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Instance-Based Learning

•  So far: Statistical learning as parameter learning
•  Given a specific parameter-dependent family of 

probability models fit it to the data by tweaking 
parameters
  Often simple and effective
  Fixed complexity
  Maybe good for some problem classes

•  Adapting the structure of the hypothesis proved to 
be very difficult



Instance-Based Learning

• Nonparametric learning methods allow 
hypothesis complexity to grow with 
the data
 “The more data we have, the ‘wigglier’ the 

hypothesis can be” 



Characteristics

•  An instance-based learner is a lazy-
learner and does all the work when the 
test example is presented. This is 
opposed to so-called eager-learners, 
which build a parameterised compact 
model of the target.

•  It produces local approximation to the 
target function (different with each 
test instance)



Nearest Neighbor Classifier

•  Basic idea
 Store all labelled instances (i.e., the training set) 

and compare new unlabeled instances (i.e., the 
test set) to the stored ones to assign them an 
appropriate label.

 Comparison is performed, for instance, by 
means of the Euclidean distance, and the labels 
of the k nearest neighbors of a new instance 
determine the assigned label

 Other distance measures: Mahalanobis distance 
(for multidimensional space), ...

•  Parameter: k  
(the number of nearest neighbors)



•  1-Nearest neighbor:
Given a query instance xq, 
•   first locate the nearest training example xn
•   then f(xq):= f(xn)

•  K-Nearest neighbor:
Given a query instance xq, 
•  First locate the k nearest training examples 
•  If discrete values target function then take vote 

among its k nearest nbrs  
else if real valued target fct then take the mean of the 
f values of the k nearest nbrs

Nearest Neighbor Classifier



Distance Between Examples 

•  We need a measure of distance in order to know 
who are the neighbours

•  Assume that we have T attributes for the 
learning problem. Then one example point x has 
elements xt ∈ ℜ, t=1,…T. 

•  The distance between two points xi xj is often 
defined as the Euclidean distance:



Difficulties

•  For higher dimensionality, neighborhoods 
must be large in the average case – curse 
of dimensionality

•  There may be irrelevant attributes 
amongst the attributes 

•  Have to calculate the distance of the test 
case from all training cases 





kNN vs 1NN: Voronoi Diagram





When to Consider kNN Algorithms?

•  Instances map to points in
•  Not more then say 20 attributes per 

instance
•  Lots of training data
•  Advantages:

 Training is very fast
 Can learn complex target functions
 Don’t lose information 

•  Disadvantages:
 ? (will see them shortly…)
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Training data

Test instance



Keep Data in Normalized Form

One way to normalize the data  
ar(x) to a´r(x) is 

average distance of the data values from their mean"



Mean and standard deviation

Source: Wikipedia 



Normalized Training Data

Test instance



Normalized Training Data

Test instance

€ 

(0 + 4,89 + 5,23+ 2,04) = 3,489



Distances of Test Instance  
From Training Data

Classification 
1-NN  Yes 

3-NN  Yes 

5-NN  No 

7-NN  No 



What if the target function is real valued?

•  The k-nearest neighbor algorithm 
would just calculate the mean of the 
k nearest neighbours



Variant of kNN: Distance-Weighted kNN

• We might want to weight nearer 
neighbors more heavily 

•  Then it makes sense to use all 
training examples instead of just k



Variant of kNN: Distance-Weighted kNN



Remarks

•  Very simple approach
•  Behaves well if data cannot be easily 

separated
•  Rank 7 of top 10 data mining 

algorithms
•  In 1993 outperformed all others in 

handwritten digit recognition
•  In 1994 outperformed all in land 

usage recognition



Neural Networks

•  Feed-forward networks
•  Single-layer networks (Perceptrons)

 Perceptron learning rule
 Easy to train

  Fast convergence, few data required
 Cannot learn „complex“ functions

•  Multi-Layer networks
 Backpropagation learning
 Hard to train

  Slow convergence, many data required







XOR problem





(learning rate) 



XOR problem



XOR problem







Z = y1 AND NOT y2 = (x1 OR x2) AND NOT(x1 AND x2) 







Support Vector Machine Classifier

•  Basic idea
 Mapping the instances from the two 

classes into a space where they become 
linearly separable. The mapping is 
achieved using a kernel function that 
operates on the instances near to the 
margin of separation.

•  Parameter: kernel type



y = +1 

y = -1 

Nonlinear Separation





margin separator 

support vectors 

Support Vectors
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