Ensemble Learning

Slides from Cong Li

Outline

= Ensemble Methods in Machine
Learning

Ensemble Methods in ML

= Ensemble Methods in Machine
Learning

s Ensembles of Classifiers

Different Classifiers (1)

= Different Classifiers

= Conduct classification on same set of
class labels

= May use different input or have
different parameters

= May produce different output for a
certain example

= Learning Different Classifiers
= Use different training examples
= Use different features

Different Classifiers (2)

= Performance
= None of the classifiers is perfect

= Complementary

= Examples which are not correctly classified
by one classifier may be correctly classified
by the other classifiers

= Potential Improvements?
= Utilize the complementary property

Ensembles of Classifiers

s Idea

= Combine the classifiers to improve the
performance

= Ensembles of Classifiers

= Combine the classification results from
different classifiers to produce the final
output
= Unweighted voting
= Weighted voting

Example:

Weather Forecast

. °e ve v
Reality 7 SR ol od e
¢ e Y
1SR e | X e K
2 X | = | = X 'v; SR 4
¢ ¢
3 [EE e W0 XK
¢ e
4 =0 e | Y % S I
L
5 | U] e |EEEE]
Combine | = | - | o |[TZ T .. e

X4

Ensemble Methods in ML

= Ensemble Methods in Machine
Learning

= Application

Application: WSD (Pedersen 2000)

= Ensembles of classifiers using
different features

= Use different features in training and
classification in each classifier

= Ensembles of naive Bayesian
classifiers for WSD

s Use different context windows to create
different naive Bayesian classifiers

WSD = Word Sense Disambiguation

Implementation

= 81 Base Classifiers
= Context window, num of words left, right
= Possible values for /land »: 0, 1, 2,(narrow)
3,4,5, (medium) 10, 25, 50 (wide)
= 9 Selected Range Classifiers

= For each range (e.g., (narrow, medium)),

select the best classifiers from 9
candidates (using a development set)

= Combination
= Unweighted voting of the 9 classifiers

WSD Results

= Benchmark: Interest
= SiX senses
» 2368 examples for training and testing

= Results

= Ensembles of naive Bayesian classifiers:
89% (Pedersen 2000)

= Achieve the best performance reported

Outline

= Bagging

Bagging

= An Important Strategy for Ensemble
Learning

= Create different training sets

= Bootstrap AGGregatING

= Take created bootstrap samples to create a
sequence of fraining sets

= Train classifiers using the training sets

= Classification by majority voting
(or averaging for, e.g., estimation problems)

Replicating Data Sets

= Original Training Set
- {(X(l), y(l))’ (X(Z)’ y(2)), cee (X(m), y(M))}
= Sample with Replacement

= At each time, randomly draw m examples
according to the uniform distribution on
the original training set

= Allow duplicating and missing
= Used for training classifiers

Bagging decision trees

Table 1 Mis4classification Rates (Percent)

Data Set €5 €R Decrease
waveform 29.0 194 33%
heart 0.0 5.3 47%
breast cancer 6.0 4.2 0%
wonosphere 1.2 3.6 23%
diabetes 23.4 I8 20%
glass 32.0 249 22%
soy bean 4.5 10.6 27%

1. Splitting the data set into training set T1 and test set T2.
2. Bagging using 50 bootstrap samples.
3. Repeat Steps 1-2 100 times, and calculate average

test set misclassification rate.

How many bootstrap samples
are needed?

Bagged Misgclassification Rates (%)
No. Bootstrap Replicates Migsclassification Rate

| () 21.8
29 19.5
50 19.4
[00 19.4

Bagging decision trees for the waveform task:

* Unbagged rate is 29.0%.

* We are getting most of the improvement using
only 10 bootstrap samples.

Bagging k-nearest neighbor
classifiers

Mis#classification Rates for Nearest Neighbor

Data Set (fg (73
waveform 26. 1 26.1
heart 6.3 6.3
breast cancer 4.9 4.9
ionosphere 35.7 35.7
diabetes [6.4 16.4
glass 21.6 21.6

100 bootstrap samples. 100 iterations.
Bagging does not help.

Experiment results

= Bagging works well for “"unstable”
learning algorithms.

= Bagging can slightly degrade the
performance of “stable” learning
algorithms.

