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Ensemble Methods in ML

= Ensemble Methods in Machine
Learning

s Ensembles of Classifiers



Different Classifiers (1)

= Different Classifiers

= Conduct classification on same set of
class labels

= May use different input or have
different parameters

= May produce different output for a
certain example

= Learning Different Classifiers
= Use different training examples
= Use different features



Different Classifiers (2)

= Performance
= None of the classifiers is perfect

= Complementary

= Examples which are not correctly classified
by one classifier may be correctly classified
by the other classifiers

= Potential Improvements?
= Utilize the complementary property



Ensembles of Classifiers

s Idea

= Combine the classifiers to improve the
performance

= Ensembles of Classifiers

= Combine the classification results from
different classifiers to produce the final
output
= Unweighted voting
= Weighted voting



Example:

Weather Forecast
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Ensemble Methods in ML

= Ensemble Methods in Machine
Learning

= Application



Application: WSD (Pedersen 2000)

= Ensembles of classifiers using
different features

= Use different features in training and
classification in each classifier

= Ensembles of naive Bayesian
classifiers for WSD

s Use different context windows to create
different naive Bayesian classifiers

WSD = Word Sense Disambiguation



Implementation

= 81 Base Classifiers
= Context window, num of words left, right
= Possible values for /land »: 0, 1, 2,(narrow)
3,4,5, (medium) 10, 25, 50 (wide)
= 9 Selected Range Classifiers

= For each range (e.g., (narrow, medium)),

select the best classifiers from 9
candidates (using a development set)

= Combination
= Unweighted voting of the 9 classifiers



WSD Results

= Benchmark: Interest
= SiX senses
» 2368 examples for training and testing

= Results

= Ensembles of naive Bayesian classifiers:
89% (Pedersen 2000)

= Achieve the best performance reported




Outline

= Bagging



Bagging

= An Important Strategy for Ensemble
Learning

= Create different training sets

= Bootstrap AGGregatING

= Take created bootstrap samples to create a
sequence of fraining sets

= Train classifiers using the training sets

= Classification by majority voting
(or averaging for, e.g., estimation problems)



Replicating Data Sets

= Original Training Set
- {(X(l), y(l))’ (X(Z)’ y(2)), cee (X(m), y(M))}
= Sample with Replacement

= At each time, randomly draw m examples
according to the uniform distribution on
the original training set

= Allow duplicating and missing
= Used for training classifiers



Bagging decision trees

Table 1 Mis4classification Rates (Percent)

Data Set €5 €R Decrease
waveform 29.0 194 33%
heart 0.0 5.3 47%
breast cancer 6.0 4.2 0%
wonosphere 1.2 3.6 23%
diabetes 23.4 I8 20%
glass 32.0 249 22%
soy bean 4.5  10.6 27%

1. Splitting the data set into training set T1 and test set T2.
2. Bagging using 50 bootstrap samples.
3. Repeat Steps 1-2 100 times, and calculate average

test set misclassification rate.



How many bootstrap samples
are needed?

Bagged Misgclassification Rates (%)
No. Bootstrap Replicates  Migsclassification Rate

| () 21.8
29 19.5
50 19.4
[ 00 19.4

Bagging decision trees for the waveform task:

* Unbagged rate is 29.0%.

* We are getting most of the improvement using
only 10 bootstrap samples.



Bagging k-nearest neighbor
classifiers

Mis#classification Rates for Nearest Neighbor

Data Set (fg (73
waveform 26. 1 26.1
heart 6.3 6.3
breast cancer 4.9 4.9
ionosphere 35.7 35.7
diabetes [ 6.4 16.4
glass 21.6 21.6

100 bootstrap samples. 100 iterations.
Bagging does not help.



Experiment results

= Bagging works well for “"unstable”
learning algorithms.

= Bagging can slightly degrade the
performance of “stable” learning
algorithms.



Learning algorithms

= Unstable learning algorithms: small changes in
the training set result in large changes in
predictions.

