
Multimedia Information
Extraction and Retrieval  
Indexing and Query Answering  

Ralf Moeller

Hamburg Univ. of Technology

Recall basic indexing pipeline

Tokenizer

Token stream. Friends Romans Countrymen

Linguistic modules

Modified tokens. friend roman countryman

Indexer

Inverted index.

friend

roman

countryman

2 4

2

13 16

1

Documents to
be indexed.

Friends, Romans, countrymen.

Tokenization

•  Input: “Friends, Romans and Countrymen”

•  Output: Tokens

 Friends

 Romans

 Countrymen

•  Each such token is now a candidate for an
index entry, after further processing

 Described below

•  But what are valid tokens to emit?

Tokenization

•  Issues in tokenization:

 Finland’s capital →

 Finland? Finlands? Finland’s?

 Hewlett-Packard →  

Hewlett and Packard as two tokens?

 State-of-the-art: break up hyphenated sequence.

  co-education ?

  the hold-him-back-and-drag-him-away-maneuver ?

  It’s effective to get the user to put in possible hyphens

 San Francisco: one token or two? How do you
decide it is one token?

Numbers

•  3/12/91

 Mar. 12, 1991

•  55 B.C.

•  B-52

•  My PGP key is 324a3df234cb23e

•  100.2.86.144

  Often, don’t index as text.

  But often very useful: think about things like looking up error

codes/stacktraces on the web

  (One answer is using n-grams: later)

  Will often index “meta-data” separately

  Creation date, format, etc.

Tokenization: Language issues

•  L'ensemble → one token or two?

 L ? L’ ? Le ?

 Want l’ensemble to match with un ensemble

•  German noun compounds are not
segmented

  Lebensversicherungsgesellschaftsangestellter

  ‘life insurance company employee’

Normalization

•  Need to “normalize” terms in indexed text
as well as query terms into the same form

 We want to match U.S.A. and USA

•  We most commonly implicitly define
equivalence classes of terms

 e.g., by deleting periods in a term

•  Alternative is to do asymmetric expansion:

  Enter: window
 Search: window, windows

  Enter: windows
 Search: Windows, windows

  Enter: Windows
 Search: Windows

•  Potentially more powerful, but less efficient

Normalization: other languages

•  Accents: résumé vs. resume.

•  Most important criterion:

 How are your users like to write their queries for
these words?

•  Even in languages that standardly have
accents, users often may not type them

•  German: Tuebingen vs. Tübingen

 Should be equivalent

Case folding

•  Reduce all letters to lower case

 exception: upper case (in mid-sentence?)

 e.g., General Motors

 Fed vs. fed

 SAIL vs. sail

 Often best to lowercase everything, since
users will use lowercase regardless of
‘correct’ capitalization…

Stop words

•  With a stop list, you exclude from
dictionary entirely the commonest words.
Intuition:

  They have little semantic content: the, a, and, to, be

  They take a lot of space: ~30% of postings for top 30

•  But the trend is away from doing this:

  Good compression techniques means the space for including

stopwords in a system is very small

  Good query optimization techniques mean you pay little at

query time for including stop words.

  You need them for:

  Phrase queries: “King of Denmark”

  Various song titles, etc.: “Let it be”, “To be or not to be”

  “Relational” queries: “flights to London”

Thesauri

•  Handle synonyms and homonyms

 Hand-constructed equivalence classes

 e.g., car = automobile

  color = colour

•  Rewrite to form equivalence classes

•  Index such equivalences

 When the document contains automobile, index
it under car as well (usually, also vice-versa)

•  Or expand query?

 When the query contains automobile, look

under car as well

Lemmatization

•  Reduce inflectional/variant forms to base
form

•  E.g.,

 am, are, is → be

 car, cars, car's, cars' → car

•  the boy's cars are different colors → the boy
car be different color

•  Lemmatization implies doing “proper”
reduction to dictionary headword form

Simpler Form: Stemming

•  Reduce terms to their “roots” before
indexing

•  “Stemming” suggests crude affix chopping

 language dependent

 e.g., automate(s), automatic, automation all

reduced to automat.

for example compressed
and compression are both
accepted as equivalent to
compress.

for exampl compress and
compress ar both accept
as equival to compress

Porter’s Algorithm

•  Common algorithm for stemming English

 Results suggest at least as good as other

stemming options

•  Conventions + 5 phases of reductions

 phases applied sequentially

 each phase consists of a set of commands

 sample convention: Of the rules in a compound

command, select the one that applies to the
longest suffix.

