Multimedia Information Extraction and Retrieval

Similarity

Ralf Moeller Hamburg Univ. of Technology

Acknowledgement

 Slides taken from presentation material for the following book:

Introduction to Information Retrieval

> Christopher D. Manning Stanford University

> > Prabhakar Raghavan Yahool Research

> > > Hinrich Schütze University of Stuttgart

Recap of the last lecture

- Parametric and field searches
 - Zones in documents
- Can apply text queries to images due to interpretation results
- Scoring documents: zone weighting
 Index support for scoring
- *tfxidf* and vector spaces

Indexes: "Postings lists"

• On the query *bill OR rights* suppose that we retrieve the following docs from the various zone indexes:

<u>Author</u>	bill rights	1 - 2
<u>Title</u>	bill rights	$3 \rightarrow 5 \rightarrow 8$ $3 \rightarrow 5 \rightarrow 9$
<u>Body</u>	bill rights	$1 \rightarrow 2 \rightarrow 5$ $3 \rightarrow 5 \rightarrow 8$

Recap: tf x idf (or tf.idf)

Assign a tf.idf weight to each term *i* in each document *d*

$$w_{i,d} = tf_{i,d} \times \log(n/df_i)$$

 $tf_{i,d}$ = frequency of term *i* in document *j* n = total number of documents df_i = the number of documents that contain term *i*

• Instead of tf, sometimes wf is used:

 $wf_{t,d} = 0$ if $tf_{t,d} = 0$, $1 + \log tf_{t,d}$ otherwise

This lecture

- Vector space scoring
- Efficiency considerations
 - Nearest neighbors and approximations

Documents as vectors

- At the end of the last lecture we said:
- Each doc *d* can now be viewed as a vector of *tf*×*idf* values, one component for each term
- So we have a vector space
 - terms are axes
 - docs live in this space
 - even with stemming, may have 50,000+ dimensions

Why turn docs into vectors?

- First application: Query-by-example
 Given a doc *d*, find others "like" it.
- Now that *d* is a vector, find vectors (docs) "near" it.

Intuition

Postulate: Documents that are "close together" in the vector space talk about the same things.

Desiderata for proximity

- If d_1 is near d_2 , then d_2 is near d_1 .
- If d_1 near d_2 , and d_2 near d_3 , then d_1 is not far from d_3 .
- No doc is closer to *d* than *d* itself.
- Triangle inequality

First cut

- Idea: Distance between d_1 and d_2 is the length of the vector $d_1 d_2$.
 - Euclidean distance:

$$|d_{j} - d_{k}| = \sqrt{\sum_{i=1}^{n} (d_{i,j} - d_{i,k})^{2}}$$

- Why is this not a great idea?
- We still haven't dealt with the issue of length normalization
 - Short documents would be more similar to each other by virtue of length, not topic
- However, we can implicitly normalize by looking at angles instead

Cosine similarity

- Distance between vectors d₁ and d₂ captured by the cosine of the angle x between them.
- Note this is *similarity*, not distance
 - No triangle inequality for similarity.

Cosine similarity

• A vector can be *normalized* (given a length of 1) by dividing each of its components by its length – here we use the L_2 norm $\frac{\|\mathbf{x}\|}{\|\mathbf{x}\|} = \sqrt{\sum_{n=1}^{\infty} \frac{1}{n}}$

$$\left\|\mathbf{x}\right\|_2 = \sqrt{\sum_i x_i^2}$$

- This maps vectors <u>onto the unit sphere</u>:
- Then, $|\vec{d}_j| = \sqrt{\sum_{i=1}^n w_{i,j}^2} = 1$
- Longer documents don't get more weight

Cosine similarity

$$sim(d_{j},d_{k}) = \frac{\vec{d}_{j} \cdot \vec{d}_{k}}{\left|\vec{d}_{j}\right| \left|\vec{d}_{k}\right|} = \frac{\sum_{i=1}^{n} w_{i,j} w_{i,k}}{\sqrt{\sum_{i=1}^{n} w_{i,j}^{2}} \sqrt{\sum_{i=1}^{n} w_{i,k}^{2}}}$$

- Cosine of angle between two vectors
- The denominator involves the lengths of the vectors.

Normalized vectors

• For normalized vectors, the cosine is simply the dot product:

$$\cos(\vec{d}_j, \vec{d}_k) = \vec{d}_j \cdot \vec{d}_k$$

Example

 Docs: Austen's Sense and Sensibility, Pride and Prejudice; Bronte's Wuthering Heights. Tf weights

	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6

	SaS	PaP	WH
affection	0.996	0.993	0.847
jealous	0.087	0.120	0.466
gossip	0.017	0.000	0.254

- $\cos(SAS, PAP) = .996 \times .993 + .087 \times .120 + .017 \times 0.0 = 0.999$
- $\cos(SAS, WH) = .996 \times .847 + .087 \times .466 + .017 \times .254 = 0.889$

Cosine similarity exercises

- Exercise: Rank the following by decreasing cosine similarity. Assume tf-idf weighting:
 - Two docs that have only frequent words (the, a, an, of) in common.
 - Two docs that have no words in common.
 - Two docs that have many rare words in common (wingspan, tailfin).