= Neural network
= Decision tree (in particular: regression trees)

= Stable learning algorithms:
= K-nearest neighbors



First Performance tests

= Data Set
= 27 data sets from UCT ML Repository

= Methods for Comparison
= Decision tree classifier: C4.5

= Bagging: ensembles of 100 C4.5
classifiers



Results (Freund and Schapire 1996)
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Seems to improve performance

Majority vote
Suppose we have 5 completely
independent classifiers...
= If accuracy is 70% for each
. 10 (7°3)(.3"2)+5(.7~4)(.3)+(.7"5)
« 83.7% majority vote accuracy

= 101 such classifiers
= 99.9% majority vote accuracy




Outline

a Ensemble Methods in Machine
Learning

= Bagging
= Boosting



Boosting

= Boosting
= Basic Idea



Strong and Weak Learners

= Strong Learner
= Take labeled data for training

= Produce a classifier which can be
arbitrarily accurate

= Objective of machine learning
= Weak Learner

= Take labeled data for training

= Produce a classifier which is more
accurate than random guessing



Boosting

= Learners

= Strong learners are very difficult to
construct

= Constructing weaker Learners is
relatively easy

= Strategy
= Derive strong learner from weak learner

= Boost weak classifiers to a strong
learner



Construct Weak Classifiers

= Using Different Data Distribution
= Start with uniform weighting

= During each step of learning

= Increase weights of the examples which are
not correctly learned by the weak learner

= Decrease weights of the examples which are
correctly learned by the weak learner

= Idea

= Focus on difficult examples which are
not correctly classified in the previous
steps



Combine Weak Classifiers

= Weighted Voting

= Construct strong classifier by weighted
voting of the weak classifiers

s Idea

= Better weak classifier gets a larger
weight
= Iteratively add weak classifiers

= Increase accuracy of the combined classifier
through minimization of a cost function



Boosting

= Boosting

= AdaBoost Algorithm



Principle of AdaBoost

F(x) = a1 fi(z) + asfo(z) + azfa(z) + ...
.

Strong Weak classifier
classifier

Weight
Features
vector
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Toy example
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This onel seems to be the best

This is a ‘weak classifier’: It performs slightly better than chance.



Toy example
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We update D:
Diq+— D, f(-y, hy)

We set a new problem for which the previous weak classifier performs at chance again
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Toy example
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The strong (non- linear) classifier is built as the combination of
all the weak (linear) classifiers.



AdaBoost: Algorithm

e given training set (ry,yq)..... (Tm. Ym)

e y, € {—1,+1} correct label of instance =, € X

. construct distribution Dy on {1, ..., m}
. find weak classifier (“rule of thumb™)
hy : X — {—1,+1}
with small error ¢; on Dy:
e = Prp[he(x) # ui

e output final classifier Hy .



AdaBoost: Algorithm

e constructing /)y
« Di(i)=1/m
- gtven Dy and hy:

| Dy (7) e afy; = he(x;)

Diy1(i) = == X1 o0 ot oA

=TT e ity # bl

Di(@) '
— Z} exp(—ay y; hi(z;))
where /; = normalization constant

: 1 —¢ i
ap = -.%hl( f) > ()

e final classifier:

o Hﬁnal(:;l?) = sig‘n (% thf(_l’))



The margin

e key idea:
» training error only measures whether classifications are
right or wrong
» should also consider confidence of classifications

e recall: Hgnal is weighted majority vote of weak classifiers

e measure confidence by margin = strength of the vote
= (fraction voting correctly) — (fraction voting incorrectly)

high conf. high conf.
mﬁorrect low conf. correct
I
final final

—1 incorrect 0 correct +1



AdaBoost: Final

= Output
H(x) = sign[ ¥, o, (%)]

= Margin Classifier

= Margin in majority vote classifiers
Y ah (")

!

2%
4

= AdaBoost often optimizes the margins

Margin(x”, ") = y¥



The margin explanation

e margin distribution

— cumulative distribution of margins of training examples

test

o | \_train
10 100 1000

# of classifiers

cumulative distribution

1.0-

0.5-

0.5

margin

# of classifiers

5 100 | 1000
train error 0.0 0.0 0.0
test error 84 | 3.3 3.1
% margins <05 | 7.7 | 00| 0.0
minimum margin | 0.14 | 0.52 | 0.55




Cumulative distribution function

= Describes the probability that a
real-valued random variable X with
a given probability distribution will
be found at a value less than or
equal to x

= ,Area so far"
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Message

s From 5 to 100 there is a payoff

= From 100 to 1000 there is hardly a
payoff

= 100 are enough, or

= You cannot become arbitrarily
confident



Boosting

= Boosting

= Performance



Performance

= Data Set
= 27 data sets from UCT ML Repository

= Methods for Comparison
= Decision tree classifier: C4.5

= Bagging: ensembles of 100 C4.5
classifiers

= Boosting: AdaBoost using C4.5 as the
weak learner



Results (Freund and Schapire 1996)
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Results (Freund and Schapire 1996)
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