Porter’s Algorithm

•  [C](VC)m[V]

 m indicates repetition, C = consonant, V = vowel

 X denotes a sequence of Xs

•  Examples:

 m=0 TR, EE, TREE, Y, BY
 m=1 TROUBLE, OATS, TREES, IVY
 m=2 TROUBLES, PRIVATE, OATEN

•  Conditions:

  *S - the stem ends with S (and similarly for the other letters).
  *v* - the stem contains a vowel.
  *d - the stem ends with a double consonant (e.g. -TT, -SS).
  *o - the stem ends cvc, where the second c is not W, X or Y
(e.g. -WIL, -HOP).

Porter’s Algorithm

Step 1a!

 SSES -> SS caresses -> caress!

 IES -> I ponies -> poni!

 ties -> ti!

 SS -> SS caress -> caress!

 S -> cats -> cat!

Step 1b!

 (m>0) EED -> EE feed -> feed!

 agreed -> agree!

 (*v*) ED -> plastered -> plaster!

 bled -> bled!

 (*v*) ING -> motoring -> motor!

 sing -> sing!

Porter’s Algorithm

If the second or third of the rules in Step 1b is successful, the following is
done:!

 AT -> ATE conflat(ed) -> conflate!

 BL -> BLE troubl(ed) -> trouble!

 IZ -> IZE siz(ed) -> size!

 (*d and not (*L or *S or *Z))!

 -> single letter!

 hopp(ing) -> hop!

 fall(ing) -> fall!

 hiss(ing) -> hiss!

 fizz(ed) -> fizz!

 (m=1 and *o) -> E fail(ing) -> fail!

 fil(ing) -> file!

Step 1c!

 (*v*) Y -> I happy -> happi!

 sky -> sky!

Porter’s Algorithm

Step 2!
 (m>0) ATIONAL -> ATE relational -> relate!
 (m>0) TIONAL -> TION conditional -> condition!
 rational -> rational!
 (m>0) ENCI -> ENCE valenci -> valence!
 (m>0) ANCI -> ANCE hesitanci -> hesitance!
 (m>0) IZER -> IZE digitizer -> digitize!
 (m>0) ABLI -> ABLE conformabli -> conformable!
 (m>0) ALLI -> AL radicalli -> radical!
 (m>0) ENTLI -> ENT differentli -> different!
 (m>0) ELI -> E vileli - > vile!
 (m>0) OUSLI -> OUS analogousli -> analogous!
 (m>0) IZATION -> IZE vietnamization -> vietnamize!
 (m>0) ATION -> ATE predication -> predicate!
 (m>0) ATOR -> ATE operator -> operate!
 (m>0) ALISM -> AL feudalism -> feudal!
 (m>0) IVENESS -> IVE decisiveness -> decisive!
 (m>0) FULNESS -> FUL hopefulness -> hopeful!
 (m>0) OUSNESS -> OUS callousness -> callous!
 (m>0) ALITI -> AL formaliti -> formal!
 (m>0) IVITI -> IVE sensitiviti -> sensitive!
 (m>0) BILITI -> BLE sensibiliti -> sensible!

Porter’s Algorithm

Step 3!
 (m>0) ICATE -> IC triplicate -> triplic!
 (m>0) ATIVE -> formative -> form!
 (m>0) ALIZE -> AL formalize -> formal!
 (m>0) ICITI -> IC electriciti -> electric!
 (m>0) ICAL -> IC electrical -> electric!
 (m>0) FUL -> hopeful -> hope!
 (m>0) NESS -> goodness -> good!
Step 4!
 (m>1) AL -> revival -> reviv!
 (m>1) ANCE -> allowance -> allow!
 (m>1) ENCE -> inference -> infer!
 (m>1) ER -> airliner -> airlin!
 (m>1) IC -> gyroscopic -> gyroscop!
 (m>1) ABLE -> adjustable -> adjust!
 (m>1) IBLE -> defensible -> defens!
 (m>1) ANT -> irritant -> irrit!
 (m>1) EMENT -> replacement -> replac!
 (m>1) MENT -> adjustment -> adjust!
 (m>1) ENT -> dependent -> depend!
 (m>1 and (*S or *T)) ION -> adoption -> adopt!
 (m>1) OU -> homologou -> homolog!
 (m>1) ISM -> communism -> commun!
 (m>1) ATE -> activate -> activ!
 (m>1) ITI -> angulariti -> angular!
 (m>1) OUS -> homologous -> homolog!
 (m>1) IVE -> effective -> effect!
 (m>1) IZE -> bowdlerize -> bowdler!

