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•  Organizing data into classes such that there is 
•  high intra-class similarity 

•  low inter-class similarity  

•   Finding the class labels and the number of classes directly 
from the data (in contrast to classification). 

•  More informally, finding natural groupings among objects.  

Also called unsupervised learning, sometimes called 
classification by statisticians and sorting by 
psychologists and segmentation by people in marketing 





School Employees  Simpson's Family  Males  Females  



The quality or state of being similar; likeness; resemblance; as, a similarity of features.  

Similarity is hard 
to define, but…  
“We know it when 
we see it” 

The real meaning 
of similarity is a 
philosophical 
question. We will 
take a more 
pragmatic 
approach.   

Webster's Dictionary 



Definition: Let O1 and O2 be two objects from the 
universe of possible objects. The distance (dissimilarity) 
between O1 and O2 is a real number denoted by D(O1,O2) 

0.23 3 342.7 

Peter Piotr 



Peter Piotr 
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d('', '') = 0 d(s, '') = d
('', s) = ¦s¦ -- i.e. 
length of s d(s1+ch1, 
s2+ch2) = min( d(s1, 
s2) + if ch1=ch2 then 
0 else 1 fi, d(s1+ch1, 
s2) + 1, d(s1, 
s2+ch2) + 1 )  

When we peek inside one of 
these black boxes, we see some 
function on two variables. These 
functions might be very simple 
or very complex.  
In either case it is natural to ask, 
what properties should these 
functions have? 



D(A,B) = D(B,A)   Symmetry  
Otherwise you could claim “Alex looks like Bob, but Bob looks nothing like Alex.” 

D(A,A) = 0    Constancy of Self-Similarity 
Otherwise you could claim “Alex looks more like Bob, than Bob does.” 

D(A,B) = 0 IIf A=B   Positivity (Separation) 
Otherwise there are objects in your world that are different, but you cannot tell apart. 

D(A,B) ≤ D(A,C) + D(B,C)  Triangular Inequality 
Otherwise you could claim “Alex is very like Carl, and Bob is very like Carl, but 
Alex is very unlike Bob.” 



To measure the similarity between two objects, 
transform one of the objects into the other, and 
measure how much effort it took. The measure 
of effort becomes the distance measure. 

The distance between Patty and Selma. 
 Change dress color,   1 point 
 Change earring shape, 1 point 
 Change hair part,     1 point 

D(Patty,Selma) = 3 

The distance between Marge and Selma. 
 Change dress color,   1 point 
 Add earrings,         1 point 
 Decrease height,      1 point 
 Take up smoking,      1 point 
 Lose weight,          1 point 

D(Marge,Selma) = 5 

This is called the “edit 
distance” or the 
“transformation distance”"



Peter 

Piter 

Pioter 

Piotr 

Substitution (i for e)  

Insertion  (o)  

Deletion  (e)  

It is possible to transform any string Q into 
string C, using only Substitution, Insertion 
and Deletion. 
Assume that each of these operators has a 
cost associated with it. 

The similarity between two strings can be 
defined as the cost of the cheapest 
transformation from Q to C. 
 Note that for now we have ignored the issue of how we can find this cheapest 

transformation   

How similar are the names 
“Peter” and “Piotr”? 
Assume the following cost function  

Substitution 1 Unit 
Insertion  1 Unit 
Deletion  1 Unit 

D(Peter,Piotr) is 3 



•  Partitional algorithms: Construct various partitions and then 
evaluate them by some criterion  
•  Hierarchical algorithms: Create a hierarchical decomposition of 
the set of objects using some criterion 



•  Scalability (in terms of both time and space) 

•  Ability to deal with different data types  

•  Minimal requirements for domain knowledge to 
determine input parameters 

•  Able to deal with noise and outliers 

•  Insensitive to order of input records 

•  Incorporation of user-specified constraints 

•  Interpretability and usability 



In order to better appreciate and evaluate the examples given in the 
early part of this talk, we will now introduce the dendrogram. 

The similarity between two objects in a 
dendrogram is represented as the height of 
the lowest internal node they share. 



