
Multimedia Information
Extraction and Retrieval

Ralf Moeller

Hamburg Univ. of Technology

Similarity

Acknowledgement

•  Slides taken  
from presentation 
material for  
the following book:

Recap of the last lecture

•  Parametric and field searches

 Zones in documents

•  Can apply text queries to images due
to interpretation results

•  Scoring documents: zone weighting

 Index support for scoring

•  tf×idf and vector spaces

Indexes: “Postings lists”

•  On the query bill OR rights suppose that we
retrieve the following docs from the various zone
indexes:

bill
rights

bill
rights

bill
rights

Author

Title

Body

1

5

2

8 3

3 5 9

2 5 1

5 8 3

9

9

Recap: tf x idf (or tf.idf)

•  Assign a tf.idf weight to each term i in each
document d

•  Instead of tf, sometimes wf is used:

This lecture

•  Vector space scoring

•  Efficiency considerations

 Nearest neighbors and approximations

Documents as vectors

•  At the end of the last lecture we said:

•  Each doc d can now be viewed as a

vector of tf×idf values, one component
for each term

•  So we have a vector space

 terms are axes

 docs live in this space

 even with stemming, may have 50,000+

dimensions

Why turn docs into vectors?

•  First application: Query-by-example

 Given a doc d, find others “like” it.

• Now that d is a vector, find vectors
(docs) “near” it.

Intuition

Postulate: Documents that are “close together”
in the vector space talk about the same things.

t1

d2

d1

d3

d4

d5

t3

t2

θ
φ

Desiderata for proximity

•  If d1 is near d2, then d2 is near d1.

•  If d1 near d2, and d2 near d3, then d1 is

not far from d3.

• No doc is closer to d than d itself.

•  Triangle inequality

First cut

•  Idea: Distance between d1 and d2 is the length of
the vector d1 – d2.

  Euclidean distance:

•  Why is this not a great idea?

•  We still haven’t dealt with the issue of length

normalization

  Short documents would be more similar to each other by

virtue of length, not topic

•  However, we can implicitly normalize by looking at

angles instead

Cosine similarity

•  Distance between vectors d1 and d2 captured by the
cosine of the angle x between them.

•  Note – this is similarity, not distance

  No triangle inequality for similarity.

t 1

d 2

d 1

t 3

t 2

θ

Cosine similarity

•  A vector can be normalized (given a length of 1) by
dividing each of its components by its length – here
we use the L2 norm

•  This maps vectors onto the unit sphere:

•  Then,

•  Longer documents don’t get more weight

€


d j = wi, j

2
i=1

n
∑ =1
€

x 2 = xi
2

i∑

Cosine similarity

•  Cosine of angle between two vectors

•  The denominator involves the lengths of the

vectors.

€

sim(d j ,dk) =


d j ⋅

d k

d j

d k

=
wi, jwi,ki=1

n
∑

wi, j
2

i=1

n
∑ wi,k

2
i=1

n
∑

Normalization

Normalized vectors

•  For normalized vectors, the cosine is simply
the dot product:

Example

•  Docs: Austen's Sense and Sensibility, Pride and
Prejudice; Bronte's Wuthering Heights. Tf weights

•  cos(SAS, PAP) = .996 x .993 + .087 x .120 + .017 x 0.0 = 0.999

•  cos(SAS, WH) = .996 x .847 + .087 x .466 + .017 x .254 = 0.889

Cosine similarity exercises

•  Exercise: Rank the following by decreasing
cosine similarity. Assume tf-idf weighting:

 Two docs that have only frequent words (the, a,

an, of) in common.

 Two docs that have no words in common.

 Two docs that have many rare words in common

(wingspan, tailfin).

Exercise

•  Show that, for normalized vectors, Euclidean
distance gives the same proximity ordering
as the cosine measure

Queries in the vector space model

Central idea: the query as a vector:

•  We regard the query as short document

•  We return the documents ranked by the closeness

of their vectors to the query, also represented as a
vector.

•  Note that dq is very sparse!

Summary: What’s the point of using
vector spaces?

•  A well-formed algebraic space for retrieval

•  Key: A user’s query can be viewed as a (very) short

document.

•  Query becomes a vector in the same space as the

docs.

•  Can measure each doc’s proximity to it.

•  Natural measure of scores/ranking – no longer

Boolean.