Porter’s Algorithm

Step 5a!

 (m>1) E -> probate -> probat!
 rate -> rate!
 (m=1 and not *o) E -> cease -> ceas!

Step 5b!

 (m > 1 and *d and *L) -> single letter!
 controll -> control!
 roll -> roll!

Faster postings merges:  
Skip pointers

Recall basic merge

• Walk through the two postings
simultaneously, in time linear in the
total number of postings entries

128

31

2 4 8 16 32 64

1 2 3 5 8 17 21

Brutus
Caesar 2 8

If the list lengths are m and n, the merge takes O(m+n)
operations.

Can we do better?
Yes, if index isn’t changing too fast.

Augment postings with skip pointers
(at indexing time)

•  Why?

•  To skip postings that will not figure in

the search results.

•  How?

•  Where do we place skip pointers?

128 2 4 8 16 32 64

31 1 2 3 5 8 17 21
31 8

16 128

Query processing with skip
pointers

128 2 4 8 16 32 64

31 1 2 3 5 8 17 21
31 8

16 128

Suppose we’ve stepped through the lists until we process 8
on each list.

When we get to 16 on the top list, we see that its
successor is 32.
But the skip successor of 8 on the lower list is 31, so
we can skip ahead past the intervening postings.

Where do we place skips?

•  Tradeoff:

 More skips → shorter skip spans ⇒ more likely

to skip. But lots of comparisons to skip
pointers.

 Fewer skips → few pointer comparison, but then
long skip spans ⇒ few successful skips.

Placing skips

•  Simple heuristic: for postings of length L,
use √L evenly-spaced skip pointers.

•  This ignores the distribution of query terms.

•  Easy if the index is relatively static; harder if

L keeps changing because of updates.

•  This definitely used to help; with modern

hardware it may not

 The cost of loading a bigger postings list

outweighs the gain from quicker in memory
merging

Phrase queries

Phrase queries

• Want to answer queries such as
“stanford university” – as a phrase

•  Thus the sentence “I went to university
at Stanford” is not a match.

 The concept of phrase queries has proven

easily understood by users; about 10% of
web queries are phrase queries

• No longer suffices to store only

 <term : docs> entries

A first attempt: Biword indexes

•  Index every consecutive pair of terms in the
text as a phrase

•  For example the text “Friends, Romans,
Countrymen” would generate the biwords

 friends romans

 romans countrymen

•  Each of these biwords is now a dictionary
term

•  Two-word phrase query-processing is now
immediate.

Longer phrase queries

•  Longer phrases are processed as follows:

•  stanford university palo alto can be

broken into the Boolean query on biwords:

stanford university AND university palo

AND palo alto

Without the docs, we cannot verify that the
docs matching the above Boolean query do
contain the phrase.

Can have false positives!

Extended biwords

•  Parse the indexed text and perform part-of-speech-
tagging (POST).

•  Bucket the terms into (say) Nouns (N) and articles/
prepositions (X).

•  Now deem any string of terms of the form NX*N to be
an extended biword.

  Each such extended biword is now made a term in the

dictionary.

•  Example: catcher in the rye

 N X X N

•  Query processing: parse it into N’s and X’s

  Segment query into enhanced biwords

  Look up index

Issues for biword indexes

•  False positives, as noted before

•  Index blowup due to bigger dictionary

•  For extended biword index, parsing longer queries
into conjunctions:

  E.g., the query tangerine trees and marmalade skies is

parsed into

  tangerine trees AND trees and marmalade AND

marmalade skies

•  No standard solution (for all biwords)

Solution 2: Positional indexes

•  Store, for each term, entries of the
form:

<number of docs containing term;

doc1: position1, position2 … ;

doc2: position1, position2 … ;

etc.>

Positional index example

•  Can compress position values/
offsets

• Nevertheless, this expands postings
storage substantially

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, …>

Which of docs 1,2,4,5
could contain “to be

or not to be”?

