Ensemble Learning

Slides from Cong Li

Outline

Ensemble Methods in Machine Learning

- Bagging
- Boosting

Ensemble Methods in ML

Ensemble Methods in Machine Learning

- Ensembles of Classifiers
- Application
- Bagging
- Boosting

Different Classifiers (1)

Different Classifiers

- Conduct classification on same set of class labels
- May use different input or have different parameters
- May produce different output for a certain example
- Learning Different Classifiers
 - Use different training examples
 - Use different features

Different Classifiers (2)

Performance

- None of the classifiers is perfect
- Complementary
 - Examples which are not correctly classified by one classifier may be correctly classified by the other classifiers

Potential Improvements?

Utilize the complementary property

Ensembles of Classifiers

Idea

 Combine the classifiers to improve the performance

Ensembles of Classifiers

- Combine the classification results from different classifiers to produce the final output
 - Unweighted voting
 - Weighted voting

Example: Weather Forecast

Reality		•••	:)			:	:)
1	÷	X	:)	×	Ċ	:)	X
2	×	•••	:)	X		:)	X
3		•••	X	Ţ	X	X	•••
4	Ċ	•••	X	ę	X	•••	•••
5	Ċ	X	•••	ę		Y	•••
Combine		•••	•••			••	•••

Ensemble Methods in ML

Ensemble Methods in Machine Learning

- Ensembles of Classifiers
- Application
- Bagging
- Boosting

Application: WSD (Pedersen 2000)

Ensembles of classifiers using different features

 Use different features in training and classification in each classifier

Ensembles of naive Bayesian classifiers for WSD

 Use different context windows to create different naive Bayesian classifiers

WSD = Word Sense Disambiguation

Implementation

81 Base Classifiers

- Context window, num of words left, right
- Possible values for *l* and *r* : 0, 1, 2,(*narrow*)
 3, 4, 5, (*medium*) 10, 25, 50 (*wide*)

9 Selected Range Classifiers

 For each range (e.g., (narrow, medium)), select the best classifiers from 9 candidates (using a development set)

Combination

Unweighted voting of the 9 classifiers

WSD Results

Benchmark: <u>Interest</u>

- Six senses
- 2368 examples for training and testing

Results

- Ensembles of naive Bayesian classifiers: 89% (Pedersen 2000)
- Achieve the best performance reported

Outline

Ensemble Methods in Machine Learning

- Bagging
- Boosting

Bagging

An Important Strategy for Ensemble Learning

Create different training sets

Bootstrap AGGregatING

- Take created bootstrap samples to create a sequence of training sets
- Train classifiers using the training sets
- Classification by majority voting (or averaging for, e.g., estimation problems)

Replicating Data Sets

Original Training Set

 $\{ (\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \cdots, (\mathbf{x}^{(m)}, y^{(m)}) \}$

Sample with Replacement

- At each time, randomly draw m examples according to the uniform distribution on the original training set
- Allow duplicating and missing
- Used for training classifiers

Bagging decision trees

Table 1 Missclassification Rates (Percent)

Data Set	\bar{e}_S	\bar{e}_B	Decrease
waveform	29.0	19.4	33%
heart	10.0	5.3	47%
breast cancer	6.0	4.2	30%
ionosphere	11.2	8.6	23%
diabetes	23.4	18.8	20%
glass	32.0	24.9	22%
soybean	14.5	10.6	27%

- 1. Splitting the data set into training set T1 and test set T2.
- 2. Bagging using 50 bootstrap samples.
- 3. Repeat Steps 1-2 100 times, and calculate average test set misclassification rate.

How many bootstrap samples are needed?

Bagged Missclassification Rates (%) No. Bootstrap Replicates Missclassification Rate 10 21.8 25 19.5 50 19.4 100 19.4

Bagging decision trees for the waveform task:

- Unbagged rate is 29.0%.
- We are getting most of the improvement using only 10 bootstrap samples.

Bagging k-nearest neighbor classifiers

Missclassification Rates for Nearest Neighbor

Data Set	\bar{e}_S	\bar{e}_B
waveform	26.1	26.1
heart	6.3	6.3
breast cancer	4.9	4.9
ionosphere	35.7	35.7
diabetes	16.4	16.4
glass	21.6	21.6

100 bootstrap samples. 100 iterations. Bagging does not help. Experiment results

 Bagging works well for "unstable" learning algorithms.

 Bagging can slightly degrade the performance of "stable" learning algorithms.

Learning algorithms

- Unstable learning algorithms: small changes in the training set result in large changes in predictions.
 - Neural network
 - Decision tree (in particular: regression trees)

Stable learning algorithms:

K-nearest neighbors

First Performance tests

Data Set

27 data sets from UCI ML Repository

Methods for Comparison

- Decision tree classifier: C4.5
- Bagging: ensembles of 100 C4.5 classifiers

Results (Freund and Schapire 1996)

Seems to improve performance

<u>Majority vote</u>

Suppose we have 5 completely independent classifiers...