  Queries are expressed as bags of words

Digression: spamming indices

•  This was all invented before the days when people
were in the business of spamming web search
engines. Consider:

  Indexing a sensible passive document collection vs.

  An active document collection, where people (and indeed,

service companies) are shaping documents in order to
maximize scores

•  Vector space similarity may not be as useful in this
context.

Interaction: vectors and phrases

•  Scoring phrases doesn’t fit naturally into the vector
space world:

  “tangerine trees” “marmalade skies”

  Positional indexes don’t calculate or store tf.idf

information for “tangerine trees”

•  Biword indexes treat certain phrases as terms

  For these, we can pre-compute tf.idf.

  Theoretical problem of correlated dimensions

•  Problem: we cannot expect end-user formulating
queries to know what phrases are indexed

•  We can use a positional index to boost or ensure
phrase occurrence

Vectors and Boolean queries

•  Vectors and Boolean queries really don’t work
together very well

•  In the space of terms, vector proximity selects by
spheres: e.g., all docs having cosine similarity ≥0.5
to the query

•  Boolean queries on the other hand, select by
(hyper-)rectangles and their unions/intersections

•  Round peg - square hole

Vectors and wild cards

•  How about the query tan* marm*?

 Can we view this as a bag of words?

 Thought: expand each wild-card into the

matching set of dictionary terms.

•  Danger – unlike the Boolean case, we now

have tfs and idfs to deal with.

•  Net – not a good idea.

Vector spaces and other operators

•  Vector space queries are apt for no-syntax,
bag-of-words queries

 Clean metaphor for similar-document queries

•  Not a good combination with Boolean, wild-
card, positional query operators

•  But …

Query language vs. scoring

•  May allow user a certain query language, say

  Free text basic queries

  Phrase, wildcard etc. in Advanced Queries.

•  For scoring (oblivious to user) may use all of the
above, e.g. for a free text query

  Highest-ranked hits have query as a phrase

  Next, docs that have all query terms near each other

  Then, docs that have some query terms, or all of them

spread out, with tf x idf weights for scoring

Efficient cosine ranking

•  Find the k docs in the corpus “nearest” to
the query ⇒ k largest query-doc cosines.

•  Efficient ranking:

 Computing a single cosine efficiently.

 Choosing the k largest cosine values

efficiently.

 Can we do this without computing all n

cosines?

•  n = number of documents in collection

Efficient cosine ranking

• What we’re doing in effect: solving the
k-nearest neighbor problem for a
query vector

•  In general, we do not know how to do
this efficiently for high-dimensional
spaces

•  But it is solvable for short queries, and
standard indexes are optimized to do
this

Computing a single cosine

•  For every term i, with each doc j, store term
frequency tfij.

  Some tradeoffs on whether to store term count, term

weight, or weighted by idfi.

•  At query time, use an array of accumulators Scoresj

to accumulate component-wise sum

•  If you’re indexing 5 billion documents (web search)
an array of accumulators is infeasible
 Ideas?

Use heap for selecting top k

•  Binary tree in which each node’s value > the values
of children

•  Takes 2n operations to construct, then each of k
“winners” read off in 2log n steps.

•  For n=1M, k=100, this is about 10% of the cost of
sorting.

1

.9 .3

.8 .3

.1

.1

Dimensionality reduction

•  What if we could take our vectors and “pack”
them into fewer dimensions (say
50,000→100) while preserving distances?

•  (Well, almost.)

 Speeds up cosine computations.

•  Two methods:

 Random projection.

 “Latent semantic indexing”.

Random projection onto k<<m axes

•  Choose a random direction x1 in the
vector space.

•  For i = 2 to k,

 Choose a random direction xi that is

orthogonal to x1, x2, … xi–1.

•  Project each document vector into

the subspace spanned by {x1, x2, …,
xk}.

E.g., from 3 to 2 dimensions

d2

d1

x1

t 3

x2

t 2

t 1

x1

x2
d2

d1

x1 is a random direction in (t1,t2,t3) space.
x2 is chosen randomly but orthogonal to x1.

Dot product of x1 and x2 is zero.

Guarantee

• With high probability, relative
distances are (approximately)
preserved by projection

•  But: expensive computations

Latent semantic indexing (LSI)

•  Another technique for dimension reduction

•  Random projection was data-independent

•  LSI on the other hand is data-dependent

 Eliminate redundant axes

 Pull together “related” axes – hopefully

  car and automobile

