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Recap of the last lecture


•  Parametric and field searches

 Zones in documents


•  Can apply text queries to images due 
to interpretation results


•  Scoring documents: zone weighting

 Index support for scoring


•  tf×idf and vector spaces




Indexes: “Postings lists”


•  On the query bill OR rights suppose that we 
retrieve the following docs from the various zone 
indexes:
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Recap: tf x idf (or tf.idf)


•  Assign a tf.idf weight to each term i in each 
document d


•  Instead of tf, sometimes wf is used:




This lecture


•  Vector space scoring

•  Efficiency considerations


 Nearest neighbors and approximations




Documents as vectors


•  At the end of the last lecture we said:

•  Each doc d can now be viewed as a 

vector of tf×idf values, one component 
for each term


•  So we have a vector space

 terms are axes

 docs live in this space

 even with stemming, may have 50,000+ 

dimensions




Why turn docs into vectors?


•  First application: Query-by-example

 Given a doc d, find others “like” it.


• Now that d is a vector, find vectors 
(docs) “near” it.




Intuition


Postulate: Documents that are “close together”  
in the vector space talk about the same things. 
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Desiderata for proximity


•  If d1 is near d2, then d2 is near d1.

•  If d1 near d2, and d2 near d3, then d1 is 

not far from d3.

• No doc is closer to d than d itself.

•  Triangle inequality




First cut


•  Idea: Distance between d1 and d2 is the length of 
the vector d1 – d2.

  Euclidean distance:


•  Why is this not a great idea?

•  We still haven’t dealt with the issue of length 

normalization

  Short documents would be more similar to each other by 

virtue of length, not topic

•  However, we can implicitly normalize by looking at 

angles instead




Cosine similarity


•  Distance between vectors d1 and d2 captured by the 
cosine of the angle x between them.


•  Note – this is similarity, not distance

  No triangle inequality for similarity.
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Cosine similarity


•  A vector can be normalized (given a length of 1) by 
dividing each of its components by its length – here 
we use the L2 norm


•  This maps vectors onto the unit sphere:


•  Then, 

•  Longer documents don’t get more weight
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Cosine similarity


•  Cosine of angle between two vectors

•  The denominator involves the lengths of the 

vectors.
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Normalized vectors


•  For normalized vectors, the cosine is simply 
the dot product:




Example


•  Docs: Austen's Sense and Sensibility, Pride and 
Prejudice; Bronte's Wuthering Heights. Tf  weights


•  cos(SAS, PAP) = .996 x .993 + .087 x .120 + .017 x 0.0 = 0.999

•  cos(SAS, WH) = .996 x .847 + .087 x .466 + .017 x .254 = 0.889




Cosine similarity exercises


•  Exercise: Rank the following by decreasing 
cosine similarity. Assume tf-idf weighting:

 Two docs that have only frequent words (the, a, 

an, of) in common.

 Two docs that have no words in common.

 Two docs that have many rare words in common 

(wingspan, tailfin).




Exercise


•  Show that, for normalized vectors, Euclidean 
distance gives the same proximity ordering 
as the cosine measure




Queries in the vector space model


Central idea: the query as a vector:

•  We regard the query as short document

•  We return the documents ranked by the closeness 

of their vectors to the query, also represented as a 
vector.


•  Note that dq is very sparse!




Summary: What’s the point of using 
vector spaces?


•  A well-formed algebraic space for retrieval

•  Key: A user’s query can be viewed as a (very) short 

document.

•  Query becomes a vector in the same space as the 

docs.

•  Can measure each doc’s proximity to it.

•  Natural measure of scores/ranking – no longer 

Boolean.

  Queries are expressed as bags of words




Digression: spamming indices


•  This was all invented before the days when people 
were in the business of spamming web search 
engines. Consider:

  Indexing a sensible passive document collection vs.

  An active document collection, where people (and indeed, 

service companies) are shaping documents in order to 
maximize scores


•  Vector space similarity may not be as useful in this 
context.