Pedro  (Portuguese) 
Petros (Greek), Peter  (English), Piotr  (Polish), Peadar 
(Irish), Pierre (French), Peder  (Danish), Peka 
(Hawaiian), Pietro (Italian), Piero (Italian Alternative), 
Petr (Czech), Pyotr (Russian) 

Cristovao (Portuguese) 
Christoph (German), Christophe (French), Cristobal 
(Spanish), Cristoforo (Italian), Kristoffer 
(Scandinavian), Krystof (Czech), Christopher (English) 

Miguel (Portuguese) 
Michalis (Greek), Michael (English), Mick (Irish!)  
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•  The flag of Niger is orange over white over green, with an orange disc on the 
central white stripe, symbolizing the sun. The orange stands the Sahara desert, 
which borders Niger to the north. Green stands for the grassy plains of the south 
and west and for the River Niger which sustains them. It also stands for fraternity 
and hope. White generally symbolizes purity and hope.  

•  The Indian flag is a horizontal tricolor in equal proportion of deep saffron on the 
top, white in the middle and dark green at the bottom. In the center of the white 
band, there is a wheel in navy blue to indicate the Dharma Chakra, the wheel of 
law in the Sarnath Lion Capital. This center symbol or the 'CHAKRA' is a symbol 
dating back to 2nd century BC. The saffron stands for courage and sacrifice; the 
white, for purity and truth; the green for growth and auspiciousness. 



We can look at the dendrogram to determine the “correct” number of 
clusters. In this case, the two highly separated subtrees are highly 
suggestive of two clusters. (Things are rarely this clear cut, unfortunately) 



Outlier 

The single isolated branch is suggestive of a 
data point that is very different to all others 



(How-‐to)	  Hierarchical	  Clustering	  
The number of dendrograms with n 

leafs  = (2n -3)!/[(2(n -2)) (n -2)!]	


Number 	
 Number of Possible	

of Leafs	
 Dendrograms 	

2	
 	
 1	

3	
 	
 3	

4	
 	
 15	

5	
 	
 105	

...	
 	
 …	

18   	
 34,459,425	


Since we cannot test all possible trees 
we will have to heuristic search of all 
possible trees. We could do this.. 

Bottom-Up (agglomerative): Starting 
with each item in its own cluster, find 
the best pair to merge into a new 
cluster. Repeat until all clusters are 
fused together.  

Top-Down (divisive): Starting with all 
the data in a single cluster, consider 
every possible way to divide the cluster 
into two. Choose the best division and 
recursively operate on both sides. 
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D(  ,  ) = 8 
D(  ,  ) = 1 

We begin with a distance 
matrix which contains the 
distances between every pair 
of objects in our database. 



… 
Consider all 
possible 
merges… 

Choose 
the best 
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Intermediate	  State	  

•  A:er	  some	  merging	  steps,	  we	  have	  some	  clusters	  	  
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Intermediate	  State	  

•  Merge	  the	  two	  closest	  clusters	  (C2	  and	  C5)	  	  and	  update	  the	  distance	  
matrix.	  	  
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A:er	  Merging	  

•  “How	  do	  we	  update	  the	  distance	  matrix?”	  	  

C1 

C4 

C2 U C5 

C3 
?        ?        ?        ?         

? 

? 

? 

C2 
U 
C5 C1 

C1 

C3 

C4 

C2 U C5 

C3 C4 



Distance	  between	  two	  clusters	  

•  Single-‐link	  distance	  between	  clusters	  Ci	  and	  Cj	  
is	  the	  minimum	  distance	  between	  any	  object	  
in	  Ci	  and	  any	  object	  in	  Cj	  	  

•  The	  distance	  is	  defined	  by	  the	  two	  most	  
similar	  objects	  



Single-‐link	  clustering:	  example	  	  

•  Determined	  by	  one	  pair	  of	  points,	  i.e.,	  by	  one	  
link	  in	  the	  similarity	  graph.	  
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link	  in	  the	  proximity	  graph.	  
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Single-‐link	  clustering:	  example	  	  

•  Determined	  by	  one	  pair	  of	  points,	  i.e.,	  by	  one	  
link	  in	  the	  proximity	  graph.	  

1	   2	   3	   4	   5	  



Single-‐link	  clustering:	  example	  

Nested Clusters Dendrogram 
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Strengths	  of	  single-‐link	  clustering	  

Original Points Two Clusters 

•  Can handle elliptical shapes 



Single linkage: It is a flexible method and it can individuate also clusters with 
particular shapes (elongated, elliptical) 
When clusters are not well separated this method may lead to unsatisfactory 
solutions due to the so called chaining effect. 
•  in the left panel. Clusters 1 and 2 are (“globally”) closer. 
•  due to the presence of two very close cases in clusters 2 and 3, they will be 

joined instead.  
•  The example in the right panel evidences that this method may be useful in 

outliers detection. 

