
Multimedia Information
Extraction and Retrieval

Ralf Moeller
Hamburg Univ. of Technology

Similarity

Acknowledgement

•  Slides taken  
from presentation 
material for  
the following book:

Recap of the last lecture

•  Parametric and field searches
 Zones in documents

•  Can apply text queries to images due
to interpretation results

•  Scoring documents: zone weighting
 Index support for scoring

•  tf×idf and vector spaces

Indexes: “Postings lists”

•  On the query bill OR rights suppose that we
retrieve the following docs from the various zone
indexes:

bill
rights

bill
rights

bill
rights

Author

Title

Body

1

5

2

8 3

3 5 9

2 5 1

5 8 3

9

9

Recap: tf x idf (or tf.idf)

•  Assign a tf.idf weight to each term i in each
document d

•  Instead of tf, sometimes wf is used:

This lecture

•  Vector space scoring
•  Efficiency considerations

 Nearest neighbors and approximations

Documents as vectors

•  At the end of the last lecture we said:
•  Each doc d can now be viewed as a

vector of tf×idf values, one component
for each term

•  So we have a vector space
 terms are axes
 docs live in this space
 even with stemming, may have 50,000+

dimensions

Why turn docs into vectors?

•  First application: Query-by-example
 Given a doc d, find others “like” it.

• Now that d is a vector, find vectors
(docs) “near” it.

Intuition

Postulate: Documents that are “close together”
in the vector space talk about the same things.

t1

d2

d1

d3

d4

d5

t3

t2

θ
φ

Desiderata for proximity

•  If d1 is near d2, then d2 is near d1.
•  If d1 near d2, and d2 near d3, then d1 is

not far from d3.
• No doc is closer to d than d itself.
•  Triangle inequality

First cut

•  Idea: Distance between d1 and d2 is the length of
the vector d1 – d2.
  Euclidean distance:

•  Why is this not a great idea?
•  We still haven’t dealt with the issue of length

normalization
  Short documents would be more similar to each other by

virtue of length, not topic
•  However, we can implicitly normalize by looking at

angles instead

Cosine similarity

•  Distance between vectors d1 and d2 captured by the
cosine of the angle x between them.

•  Note – this is similarity, not distance
  No triangle inequality for similarity.

t 1

d 2

d 1

t 3

t 2

θ

Cosine similarity

•  A vector can be normalized (given a length of 1) by
dividing each of its components by its length – here
we use the L2 norm

•  This maps vectors onto the unit sphere:

•  Then,
•  Longer documents don’t get more weight

€

d j = wi, j

2
i=1

n
∑ =1
€

x 2 = xi
2

i∑

Cosine similarity

•  Cosine of angle between two vectors
•  The denominator involves the lengths of the

vectors.

€

sim(d j ,dk) =

d j ⋅

d k

d j

d k

=
wi, jwi,ki=1

n
∑

wi, j
2

i=1

n
∑ wi,k

2
i=1

n
∑

Normalization

Normalized vectors

•  For normalized vectors, the cosine is simply
the dot product:

Example

•  Docs: Austen's Sense and Sensibility, Pride and
Prejudice; Bronte's Wuthering Heights. Tf weights

•  cos(SAS, PAP) = .996 x .993 + .087 x .120 + .017 x 0.0 = 0.999
•  cos(SAS, WH) = .996 x .847 + .087 x .466 + .017 x .254 = 0.889

Cosine similarity exercises

•  Exercise: Rank the following by decreasing
cosine similarity. Assume tf-idf weighting:
 Two docs that have only frequent words (the, a,

an, of) in common.
 Two docs that have no words in common.
 Two docs that have many rare words in common

(wingspan, tailfin).

Exercise

•  Show that, for normalized vectors, Euclidean
distance gives the same proximity ordering
as the cosine measure

Queries in the vector space model

Central idea: the query as a vector:
•  We regard the query as short document
•  We return the documents ranked by the closeness

of their vectors to the query, also represented as a
vector.

•  Note that dq is very sparse!

Summary: What’s the point of using
vector spaces?

•  A well-formed algebraic space for retrieval
•  Key: A user’s query can be viewed as a (very) short

document.
•  Query becomes a vector in the same space as the

docs.
•  Can measure each doc’s proximity to it.
•  Natural measure of scores/ranking – no longer

Boolean.
  Queries are expressed as bags of words

Digression: spamming indices

•  This was all invented before the days when people
were in the business of spamming web search
engines. Consider:
  Indexing a sensible passive document collection vs.
  An active document collection, where people (and indeed,

service companies) are shaping documents in order to
maximize scores

•  Vector space similarity may not be as useful in this
context.

