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Ac know ledg ements

• Slides taken from:
 Introduction to Information Retrieval
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This  lec ture

• Results summaries:
• Making our good results usable to a user

• How do we know if our results are any 
good? 
• Evaluating a search engine

• Benchmarks, Precision and recall

• Query Reformulation/Expansion



R es ults  s ummaries



S ummaries

• Having ranked the documents matching a 
query, we wish to present a results list

• Most commonly, the document title plus a 
short summary

• The title is typically automatically extracted 
from document metadata

• What about the summaries?



S ummaries

• A s ta tic  s ummary of a document is 
always the same, regardless of the query 
that hit the doc

• Dynamic  s ummaries  are query-
dependent attempt to explain why the 
document was retrieved for the query at 
hand



S ta tic  s ummaries

• In typical systems, the static summary is a 
subset of the document

• Simplest heuristic: the first 50 (or so – this 
can be varied) words of the document
• Summary cached at indexing time

• More sophisticated: extract from each 
document a set of “key” sentences
• Simple NLP heuristics to score each sentence
• Summary is made up of top-scoring sentences.

• Most sophisticated: NLP used to synthesize a 
summary
• Seldom used in IR (hard to automatize)



Dynamic  s ummaries

• Present one or more “windows” within the 
document that contain several of the query terms
• “KWIC” snippets: Keyword in Context presentation

• Generated in conjunction with scoring
• If query found as a phrase, the/some occurrences of 

the phrase in the doc
• If not, windows within the doc that contain multiple 

query terms
• The summary itself gives the entire content of the 

window – all terms, not only the query terms



G enerating  dynamic  
s ummaries

• If we have only a positional index, we cannot 
(easily) reconstruct context surrounding hits

• If we cache the documents  at index time, can 
run the window through it, cueing to hits 
found in the positional index
• E.g., positional index says “the query is a phrase 

in position 4378” so we go to this position in the 
cached document and stream out the content

• Most often, cache a fixed-size prefix of the 
doc
• Note: Cached copy can be outdated



Dynamic  s ummaries

• Producing good dynamic summaries is a 
tricky optimization problem
• The real estate for the summary is normally small 

and fixed
• Want short item, so show as many KWIC 

matches as possible, and perhaps other things 
like title

• Want snippets to be long enough to be useful
• Want linguistically well-formed snippets: users 

prefer snippets that contain complete phrases
• Want snippets maximally informative about doc

• But users really like snippets, even if they 
complicate IR system design



E va luating  s earc h 
eng ines

Task:
Which measures can you think of?



M eas ures  for a  s earc h 
eng ine

• How fast does it index
• Number of documents/hour
• (Average document size)

• How fast does it search
• Latency as a function of index size

• Expressiveness of query language
• Ability to express complex information needs
• Speed on complex queries



M eas ures  for a  s earc h 
eng ine

• All of the preceding criteria are 
measurable: we can quantify speed/size; 
we can make expressiveness precise

• The key measure: user happiness
• What is this?
• Speed of response/size of index are factors
• But blindingly fast, useless answers won’t 

make a user happy
• Need a way of quantifying user happiness



M eas uring  us er happines s

• Issue: who is the user we are trying to make 
happy?
• Depends on the setting

• Web engine: user finds what they want and 
return to the engine
• Can measure rate of return users

• eCommerce site: user finds what they want 
and make a purchase
• Is it the end-user, or the eCommerce site, whose 

happiness we measure?
• Measure time to purchase, or fraction of 

searchers who become buyers?



M eas uring  us er happines s

• Enterprise (company/govt/academic): 
Care about “user productivity”
• How much time do my users save when 

looking for information?
• Many other criteria having to do with breadth 

of access, secure access, etc.

• To sum up: this is really hard!



E va luating  an IR  s ys tem

• Note: the information need  is translated into a 
query

• Relevance is assessed relative to the 
information need not the query

• E.g., Information need: I'm looking for information 
on whether drinking red wine is more effective at 
reducing your risk of heart attacks than white 
wine.

• Query: wine red wh ite heart attack 
effective

• You evaluate whether the doc addresses the 
information need, not whether it has those words



S tandard relevanc e 
benc hmarks

• TREC - National Institute of Standards and 
Testing (NIST) has run a large IR test bed for 
many years

• Reuters and other benchmark doc collections 
used

• “Retrieval tasks” specified
• sometimes as queries

• Human experts mark, for each query and for 
each doc, Relevant or Irrelevant
• or at least for subset of docs that some system 

returned for that query



U nranked retrieva l eva luation:
Prec is ion and R ec a ll

• Prec is ion: fraction of retrieved docs that 
are relevant = P(relevant|retrieved)

• R ec a ll: fraction of relevant docs that are 
retrieved = P(retrieved|relevant)

• Precision P = tp/(tp + fp)
• Recall      R = tp/(tp + fn)

Relevant Not Relevant

Retrieved tp fp

Not Retrieved fn tn



Ac c urac y

• Given a query an engine classifies each 
doc as “Relevant” or “Irrelevant”.