Learning algorithms

= Unstable learning algorithms: small changes in
the training set result in large changes in
predictions.

= Neural network
= Decision tree (in particular: regression trees)

= Stable learning algorithms:
= K-nearest neighbors

First Performance tests

= Data Set
= 27 data sets from UCT ML Repository

= Methods for Comparison
= Decision tree classifier: C4.5

= Bagging: ensembles of 100 C4.5
classifiers

Results (Freund and Schapire 1996)

0
o5 |

Error rate of C4.5

O 5 10 15 20 25 20
Error rate of bagging C4.5

Seems to improve performance

Majority vote
Suppose we have 5 completely
independent classifiers...
= If accuracy is 70% for each
. 10 (7°3)(.3"2)+5(.7~4)(.3)+(.7"5)
« 83.7% majority vote accuracy

= 101 such classifiers
= 99.9% majority vote accuracy

Outline

a Ensemble Methods in Machine
Learning

= Bagging
= Boosting

Boosting

= Boosting
= Basic Idea

Strong and Weak Learners

= Strong Learner
= Take labeled data for training

= Produce a classifier which can be
arbitrarily accurate

= Objective of machine learning
= Weak Learner

= Take labeled data for training

= Produce a classifier which is more
accurate than random guessing

Boosting

= Learners

= Strong learners are very difficult to
construct

= Constructing weaker Learners is
relatively easy

= Strategy
= Derive strong learner from weak learner

= Boost weak classifiers to a strong
learner

Construct Weak Classifiers

= Using Different Data Distribution
= Start with uniform weighting

= During each step of learning

= Increase weights of the examples which are
not correctly learned by the weak learner

= Decrease weights of the examples which are
correctly learned by the weak learner

= Idea

= Focus on difficult examples which are
not correctly classified in the previous
steps

Combine Weak Classifiers

= Weighted Voting

= Construct strong classifier by weighted
voting of the weak classifiers

s Idea

= Better weak classifier gets a larger
weight
= Iteratively add weak classifiers

= Increase accuracy of the combined classifier
through minimization of a cost function

Boosting

= Boosting

= AdaBoost Algorithm

Principle of AdaBoost

F(x) = a1 fi(z) + asfo(z) + azfa(z) + ...
.

Strong Weak classifier
classifier

Weight
Features
vector

TOY EXGmPI € = taken from Torralba
@MIT

e ®o ®e ©
¢ Each data point has
® e o @ @
@ © ©O OO‘ @ a class label:
e ® o o ® +1 @
e 0P %0 o © yt={ ©
@ a o -1 (©)
o
@ ® ® o @) @ O
° @ @ and a distribution:
® o © @ @ D,=1/m
@
@ @ O ©
Weak learners from ® ®
the family of lines
<=
h => p(error) = 0.5 itis at chance

Toy example

o Ple ®eo ©
¢ Each data point has
® ® o @ @O
@ |l@a o OO' O a class label:
e ®| o QLo ® +1 @
o d o 1 (@
O
() ° ° o @) @ O
° @ O and a distribution:
o |l Pl |® ® D,=1/m
()
() Q| O ®
@ O
D

This onel seems to be the best

This is a ‘weak classifier’: It performs slightly better than chance.

Toy example

e®

Each data point has

a class label:
+1 (@)

Yi ={
-1(©)

We update D:
Diq+— D, f(-y, hy)

We set a new problem for which the previous weak classifier performs at chance again

Toy example

Each data point has

a class label:
+1 (@
- { @
-1 (©)
We update D:
Diq+— D, f(-y, hy)

We set a new problem for which the previous weak classifier performs at chance again

Toy example

Each data point has

a class label:
+1 (@
- { @
-1 (©)
@ @® We update D:
Diq+— D, f(-y, hy)

We set a new problem for which the previous weak classifier performs at chance again

Toy example

Each data point has

a class label:
+1 (@
- { Q)
-1(©)
@ @® We update D:
Diq+— D, f(-y, hy)

We set a new problem for which the previous weak classifier performs at chance again

Toy example

f. \:2
O
. d e
S |0 09, O
O O O
© OQOOOO o ©
o © d
O ©© © @ o
@ o O ® o
o o P o »T L
o o o ©
® O
|

The strong (non- linear) classifier is built as the combination of
all the weak (linear) classifiers.