Processing a phrase query

•  Extract inverted index entries for each
distinct term: to, be, or, not.

•  Merge their doc:position lists to enumerate
all positions with “to be or not to be”.

 to:

 2:1,17,74,222,551; 4:8,16,190,429,433;
7:13,23,191; ...

 be:

 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...

•  Same general method for proximity
searches

Proximity queries

•  LIMIT! /3 STATUTE /3 FEDERAL /2 TORT
Here, /k means “within k words of”.

•  Clearly, positional indexes can be used for such
queries; biword indexes cannot.

•  Exercise: Adapt the linear merge of postings to
handle proximity queries. Can you make it work
for any value of k?

Positional index size

•  You can compress position values/offsets:

•  Nevertheless, a positional index expands

postings storage substantially

•  Nevertheless, it is now standardly used

because of the power and usefulness of
phrase and proximity queries … whether
used explicitly or implicitly in a ranking
retrieval system.

Positional index size

•  Need an entry for each occurrence, not just
once per document

•  Index size depends on average document
size

 Average web page has <1000 terms

 SEC filings, books, even some epic poems …

easily 100,000 terms

•  Consider a term with frequency 0.1%

Why?

100 1 100,000

1 1 1000

Positional postings Postings Document size

Rules of thumb

•  A positional index is 2–4 as large as a
non-positional index

•  Positional index size 35–50% of
volume of original text

•  Caveat: all of this holds for “English-
like” languages

Wild-card queries: *

•  mon*: find all docs containing any word
beginning “mon”.

•  Easy with binary tree (or B-tree) lexicon:
retrieve all words in range: mon ≤ w <
moo

•  *mon: find words ending in “mon”: harder

 Maintain an additional B-tree for terms

backwards.

Can retrieve all words in range: nom ≤ w < non.

Exercise: from this, how can we enumerate all terms
meeting the wild-card query pro*cent ?

B-tree

•  Binary tree data structure

•  Optimized for page-oriented storage of

data on harddisks

B-tree: Central idea by example

B-tree: Central idea by example

Query processing

•  At this point, we have an enumeration
of all those terms in the dictionary
that match the wild-card query.

• We still have to look up the postings
for each enumerated term.

•  E.g., consider the query:

 se*ate AND fil*er

 This may result in the execution of

many Boolean AND queries.

B-trees handle *’s at the end of a
query term

• How can we handle *’s in the middle
of query term?

 (Especially multiple *’s)

•  The solution: transform every wild-
card query so that the *’s occur at the
end

•  This gives rise to the Permuterm
Index.

Permuterm index

•  For term hello index under:

 hello$, ello$h, llohe, lohel, o$hell, $hello

where $ is a special symbol.

•  Queries:

 X lookup on X$

 X* lookup on $X*

 *X lookup on X$*

 X lookup on X*

 X*Y lookup on Y$X*

 X*Y*Z ???

Exercise!

Query = hel*o
X=hel, Y=o

Lookup o$hel*

Permuterm query processing

•  Rotate query wild-card to the right

•  Now use B-tree lookup as before.

•  Permuterm problem: ≈ quadruples lexicon

size

Empirical observation for English.

Bigram indexes

•  Enumerate all k-grams (sequence of k
chars) occurring in any term

•  e.g., from text “April is the cruelest
month” we get the 2-grams (bigrams)

 $ is a special word boundary symbol

•  Maintain an “inverted” index from bigrams

to dictionary terms that match each bigram.

a,ap,pr,ri,il,l,i,is,s,t,th,he,e,$c,cr,ru,
ue,el,le,es,st,t$, m,mo,on,nt,h

Bigram index example

mo

on

among

$m mace

among

amortize

madden

around

Processing n-gram wild-cards

•  Query mon* can now be run as

 $m AND mo AND on

•  Fast, space efficient.

•  Gets terms that match the AND-version of

our wildcard query.

•  But we’d enumerate moon.

•  Must post-filter these terms against query.

•  Surviving enumerated terms are then looked

up in the term-document inverted index.