Cluster analysis: hierarchical algorithms – dissimilarity/clusters 

1 

3 

2 



Distance	  between	  two	  clusters	  

•  Complete-‐link	  distance	  between	  clusters	  Ci	  
and	  Cj	  is	  the	  maximum	  distance	  between	  any	  
object	  in	  Ci	  and	  any	  object	  in	  Cj	  	  

•  The	  distance	  is	  defined	  by	  the	  two	  most	  
dissimilar	  objects	  



Complete-‐link	  clustering:	  example	  

Nested Clusters Dendrogram 
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Strengths	  of	  complete-‐link	  clustering	  

Original Points Two Clusters 

•   More balanced clusters (with equal diameter) 
•   Less susceptible to noise 



LimitaOons	  of	  complete-‐link	  clustering	  

Original Points Two Clusters 

•  Tends to break large clusters 
•   All clusters tend to have the same diameter – small  clusters 
are merged with larger ones 



Distance	  between	  two	  clusters	  

•  Group	  average	  distance	  between	  clusters	  Ci	  
and	  Cj	  is	  the	  average	  distance	  between	  any	  
object	  in	  Ci	  and	  any	  object	  in	  Cj	  	  



Average-‐link	  clustering:	  example	  

Nested Clusters Dendrogram 
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Average-‐link	  clustering:	  discussion	  

•  Compromise	  between	  Single	  and	  Complete	  
Link	  

•  Strengths	  
–  Less	  suscepOble	  to	  noise	  and	  outliers	  

•  LimitaOons	  
–  Biased	  towards	  globular	  clusters	  



Distance	  between	  two	  clusters	  

•  Centroid	  distance	  between	  clusters	  Ci	  and	  Cj	  is	  
the	  distance	  between	  the	  centroid	  ri	  of	  Ci	  and	  
the	  centroid	  rj	  of	  Cj	  	  



Distance	  between	  two	  clusters	  

•  Ward’s	  distance	  between	  clusters	  Ci	  and	  Cj	  is	  the	  difference	  
between	  the	  total	  within	  cluster	  sum	  of	  squares	  for	  the	  
two	  clusters	  separately,	  and	  the	  within	  cluster	  sum	  of	  
squares	  resul9ng	  from	  merging	  the	  two	  clusters	  in	  cluster	  
Cij	  

•  ri:	  centroid	  of	  Ci	  
•  rj:	  centroid	  of	  Cj	  
•  rij:	  centroid	  of	  Cij	  
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Ward’s method 
Cluster analysis: hierarchical algorithms – dissimilarity/clusters 

It will be SSWt > SSWr + SSWs  
The quantity SSWt  - (SSWr + SSWs ) is called between sum of squares (SS). 
Ward’s method: the two clusters with the smallest Between SS are joined.  

SSWt 



Ward’s	  distance	  for	  clusters	  

• Similar	  to	  group	  average	  and	  centroid	  distance	  

• Less	  suscepOble	  to	  noise	  and	  outliers	  

• Biased	  towards	  globular	  clusters	  

• Hierarchical	  analogue	  of	  k-‐means	  
– Can	  be	  used	  to	  iniOalize	  k-‐means	  



Hierarchical	  Clustering:	  Comparison	  
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Divisive	  Clustering	  



Hierarchical	  Clustering:	  	  Time	  and	  Space	  
requirements	  

•  For	  a	  dataset	  X	  consisOng	  of	  n	  points	  

• O(n2)	  space;	  it	  requires	  storing	  the	  distance	  
matrix	  	  

• O(n3)	  Ime	  in	  most	  of	  the	  cases	  
–  There	  are	  n	  steps	  and	  at	  each	  step	  the	  size	  n2	  distance	  

matrix	  must	  be	  updated	  and	  searched	  
–  Complexity	  can	  be	  reduced	  to	  O(n2	  log(n)	  )	  Ome	  for	  

some	  approaches	  by	  using	  appropriate	  data	  
structures	  





• Nonhierarchical, each instance is placed in 
exactly one of K nonoverlapping clusters. 

•  Since only one set of clusters is output, the user 
normally has to input the desired number of 
clusters K. 
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Algorithm k-means  
1. Decide on a value for k.  