AdaBoost: Algorithm

e given training set (ry,yq)..... (Tm. Ym)

e y, € {—1,+1} correct label of instance =, € X

. construct distribution Dy on {1, ..., m}
. find weak classifier (“rule of thumb™)
hy : X — {—1,+1}
with small error ¢; on Dy:
e = Prp[he(x) # ui

e output final classifier Hy .

AdaBoost: Algorithm

e constructing /)y
« Di(i)=1/m
- gtven Dy and hy:

| Dy (7) e afy; = he(x;)

Diy1(i) = == X1 o0 ot oA

=TT e ity # bl

Di(@) '
— Z} exp(—ay y; hi(z;))
where /; = normalization constant

: 1 —¢ i
ap = -.%hl(f) > ()

e final classifier:

o Hﬁnal(:;l?) = sig‘n (% thf(_l’))

The margin

e key idea:
» training error only measures whether classifications are
right or wrong
» should also consider confidence of classifications

e recall: Hgnal is weighted majority vote of weak classifiers

e measure confidence by margin = strength of the vote
= (fraction voting correctly) — (fraction voting incorrectly)

high conf. high conf.
mﬁorrect low conf. correct
I
final final

—1 incorrect 0 correct +1

AdaBoost: Final

= Output
H(x) = sign[¥, o, (%)]

= Margin Classifier

= Margin in majority vote classifiers
Y ah (")

!

2%
4

= AdaBoost often optimizes the margins

Margin(x”, ") = y¥

The margin explanation

e margin distribution

— cumulative distribution of margins of training examples

test

o | _train
10 100 1000

of classifiers

cumulative distribution

1.0-

0.5-

0.5

margin

of classifiers

5 100 | 1000
train error 0.0 0.0 0.0
test error 84 | 3.3 3.1
% margins <05 | 7.7 | 00| 0.0
minimum margin | 0.14 | 0.52 | 0.55

Cumulative distribution function

= Describes the probability that a
real-valued random variable X with
a given probability distribution will
be found at a value less than or
equal to x

= ,Area so far"

10

Boonlx)

L l | l]

P=0, O0=02, w—
E=0, 0=10, =

N

p=0, 0°z50,— /
p=-z,aé=os.—/
/

02

00

10

Pper |X)

0z

00

-5 -3 -3 -2 -1 0 : 1 : 2 : 3 4 : 5
X
]] L L L]] l l 1
i p=0, @202, =
[‘\ g=0, 0=10, —— |
p=0, 0=50, —
. l \ ':-Z.d’=0§.— -
\
l\
-Sl-dl-ll-\zl-l. ﬁlllil! -lLlS

Message

s From 5 to 100 there is a payoff

= From 100 to 1000 there is hardly a
payoff

= 100 are enough, or

= You cannot become arbitrarily
confident

Boosting

= Boosting

= Performance

Performance

= Data Set
= 27 data sets from UCT ML Repository

= Methods for Comparison
= Decision tree classifier: C4.5

= Bagging: ensembles of 100 C4.5
classifiers

= Boosting: AdaBoost using C4.5 as the
weak learner

Results (Freund and Schapire 1996)

e "%
- 25 *
QL ' L
S ol ¢ ¢
Q |
S : Py
t 155 * o ¢
£ 10 .
oo .
5 o®
e e
. o0
ol o

O 5 10 15 20 25 20
Error rate of boosting C4.5

Results (Freund and Schapire 1996)

o 30
3 .
g% *
=
S 20 o«
— .
S 15
*QS) Geo :
®

: 10 pz
C LK
[5 .
S

L

o

0 5 10 15 20 25 30
Error rate of boosting C4.5

References

L. Breiman (1995). Bagging Predictors. Machine Learning,
24(2), 123-140.

Y. Freund and R. Schapire (1996). Experiments with a
New Boosting Algorithm. In Proc. ICML-1996, 148-156.

T. Pedersen (2000). A Simple Approach to Build
Ensembles of Naive Bayesian Classifiers for Word Sense
Disambiguation. In Proc. NAACL-2000, 63-69.

R. Schapire, Y. Freund, P. Bartlett, and W. Lee (1997).
Boosting the Margin: A New Explanation for the
Effectiveness of Voting Methods. In Proc. ICML-1997,
322-330.

