
Multimedia Information
Extraction and Retrieval  

Introduction 

Ralf Moeller

Hamburg Univ. of Technology

Literature

•  Christopher D. Manning, Prabhakar Raghavan and
Hinrich Schütze, Introduction to Information
Retrieval, Cambridge University Press. 2008.

•  http://nlp.stanford.edu/IR-book/information-
retrieval-book.html

2

3

Unstructured (text) vs. structured
(database) data in 1996

4

Unstructured (text) vs. structured
(database) data in 2006

5

Unstructured data in 1650

•  Which plays of Shakespeare contain the words
Brutus AND Caesar but NOT Calpurnia?

•  One could grep all of Shakespeare’s plays for Brutus
and Caesar, then strip out lines containing
Calpurnia?

  Slow (for large corpora)

  NOT Calpurnia is non-trivial

  Other operations (e.g., find the word Romans near

countrymen) not feasible

  Ranked retrieval (best documents to return)

  Later lectures

6

Term-document incidence

1 if play contains
word, 0 otherwise

Brutus AND Caesar but NOT
Calpurnia

7

Incidence vectors

•  So we have a 0/1 vector for each term.

•  To answer query: take the vectors for Brutus,

Caesar and Calpurnia (complemented) ➨ bitwise
AND.

•  110100 AND 110111 AND 101111 = 100100.

8

Answers to query

• Antony and Cleopatra, Act III, Scene ii
Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,
 When Antony found Julius Caesar dead,
 He cried almost to roaring; and he wept
 When at Philippi he found Brutus slain.

• Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar I was killed i' the
 Capitol; Brutus killed me.

9

Bigger corpora

•  Consider N = 1M documents, each with about 1K
terms.

•  Avg 6 bytes/term incl spaces/punctuation

  6GB of data in the documents.

•  Say there are m = 500K distinct terms among
these.

10

Can’t build the matrix

•  500K x 1M matrix has half-a-trillion 0’s and 1’s.

•  But it has no more than one billion 1’s.

  matrix is extremely sparse.

•  What’s a better representation?

  We only record the 1 positions.

Why?

11

Inverted index

•  For each term T, we must store a list of all
documents that contain T.

•  Do we use an array or a list for this?

Brutus

Calpurnia

Caesar

1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

13 16

What happens if the word Caesar is
added to document 14?

12

Inverted index

•  Linked lists generally preferred to arrays

 Dynamic space allocation

 Insertion of terms into documents easy

 Space overhead of pointers

Brutus

Calpurnia

Caesar

2 4 8 16 32 64 128

2 3 5 8 13 21 34

13 16

1

Dictionary Postings lists
Sorted by docID (more later on why).

Posting

13

Inverted index construction

Tokenizer

Token stream. Friends Romans Countrymen

Linguistic modules

Modified tokens. friend roman countryman

Indexer

Inverted index.

friend

roman

countryman

2 4

2

13 16

1

More on
these later.

Documents to
be indexed.

Friends, Romans, countrymen.

14

•  Sequence of (Modified token, Document ID)
pairs.

I did enact Julius
Caesar I was killed

i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

Indexer steps

15

•  Sort by terms.

Core indexing step.

Indexer steps

16

•  Multiple term entries in a
single document are
merged.

•  Frequency information is
added.

Why frequency?
Will discuss later.

Indexer steps

17

•  The result is split into a Dictionary file
and a Postings file.

18

• Where do we pay in storage?

Pointers

Terms

Will quantify
the storage,
later.

19

The index we just built

• How do we process a query?

 Later - what kinds of queries can we

process?

Today’s
focus

20

Query processing: AND

•  Consider processing the query:

Brutus AND Caesar

  Locate Brutus in the Dictionary;

  Retrieve its postings.

  Locate Caesar in the Dictionary;

  Retrieve its postings.

  “Merge” the two postings:

128
34

2 4 8 16 32 64
1 2 3 5 8 13 21

Brutus
Caesar

21

34
128 2 4 8 16 32 64

1 2 3 5 8 13 21

The merge

•  Walk through the two postings simultaneously, in
time linear in the total number of postings entries

128
34

2 4 8 16 32 64
1 2 3 5 8 13 21

Brutus
Caesar 2 8

If the list lengths are x and y, the merge takes O(x+y)
operations.
Crucial: postings sorted by docID.

22

Boolean queries: Exact match

•  The Boolean Retrieval model is being able to ask a
query that is a Boolean expression:

  Boolean Queries are queries using AND, OR and NOT to

join query terms

  Views each document as a set of words

  Is precise: document matches condition or not.

•  Primary commercial retrieval tool for 3 decades.

•  Professional searchers (e.g., lawyers) still like

Boolean queries:

  You know exactly what you’re getting.