• Accuracy of an engine: the fraction of 
these classifications that is correct.

• Why is this not a very useful evaluation 
measure in IR?



Why not jus t us e ac c urac y?

• How to build a 99.9999% accurate search engine 
on a low budget….

• People doing information retrieval want to find 
something and have a certain tolerance for junk.

Search for: 

0 matching results found.



Prec is ion/R ec a ll

• You can get high recall (but low 
precision) by retrieving all docs for all 
queries!

• Recall is a non-decreasing function of the 
number of docs retrieved

• In a good system, precision decreases as 
either number of docs retrieved or recall 
increases
• A fact with strong empirical confirmation



Diffic ulties  in us ing  
prec is ion/rec a ll

• Should average over large corpus/query 
ensembles

• Need human relevance assessments
• People aren’t reliable assessors

• Assessments have to be binary
• Nuanced assessments?



A  c ombined meas ure: F

• Combined measure that assesses this tradeoff is 
F measure (weighted harmonic mean):

• People usually use balanced F1 measure
•   i.e., with β = 1 or α = ½

• Harmonic mean is a conservative average
• See CJ van Rijsbergen, Information Retrieval
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F 1 and other averag es
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E va luating  ranked res ults

• Evaluation of ranked results:
• The system can return any number of results
• By taking various numbers of the top returned 

documents (levels of recall), the evaluator can 
produce a precision-recall curve



A  prec is ion-rec a ll c urve
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Averag ing  over queries

• A precision-recall graph for one query isn’t 
a very sensible thing to look at

• You need to average performance over a 
whole bunch of queries.

• But there’s a technical issue: 
• Precision-recall calculations place some 

points on the graph
• How do you determine a value (interpolate) 

between the points?



E va luation

• Graphs are good, but people want summary 
measures!
• Precision at fixed retrieval level

• Perhaps most appropriate for web search: all people 
want are good matches on the first one or two results 
pages

• But has an arbitrary parameter of k
• 11-point interpolated average precision

• The standard measure in the TREC competitions: you 
take the precision at 11 levels of recall varying from 0 to 
1 by tenths of the documents, using interpolation (the 
value for 0 is always interpolated!), and average them

• Evaluates performance at all recall levels



Typic a l (g ood) 11 point 
prec is ions

• SabIR/Cornell 8A1 11pt precision from TREC 8 (1999) 
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C reating  Tes t C ollec tions
for IR  E va luation



Tes t C orpora



From c orpora  to tes t 
c ollec tions

• Still need
• Test queries
• Relevance assessments

• Test queries
• Must be germane to docs available
• Best designed by domain experts
• Random query terms generally not a good idea

• Relevance assessments
• Human judges, time-consuming
• Are human panels perfect?



U nit of E va lua tion

• We can compute precision, recall, F, and 
ROC curve for different units.

• Possible units
• Documents (most common)
• Facts (used in some TREC evaluations)
• Entities (e.g., car companies)

• May produce different results. Why?



K appa  meas ure for inter-
judg e (dis )ag reement

• Kappa measure
• Agreement measure among judges
• Designed for categorical judgments
• Corrects for chance agreement

• Kappa = [ P(A) – P(E) ] / [ 1 – P(E) ]
• P(A) – proportion of time judges agree
• P(E) – what agreement would be by chance
• Kappa = 0 for chance agreement, 1 for total agreement.



K appa  M eas ure: E xample

Number of docs Judge 1 Judge 2

300 Relevant Relevant

70 Nonrelevant Nonrelevant

20 Relevant Nonrelevant

10 Nonrelevant relevant

P(A)? P(E)?



K appa  E xample

• P(A) = 370/400 = 0.925
• P(nonrelevant) = (10+20+70+70)/800 = 0.2125
• P(relevant) = (10+20+300+300)/800 = 0.7878
• P(E) = 0.2125^2 + 0.7878^2 = 0.665
• Kappa = (0.925 – 0.665)/(1-0.665) = 0.776

• Kappa > 0.8 = good agreement
• 0.67 < Kappa < 0.8 -> “tentative conclusions” (Carletta   
’96)

• Depends on purpose of study 
• For >2 judges: average pairwise kappas 



C an w e avoid human 
judg ment?

• Not really
• Makes experimental work hard

• Especially on a large scale
• In some very specific settings, can use 

proxies
• Example below, approximate vector space 

retrieval
• But once we have test collections, we can 

reuse them (so long as we don’t overtrain too 
badly)



Approximate vec tor 
retrieva l

• Given n document vectors and a query, 
find the k doc vectors closest to the query.
• Exact retrieval – we know of no better way 

than to compute cosines from the query to 
every doc

• Approximate retrieval schemes
• Given such an approximate retrieval 

scheme, how do we measure its 
goodness?