Interaction: vectors and phrases


•  Scoring phrases doesn’t fit naturally into the vector 
space world:

  “tangerine trees” “marmalade skies”

  Positional indexes don’t calculate or store tf.idf 

information for “tangerine trees”

•  Biword indexes treat certain phrases as terms


  For these, we can pre-compute tf.idf.

  Theoretical problem of correlated dimensions


•  Problem: we cannot expect end-user formulating 
queries to know what phrases are indexed


•  We can use a positional index to boost or ensure 
phrase occurrence 




Vectors and Boolean queries


•  Vectors and Boolean queries really don’t work 
together very well


•  In the space of terms, vector proximity selects by 
spheres: e.g., all docs having cosine similarity ≥0.5 
to the query


•  Boolean queries on the other hand, select by 
(hyper-)rectangles and their unions/intersections


•  Round peg - square hole




Vectors and wild cards


•  How about the query tan* marm*?

 Can we view this as a bag of words?

 Thought: expand each wild-card into the 

matching set of dictionary terms.

•  Danger – unlike the Boolean case, we now 

have tfs and idfs to deal with.

•  Net – not a good idea.




Vector spaces and other operators


•  Vector space queries are apt for no-syntax, 
bag-of-words queries

 Clean metaphor for similar-document queries


•  Not a good combination with Boolean, wild-
card, positional query operators


•  But …




Query language vs. scoring


•  May allow user a certain query language, say

  Free text basic queries

  Phrase, wildcard etc. in Advanced Queries.


•  For scoring (oblivious to user) may use all of the 
above, e.g. for a free text query

  Highest-ranked hits have query as a phrase

  Next, docs that have all query terms near each other

  Then, docs that have some query terms, or all of them 

spread out, with tf x idf weights for scoring




Efficient cosine ranking


•  Find the k docs in the corpus “nearest” to 
the query ⇒ k largest query-doc cosines.


•  Efficient ranking:

 Computing a single cosine efficiently.

 Choosing the k largest cosine values 

efficiently.

 Can we do this without computing all n 

cosines?

•  n = number of documents in collection




Efficient cosine ranking


• What we’re doing in effect: solving the 
k-nearest neighbor problem for a 
query vector


•  In general, we do not know how to do 
this  efficiently for high-dimensional 
spaces


•  But it is solvable for short queries, and 
standard indexes are optimized to do 
this




Computing a single cosine


•  For every term i, with each doc j, store term 
frequency tfij.

  Some tradeoffs on whether to store term count, term 

weight, or weighted by idfi. 

•  At query time, use an array of accumulators Scoresj 

to accumulate component-wise sum


•  If you’re indexing 5 billion documents (web search) 
an array of accumulators is infeasible
 Ideas? 



Use heap for selecting top k


•  Binary tree in which each node’s value > the values 
of children


•  Takes 2n operations to construct, then each of k   
“winners” read off in 2log n steps.


•  For n=1M, k=100, this is about 10% of the cost of 
sorting.
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Dimensionality reduction


•  What if we could take our vectors and “pack” 
them into fewer dimensions (say 
50,000→100) while preserving distances?


•  (Well, almost.)

 Speeds up cosine computations.


•  Two methods:

 Random projection.

 “Latent semantic indexing”.




Random projection onto k<<m axes


•  Choose a random direction x1 in the 
vector space.


•  For i = 2 to k, 

 Choose a random direction xi that is 

orthogonal to x1, x2, … xi–1.

•  Project each document vector into 

the subspace spanned by {x1, x2, …, 
xk}.




E.g., from 3 to 2 dimensions
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x1 is a random direction in (t1,t2,t3) space. 
x2 is chosen randomly but orthogonal to x1. 

Dot product of x1 and x2 is zero.  



Guarantee


• With high probability, relative 
distances are (approximately) 
preserved by projection


•  But: expensive computations




Latent semantic indexing (LSI)


•  Another technique for dimension reduction

•  Random projection was data-independent

•  LSI on the other hand is data-dependent


 Eliminate redundant axes

 Pull together “related” axes – hopefully


  car and automobile