23

Example: WestLaw  
http://www.westlaw.com/

•  Largest commercial (paying subscribers) legal search
service (started 1975; ranking added 1992)

•  Tens of terabytes of data; 700,000 users
•  Majority of users still use boolean queries
•  Example query:

  What is the statute of limitations in cases involving the federal
tort claims act?

  LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT /3 CLAIM

•  /3 = within 3 words, /S = in same sentence

24

Example: WestLaw  
http://www.westlaw.com/

•  Another example query:
  Requirements for disabled people to be able to access a

workplace
  disabl! /p access! /s work-site work-place (employment /3

place

•  Note that SPACE is disjunction, not conjunction!

•  Long, precise queries; proximity operators;

incrementally developed; not like web search

•  Professional searchers often like Boolean search:

  Precision, transparency and control

•  But that doesn’t mean they actually work better….

25

Boolean queries:  
More general merges

•  Exercise: Adapt the merge for the queries:

 Brutus AND NOT Caesar

 Brutus OR NOT Caesar

Can we still run through the merge in time O
(x+y) or what can we achieve?

26

Merging

What about an arbitrary Boolean formula?

(Brutus OR Caesar) AND NOT

(Antony OR Cleopatra)

•  Can we always merge in “linear” time?

  Linear in what?

•  Can we do better?

27

Query optimization

•  What is the best order for query processing?

•  Consider a query that is an AND of t terms.

•  For each of the t terms, get its postings, then

AND them together.

Brutus

Calpurnia

Caesar

1 2 3 5 8 16 21 34

2 4 8 16 32 64 128

13 16

Query: Brutus AND Calpurnia AND Caesar

28

Query optimization example

•  Process in order of increasing freq:

  start with smallest set, then keep cutting further.

Brutus

Calpurnia

Caesar

1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

13 16

This is why we kept
freq in dictionary

Execute the query as (Caesar AND Brutus) AND Calpurnia.

29

More general optimization

•  E.g., (madding OR crowd) AND (ignoble OR strife)

•  Get freq’s for all terms.

•  Estimate the size of each OR by the sum of its

freq’s (conservative).

•  Process in increasing order of OR sizes.

30

Exercise

•  Recommend a query
processing order for

(tangerine OR trees) AND
(marmalade OR skies) AND
(kaleidoscope OR eyes)

31

Query processing exercises

•  If the query is friends AND romans AND (NOT
countrymen), how could we use the freq of
countrymen?

•  Exercise: Extend the merge to an arbitrary Boolean
query. Can we always guarantee execution in time
linear in the total postings size?

•  Hint: Begin with the case of a Boolean formula
query: in this, each query term appears only once in
the query.

32

What’s ahead in IR? 
Beyond term search

•  What about phrases?

  Stanford University

•  Proximity: Find Gates NEAR Microsoft.

  Need index to capture position information in docs. More

later.

•  Zones in documents:  

Find documents with  
(author = Ullman) AND (text contains automata).

33

Evidence accumulation

•  1 vs. 0 occurrence of a search term

  2 vs. 1 occurrence

  3 vs. 2 occurrences, etc.

  Usually more seems better

•  Need term frequency information in docs

34

Ranking search results

•  Boolean queries give inclusion or exclusion of docs.

•  Often we want to rank/group results

  Need to measure proximity from query to each doc.

  Need to decide whether docs presented to user are

singletons, or a group of docs covering various aspects of
the query.

35

IR vs. databases:  
Structured vs unstructured data

•  Structured data tends to refer to information in
“tables”

Employee Manager Salary

Smith Jones 50000

Chang Smith 60000

50000 Ivy Smith

Typically allows numerical range and exact match
(for text) queries, e.g.,
Salary < 60000 AND Manager = Smith.

36

Unstructured data

•  Typically refers to free text

•  Allows

 Keyword queries including operators

 More sophisticated “concept” queries e.g.,

 find all web pages dealing with drug abuse

•  Classic model for searching text
documents

37

Semi-structured data

•  In fact almost no data is “unstructured”

•  E.g., this slide has distinctly identified zones such

as the Title and Bullets

•  Facilitates “semi-structured” search such as

  Title contains data AND Bullets contain search

… to say nothing of linguistic structure

38

More sophisticated  
semi-structured search

•  Title is about Object Oriented Programming AND
Author something like stro*rup

•  where * is the wild-card operator

•  Issues:

  how do you process “about”?

  how do you rank results?

•  The focus of XML search.

39

Clustering and classification

•  Given a set of docs, group them into
clusters based on their contents.

•  Given a set of topics, plus a new doc D,
decide which topic(s) D belongs to.

40

The web and its challenges

•  Unusual and diverse documents

•  Unusual and diverse users, queries, information

needs

•  Beyond terms, exploit ideas from social networks

  link analysis, clickstreams ...

•  How do search engines work? And how can we
make them better?

41

More sophisticated  
information retrieval

•  Cross-language information retrieval

•  Question answering

•  Summarization

•  Text mining

•  …