- If accuracy is 70% for each
 - 10 (.7³)(.3²)+5(.7⁴)(.3)+(.7⁵)
 - 83.7% majority vote accuracy
- 101 such classifiers
 - 99.9% majority vote accuracy

Outline

Ensemble Methods in Machine Learning

- Bagging
- Boosting

Boosting

Ensemble Methods in Machine Learning

- Bagging
- Boosting
 - Basic Idea
 - AdaBoost Algorithm
 - Performance

Strong and Weak Learners

Strong Learner

- Take labeled data for training
- Produce a classifier which can be arbitrarily accurate
- Objective of machine learning

Weak Learner

- Take labeled data for training
- Produce a classifier which is more accurate than random guessing

Boosting

Learners

- Strong learners are very difficult to construct
- Constructing weaker Learners is relatively easy

Strategy

- Derive strong learner from weak learner
- Boost weak classifiers to a strong learner

Construct Weak Classifiers

Using Different Data Distribution

- Start with uniform weighting
- During each step of learning
 - Increase weights of the examples which are not correctly learned by the weak learner
 - Decrease weights of the examples which are correctly learned by the weak learner

Idea

 Focus on difficult examples which are not correctly classified in the previous steps

Combine Weak Classifiers

Weighted Voting

 Construct strong classifier by weighted voting of the weak classifiers

Idea

- Better weak classifier gets a larger weight
- Iteratively add weak classifiers
 - Increase accuracy of the combined classifier through minimization of a cost function

Boosting

Ensemble Methods in Machine Learning

- Bagging
- Boosting
 - Basic Idea
 - AdaBoost Algorithm
 - Performance

Principle of AdaBoost

Toy Example - taken from Torralba @MIT

This is a 'weak classifier': It performs slightly better than chance.

Toy example Each data point has a class label: +1 () $y_t = \langle$ -1 () We update D: $D_{t+1} \leftarrow D_t f(-y_t, h_t)$

The strong (non-linear) classifier is built as the combination of all the weak (linear) classifiers.

AdaBoost: Algorithm

- given training set $(x_1, y_1), \ldots, (x_m, y_m)$
- $y_i \in \{-1, +1\}$ correct label of instance $x_i \in X$
- for t = 1, ..., T:
 - construct distribution D_t on $\{1, \ldots, m\}$
 - find weak classifier ("rule of thumb")

 $h_t: X \to \{-1, +1\}$

with small error ϵ_t on D_t :

 $\epsilon_t = \Pr_{D_t}[h_t(x_i) \neq y_i]$

• output final classifier H_{final}

AdaBoost: Algorithm

- <u>constructing</u> D_t :
 - $D_1(i) = 1/m$
 - given D_t and h_t :

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$
$$= \frac{D_t(i)}{Z_t} \exp(-\alpha_t y_i h_t(x_i))$$

where $Z_t = \text{normalization constant}$ $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$

• final classifier:

• $H_{\text{final}}(x) = \operatorname{sign}\left(\sum_{t} \alpha_t h_t(x)\right)$

The margin

- key idea:
 - training error only measures whether classifications are right or wrong
 - should also consider confidence of classifications
- recall: H_{final} is weighted majority vote of weak classifiers
- measure confidence by margin = strength of the vote
 - = (fraction voting correctly) (fraction voting incorrectly)

AdaBoost: Final

- Output $H(\mathbf{x}) = sign[\sum_{t} \alpha_{t} h_{t}(\mathbf{x})]$ • Margin Classifier • Margin in majority vote classifiers $Margin(\mathbf{x}^{(i)}, y^{(i)}) = y^{(i)} \frac{\sum_{t} \alpha_{t} h_{t}(\mathbf{x}^{(i)})}{\sum_{t} \alpha_{t}}$
 - AdaBoost often optimizes the margins

The margin explanation

margin distribution

= cumulative distribution of margins of training examples

1.0-

	# of classifiers			
	5	100	1000	
train error	0.0	0.0	0.0	
test error	8.4	3.3	3.1	
% margins ≤ 0.5	7.7	0.0	0.0	
minimum margin	0.14	0.52	0.55	

Cumulative distribution function

 Describes the probability that a real-valued random variable X with a given probability distribution will be found at a value less than or equal to x

"Area so far"

Message

- From 5 to 100 there is a payoff
- From 100 to 1000 there is hardly a payoff
- 100 are enough, or
- You cannot become arbitrarily confident

Boosting

Ensemble Methods in Machine Learning

- Bagging
- Boosting
 - Basic Idea
 - AdaBoost Algorithm
 - Performance

Performance

Data Set

27 data sets from UCI ML Repository

Methods for Comparison

- Decision tree classifier: C4.5
- Bagging: ensembles of 100 C4.5 classifiers
- Boosting: AdaBoost using C4.5 as the weak learner

Results (Freund and Schapire 1996)

Results (Freund and Schapire 1996)

References

- L. Breiman (1995). Bagging Predictors. Machine Learning, 24(2), 123-140.
- Y. Freund and R. Schapire (1996). Experiments with a New Boosting Algorithm. In Proc. ICML-1996, 148-156.
- T. Pedersen (2000). A Simple Approach to Build Ensembles of Naive Bayesian Classifiers for Word Sense Disambiguation. In Proc. NAACL-2000, 63-69.
- R. Schapire, Y. Freund, P. Bartlett, and W. Lee (1997). Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods. In Proc. ICML-1997, 322-330.