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Mapping Data


http://de.wikipedia.org/wiki/Eigenvektor 



Eigenvalues & Eigenvectors


•  Eigenvectors (for a square m×m matrix S)


•  How many eigenvalues are there at most?


only has a non-zero solution if  

this is a m-th order equation in λ which can have at most m 
distinct solutions (roots of the characteristic polynomial) – can 
be complex even though S is real. 

eigenvalue (right) eigenvector 

Example 



Singular Value Decomposition


m×m m×n V is n×n 

For an m× n matrix A of rank r there exists a factorization 
(Singular Value Decomposition = SVD) as follows: 

The columns of U are orthogonal eigenvectors of AAT. 

The columns of V are orthogonal eigenvectors of ATA. 

Singular values. 

Eigenvalues λ1 … λr of AAT are the eigenvalues of ATA. 



SVD example


Let 

Thus m=3, n=2. Its SVD is 

As opposed to the presentation in the example, 
typically, the singular values arranged in decreasing order. 



•  SVD can be used to compute optimal low-rank 
approximations.


•  Approximation problem: Find Ak of rank k such that


Ak and X are both m×n matrices. 

Typically, want k << r.


Low-rank Approximation


Frobenius norm 

€ 

Ak =
X :rank(X )= k
argmin A − X F



•  Solution via SVD


Low-rank Approximation


set smallest r-k 
singular values to zero 

k 



SVD Low-rank approximation


•  Whereas the term-doc matrix A may have 
m=50000, n=10 million (and rank close to 
50000)


•  We can construct an approximation A100 with 
rank 100.

  Of all rank 100 matrices, it would have the lowest 

Frobenius error.

•  Great … but why would we??

•  Answer: Latent Semantic Indexing


C. Eckart, G. Young, The approximation of a matrix by another of lower rank. 
Psychometrika, 1, 211-218, 1936. 



What it is


•  From term-doc matrix A, we compute the 
approximation Ak.


•  There is a row for each term and a column 
for each doc in Ak


•  Thus docs live in a space of k<<r 
dimensions

 These dimensions are not the original axes


•  But why?




Vector Space Model: Pros


•  Automatic selection of index terms

•  Partial matching of queries and documents (dealing 

with the case where no document contains all search terms)

•  Ranking according to similarity score (dealing with 

large result sets)

•  Term weighting schemes (improves retrieval performance)

•  Geometric foundation




Problems with Lexical Semantics


•  Ambiguity and association in natural 
language

 Polysemy: Words often have a multitude of 

meanings and different types of usage (more 
severe in very heterogeneous collections).


 The vector space model is unable to discriminate 
between different meanings of the same word.




Problems with Lexical Semantics


 Synonymy: Different terms may have 
an dentical or a similar meaning 
(weaker: words indicating the same 
topic).


 No associations between words are 
made in the vector space 
representation.




Polysemy and Context


•  Document similarity on single word level: polysemy 
and context


car 
company 

••• 
dodge 
ford 

meaning 2 

ring 
jupiter 

••• 
space 

voyager meaning 1 

… 
saturn 

... 

… 
planet 

... 

contribution to similarity, if 
used in 1st meaning, but not 
if in 2nd  



Latent Semantic Indexing (LSI)


•  Perform a low-rank approximation of document-
term matrix (typical rank 100-300)


•  General idea

  Map documents (and terms) to a low-dimensional 

representation.

  Design a mapping such that the low-dimensional space 

reflects semantic associations (latent semantic space).

  Compute document similarity based on the inner product 

in this latent semantic space




Goals of LSI


•  Similar terms map to similar 
location in low dimensional space


• Noise reduction by dimension 
reduction




Latent Semantic Analysis


•  Latent semantic space: illustrating example


courtesy of Susan Dumais 



Performing the maps


•  Each row and column of A gets mapped into the k-
dimensional LSI space, by the SVD.


•  Claim – this is not only the mapping with the best 
(Frobenius error) approximation to A, but in fact 
improves retrieval.


•  A query q is also mapped into this space, by


  Query NOT a sparse vector.




Empirical evidence: TREC


•  Generally expect recall to improve – what about 
precision?


•  Precision at or above median TREC precision

  Top scorer on almost 20% of TREC topics


•  Slightly better on average than straight vector 
spaces


•  Effect of dimensionality:
 Dimensions Precision 
250 0.367 
300 0.371 
346 0.374 

TREC = Text REtrieval Conference benchmarks 



LSA seen as clustering


• We’ve talked about docs, queries, 
retrieval and precision here.


• What does this have to do with 
clustering?


•  Intuition: Dimension reduction 
through LSI brings together “related” 
axes in the vector space.




Intuition from block matrices


Block 1 

Block 2 

… 

Block k 
0’s 

0’s 

= Homogeneous non-zero blocks. 

m 
terms 

n documents 

What’s the rank of this matrix? 



Intuition from block matrices


Block 1 

Block 2 

… 

Block k 
0’s 

0’s 
m 
terms 

n documents 

Vocabulary partitioned into k topics (clusters); 
each doc discusses only one topic. 



Intuition from block matrices


Block 1 

Block 2 

… 

Block k 
0’s 

0’s 

= non-zero entries. 

m 
terms 

n documents 

What’s the best rank-k 
approximation to this matrix? 



Intuition from block matrices


Block 1 

Block 2 

… 

Block k 
Few nonzero entries 

Few nonzero entries 

wiper 
tire 
V6 

car 
automobile 

1 
1 
0 

0 

Likely there’s a good rank-k 
approximation to this matrix. 



Simplistic picture


Topic 1 

Topic 2 

Topic 3 



Some wild extrapolation


• The “dimensionality” of a corpus is 
the number of distinct topics 
represented in it.


• More mathematical wild 
extrapolation:

 if A has a rank k approximation of 

low Frobenius error, then there are 
no more than k distinct topics in the 
corpus.