Exercise

 Show that, for normalized vectors, Euclidean distance gives the same proximity ordering as the cosine measure

Queries in the vector space model

Central idea: the query as a vector:

- We regard the query as short document
- We return the documents ranked by the closeness of their vectors to the query, also represented as a vector.

$$sim(d_{j}, d_{q}) = \frac{\vec{d}_{j} \cdot \vec{d}_{q}}{\left|\vec{d}_{j}\right| \left|\vec{d}_{q}\right|} = \frac{\sum_{i=1}^{n} w_{i,j} w_{i,q}}{\sqrt{\sum_{i=1}^{n} w_{i,j}^{2}} \sqrt{\sum_{i=1}^{n} w_{i,q}^{2}}}$$

• Note that *d_a* is very sparse!

Summary: What's the point of using vector spaces?

- A well-formed algebraic space for retrieval
- Key: A user's query can be viewed as a (very) short document.
- Query becomes a vector in the same space as the docs.
- Can measure each doc's proximity to it.
- Natural measure of scores/ranking no longer Boolean.
 - Queries are expressed as bags of words

Digression: spamming indices

- This was all invented before the days when people were in the business of spamming web search engines. Consider:
 - Indexing a sensible passive document collection vs.
 - An active document collection, where people (and indeed, service companies) are shaping documents in order to maximize scores
- Vector space similarity may not be as useful in this context.

Interaction: vectors and phrases

- Scoring phrases doesn't fit naturally into the vector space world:
 - "tangerine trees" "marmalade skies"
 - Positional indexes don't calculate or store tf.idf information for *"tangerine trees"*
- Biword indexes treat certain phrases as terms
 - For these, we can pre-compute tf.idf.
 - Theoretical problem of correlated dimensions
- Problem: we cannot expect end-user formulating queries to know what phrases are indexed
- We can use a positional index to boost or ensure phrase occurrence

Vectors and Boolean queries

- Vectors and Boolean queries really don't work together very well
- In the space of terms, vector proximity selects by <u>spheres</u>: e.g., all docs having cosine similarity ≥0.5 to the query
- Boolean queries on the other hand, select by (hyper-)rectangles and their unions/intersections
- Round peg square hole

Vectors and wild cards

- How about the query tan* marm*?
 - Can we view this as a bag of words?
 - Thought: expand each wild-card into the matching set of dictionary terms.
- Danger unlike the Boolean case, we now have *tf*s and *idf*s to deal with.
- Net not a good idea.

Vector spaces and other operators

- Vector space queries are apt for no-syntax, bag-of-words queries
 - Clean metaphor for similar-document queries
- Not a good combination with Boolean, wildcard, positional query operators
- But ...

Query language vs. scoring

- May allow user a certain query language, say
 - Free text basic queries
 - Phrase, wildcard etc. in Advanced Queries.
- For scoring (oblivious to user) may use all of the above, e.g. for a free text query
 - Highest-ranked hits have query as a phrase
 - Next, docs that have all query terms near each other
 - Then, docs that have some query terms, or all of them spread out, with tf x idf weights for scoring

Efficient cosine ranking

- Find the k docs in the corpus "nearest" to the query \Rightarrow k largest query-doc cosines.
- Efficient ranking:
 - Computing a single cosine efficiently.
 - Choosing the k largest cosine values efficiently.
 - Can we do this without computing all n cosines?
 - *n* = number of documents in collection

Efficient cosine ranking

- What we're doing in effect: solving the k-nearest neighbor problem for a query vector
- In general, we do not know how to do this efficiently for high-dimensional spaces
- But it is solvable for short queries, and standard indexes are optimized to do this

Computing a single cosine

- For every term *i*, with each doc *j*, store term frequency *tf_{ij}*.
 - Some tradeoffs on whether to store term count, term weight, or weighted by idf_i.
- At query time, use an array of accumulators Scores_j to accumulate component-wise sum

$$sim(\vec{d}_j, \vec{d}_q) = \sum_{i=1}^m w_{i,j} \times w_{i,q}$$

 If you're indexing 5 billion documents (web search) an array of accumulators is infeasible

Use heap for selecting top k

- Binary tree in which each node's value > the values of children
- Takes 2n operations to construct, then each of k "winners" read off in 2log n steps.
- For n=1M, k=100, this is about 10% of the cost of sorting.

Dimensionality reduction

- What if we could take our vectors and "pack" them into fewer dimensions (say 50,000→100) while preserving distances?
- (Well, almost.)
 - Speeds up cosine computations.
- Two methods:
 - Random projection.
 - "Latent semantic indexing".

Choose a random direction x₁ in the vector space.

• For
$$i = 2$$
 to k ,

- Choose a random direction x_i that is orthogonal to x₁, x₂, ... x_{i-1}.
- Project each document vector into the subspace spanned by {x₁, x₂, ..., x_k}.

E.g., from 3 to 2 dimensions

Guarantee

- With high probability, relative distances are (approximately) preserved by projection
- But: expensive computations

Latent semantic indexing (LSI)

- Another technique for dimension reduction
- Random projection was data-*independent*
- LSI on the other hand is data-*dependent*
 - Eliminate redundant axes
 - Pull together "related" axes hopefully
 - car and automobile