks

•  Feed-forward networks
•  Single-layer networks (Perceptrons)

 Perceptron learning rule
 Easy to train

  Fast convergence, few data required
 Cannot learn „complex“ functions

•  Multi-Layer networks
 Backpropagation learning
 Hard to train

  Slow convergence, many data required

XOR problem

(learning rate)

XOR problem

XOR problem

Z = y1 AND NOT y2 = (x1 OR x2) AND NOT(x1 AND x2)

Support Vector Machine Classifier

•  Basic idea
 Mapping the instances from the two

classes into a space where they become
linearly separable. The mapping is
achieved using a kernel function that
operates on the instances near to the
margin of separation.

•  Parameter: kernel type

y = +1

y = -1

Nonlinear Separation

margin separator

support vectors

Support Vectors

Literature

Mitchell (1989). Machine Learning. http://
www.cs.cmu.edu/~tom/mlbook.html

Duda, Hart, & Stork (2000). Pattern Classification.
http://rii.ricoh.com/~stork/DHS.html

Hastie, Tibshirani, & Friedman (2001). The Elements of Statistical
Learning. http://www-stat.stanford.edu/~tibs/ElemStatLearn/

Literature (cont.)

Russell & Norvig (2004). Artificial Intelligence.
http://aima.cs.berkeley.edu/

Shawe-Taylor & Cristianini. Kernel Methods
for Pattern Analysis.
http://www.kernel-methods.net/