Interaction: vectors and phrases

•  Scoring phrases doesn’t fit naturally into the vector
space world:
  “tangerine trees” “marmalade skies”
  Positional indexes don’t calculate or store tf.idf

information for “tangerine trees”
•  Biword indexes treat certain phrases as terms

  For these, we can pre-compute tf.idf.
  Theoretical problem of correlated dimensions

•  Problem: we cannot expect end-user formulating
queries to know what phrases are indexed

•  We can use a positional index to boost or ensure
phrase occurrence

Vectors and Boolean queries

•  Vectors and Boolean queries really don’t work
together very well

•  In the space of terms, vector proximity selects by
spheres: e.g., all docs having cosine similarity ≥0.5
to the query

•  Boolean queries on the other hand, select by
(hyper-)rectangles and their unions/intersections

•  Round peg - square hole

Vectors and wild cards

•  How about the query tan* marm*?
 Can we view this as a bag of words?
 Thought: expand each wild-card into the

matching set of dictionary terms.
•  Danger – unlike the Boolean case, we now

have tfs and idfs to deal with.
•  Net – not a good idea.

Vector spaces and other operators

•  Vector space queries are apt for no-syntax,
bag-of-words queries
 Clean metaphor for similar-document queries

•  Not a good combination with Boolean, wild-
card, positional query operators

•  But …

Query language vs. scoring

•  May allow user a certain query language, say
  Free text basic queries
  Phrase, wildcard etc. in Advanced Queries.

•  For scoring (oblivious to user) may use all of the
above, e.g. for a free text query
  Highest-ranked hits have query as a phrase
  Next, docs that have all query terms near each other
  Then, docs that have some query terms, or all of them

spread out, with tf x idf weights for scoring

Efficient cosine ranking

•  Find the k docs in the corpus “nearest” to
the query ⇒ k largest query-doc cosines.

•  Efficient ranking:
 Computing a single cosine efficiently.
 Choosing the k largest cosine values

efficiently.
 Can we do this without computing all n

cosines?
•  n = number of documents in collection

Efficient cosine ranking

• What we’re doing in effect: solving the
k-nearest neighbor problem for a
query vector

•  In general, we do not know how to do
this efficiently for high-dimensional
spaces

•  But it is solvable for short queries, and
standard indexes are optimized to do
this

Computing a single cosine

•  For every term i, with each doc j, store term
frequency tfij.
  Some tradeoffs on whether to store term count, term

weight, or weighted by idfi.
•  At query time, use an array of accumulators Scoresj

to accumulate component-wise sum

•  If you’re indexing 5 billion documents (web search)
an array of accumulators is infeasible Ideas?

Use heap for selecting top k

•  Binary tree in which each node’s value > the values
of children

•  Takes 2n operations to construct, then each of k
“winners” read off in 2log n steps.

•  For n=1M, k=100, this is about 10% of the cost of
sorting.

1

.9 .3

.8 .3

.1

.1

Dimensionality reduction

•  What if we could take our vectors and “pack”
them into fewer dimensions (say
50,000→100) while preserving distances?

•  (Well, almost.)
 Speeds up cosine computations.

•  Two methods:
 Random projection.
 “Latent semantic indexing”.

Random projection onto k<<m axes

•  Choose a random direction x1 in the
vector space.

•  For i = 2 to k,
 Choose a random direction xi that is

orthogonal to x1, x2, … xi–1.
•  Project each document vector into

the subspace spanned by {x1, x2, …,
xk}.

E.g., from 3 to 2 dimensions

d2

d1

x1

t 3

x2

t 2

t 1

x1

x2
d2

d1

x1 is a random direction in (t1,t2,t3) space.
x2 is chosen randomly but orthogonal to x1.

Dot product of x1 and x2 is zero.

Guarantee

• With high probability, relative
distances are (approximately)
preserved by projection

•  But: expensive computations

Latent semantic indexing (LSI)

•  Another technique for dimension reduction
•  Random projection was data-independent
•  LSI on the other hand is data-dependent

 Eliminate redundant axes
 Pull together “related” axes – hopefully

  car and automobile