2. Initialize the k cluster centers (randomly, if 
necessary).  

3. Decide the class memberships of the N objects by 
assigning them to the nearest cluster center.  

4. Re-estimate the k cluster centers, by assuming the 
memberships found above are correct.  

5. If none of the N objects changed membership in 
the last iteration, exit. Otherwise goto 3.  
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Algorithm: k-means, Distance Metric: Euclidean Distance 
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Algorithm: k-means, Distance Metric: Euclidean Distance 
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Algorithm: k-means, Distance Metric: Euclidean Distance 
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Algorithm: k-means, Distance Metric: Euclidean Distance 
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Algorithm: k-means, Distance Metric: Euclidean Distance 
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k2 k3 



•  Strength	  	  
–  Rela%vely	  efficient:	  O(tkn),	  where	  n	  is	  #	  objects,	  k	  is	  #	  clusters,	  and	  t	  	  

is	  #	  iteraOons.	  Normally,	  k,	  t	  <<	  n.	  
– O:en	  terminates	  at	  a	  local	  op%mum.	  The	  global	  op%mum	  may	  be	  

found	  using	  techniques	  such	  as:	  determinis%c	  annealing	  and	  gene%c	  
algorithms	  

•  Weakness	  
–  Applicable	  only	  when	  mean	  is	  defined,	  then	  what	  about	  categorical	  

data?	  Need	  to	  extend	  the	  distance	  meassurement.	  
•  Ahmad,	  Dey:	  A	  k-‐mean	  clustering	  algorithm	  for	  mixed	  numeric	  and	  
categorical	  data,	  Data	  &	  Knowledge	  Engineering,	  Nov.	  2007	  

– Need	  to	  specify	  k,	  the	  number	  of	  clusters,	  in	  advance	  
– Unable	  to	  handle	  noisy	  data	  and	  outliers	  
– Not	  suitable	  to	  discover	  clusters	  with	  non-‐convex	  shapes	  
–  Tends	  to	  build	  clusters	  of	  equal	  size	  



•  Initialize K cluster centers 
•  Iterate between two steps 

– Expectation step: assign points to clusters 

– Maximation step: estimate model parameters 



61 

Processing	  :	  EM	  IniOalizaOon	  
–  IniOalizaOon	  :	  

•  Assign	  random	  value	  to	  parameters	  



62 

Processing	  :	  the	  E-‐Step	  
–  ExpectaOon	  :	  	  

•  Pretend	  to	  know	  the	  parameter	  

•  Assign	  data	  point	  to	  a	  component	  

Mixture of Gaussians	
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Processing	  :	  the	  M-‐Step	  (1/2)	  
–  MaximizaOon	  :	  

•  Fit	  the	  parameter	  to	  its	  set	  of	  points	  

Mixture of Gaussians	









Iteration 1 

The cluster 
means are 
randomly 
assigned  



Iteration 2 



Iteration 5 



Iteration 25 



•  K-‐Means	  is	  a	  special	  form	  of	  EM	  
•  EM	  algorithm	  maintains	  probabilisOc	  assignments	  to	  clusters,	  

instead	  of	  determinisOc	  assignments,	  and	  mulOvariate	  Gaussian	  
distribuOons	  instead	  of	  means	  

•  Does	  not	  tends	  to	  build	  clusters	  of	  equal	  size	  

Source: http://en.wikipedia.org/wiki/K-means_algorithm 



•  Items are iteratively merged into the 
existing clusters that are closest. 

•  Incremental 
•  Threshold, t, used to determine if items are 

added to existing clusters or a new cluster is 
created. 

What happens if the data is streaming… 
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New data point arrives… 

It is within the threshold for 
cluster 1, so add it to the 
cluster, and update cluster 
center. 
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New data point arrives… 

It is not within the threshold 
for cluster 1, so create a new 
cluster, and so on.. 
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Algorithm is highly order 
dependent… 

It is difficult to determine t in 
advance… 
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1 
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6 
7 
8 
9 For our example, we will use the 

familiar katydid/grasshopper 
dataset. 

However, in this case we are 
imagining that we do NOT 
know the class labels. We are 
only clustering on the X and Y 
axis values.  
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 When k = 1, the objective function is 873.0 
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 When k = 2, the objective function is 173.1 
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 When k = 3, the objective function is 133.6 
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We can plot the objective function values for k equals 1 to 6… 

The abrupt change at k = 2, is highly suggestive of two clusters 
in the data. This technique for determining the number of 
clusters is known as “knee finding” or “elbow finding”. 

Note that the results are not always as clear cut as in this toy example 
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