Approximate vec tor 
retrieva l

• Let G(q) be the “ground truth” of the actual 
k closest docs on query q

• Let A(q) be the k docs returned by 
approximate algorithm A on query q

• For performance we would measure A(q) 
∩ G(q)
• Is this the right measure?



A lternative propos a l

• Focus instead on how A(q) compares to 
G(q).

• Goodness can be measured here in 
cosine proximity to q: we sum up q•d over 
d∈ A(q).

• Compare this to the sum of q•d over d∈ 
G(q).
• Yields a measure of the relative “goodness” of 

A vis-à-vis G .



What now ?

• Improving results
• For high recall. E.g., searching for aircraft doesn’t 

match with plane; nor thermodynamic with heat
• Options for improving results…

• Focus on relevance feedback
• The complete landscape

• Global methods
• Query expansion

• Thesauri
• Automatic thesaurus generation

• Local methods
• Relevance feedback
• Pseudo relevance feedback



Query
expans ion



R elevanc e Feedbac k

• Relevance feedback: user feedback on 
relevance of docs in initial set of results
• User issues a (short, simple) query
• The user marks returned documents as relevant 

or non-relevant.
• The system computes a better representation of 

the information need based on feedback.
• Relevance feedback can go through one or 

more iterations.
• Idea: it may be difficult to formulate a good 

query when you don’t know the collection 
well, so iterate



R elevanc e Feedbac k: 
E xample

• Image search engine 
http://nayana.ece.ucsb.edu/imsearch/imsearch.html



R es ults  for Initia l Query



R es ults  a fter R elevanc e 
Feedbac k



R oc c hio A lg orithm

• The Rocchio algorithm incorporates relevance 
feedback information into the vector space 
model.

• Want to maximize sim (Q, C r)  -  sim (Q, C nr)
• The optimal query vector for separating relevant 

and non-relevant documents (with cosine sim.):

• Q opt = optimal query; C r = set of rel. doc vectors; N  = collection size

• Unrealistic: we don’t know relevant documents.
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The Theoretic a lly B es t 
Query 
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Roc chio 1971 A lg orithm 
(S M AR T)

• Used in practice:

• qm = modified query vector; q0 = original query vector; α,β,γ: 
weights (hand-chosen or set empirically); D r  = set of known 
relevant doc vectors; D nr = set of known irrelevant doc vectors

• New query moves toward relevant documents and 
away from irrelevant documents

• Tradeoff α vs. β/γ : If we have a lot of judged 
documents, we want a higher β/γ.

• Term weight can go negative
• Negative term weights are ignored (set to 0)
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R elevanc e feedbac k on initia l 
query 
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R elevanc e Feedbac k in vec tor 
s pac es

• We can modify the query based on 
relevance feedback and apply standard 
vector space model.

• Use only the docs that were marked.
• Relevance feedback can improve recall and 

precision
• Relevance feedback is most useful for 

increasing recall in situations where recall is 
important
• Users can be expected to review results and to 

take time to iterate



Pos itive vs  N eg ative 
Feedbac k

• Positive feedback is more valuable than 
negative feedback (so, set  γ < β; e.g. γ = 
0.25, β = 0.75).

• Many systems only allow positive 
feedback (γ=0). Why?



H ig h-dimens iona l V ec tor 
S pac es

• The queries “cholera” and “john snow” are 
far from each other in vector space.

• How can the document “John Snow and 
Cholera” be close to both of them?

• Our intuitions for 2- and 3-dimensional 
space don't work in >10,000 dimensions.

• 3 dimensions: If a document is close to 
many queries, then some of these queries 
must be close to each other.

• Doesn't hold for a high-dimensional space.



R elevanc e Feedbac k: A s s umptions

• A1: User has sufficient knowledge for initial 
query.

• A2: Relevance prototypes are “well-behaved”.
• Term distribution in relevant documents will be 

similar 
• Term distribution in non-relevant documents will be 

different from those in relevant documents
• Either: All relevant documents are tightly clustered around a 

single prototype.
• Or: There are different prototypes, but they have significant 

vocabulary overlap.
• Similarities between relevant and irrelevant documents are 

small



V iola tion of A1

• User does not have sufficient initial 
knowledge.

• Examples:
• Misspellings (Brittany Speers).
• Cross-language information retrieval 

(hígado).
• Mismatch of searcher’s vocabulary vs. 

collection vocabulary
• Cosmonaut/astronaut



V iola tion of A2

• There are several relevance prototypes.
• Examples:

• Burma/Myanmar
• Contradictory government policies
• Pop stars that worked at Burger King

• Often: instances of a general concept
• Good editorial content can address 

problem
• Report on contradictory government policies



R elevanc e Feedbac k: 
P roblems

• Why do most search engines not use 
relevance feedback?



R elevanc e Feedbac k: 
P roblems

• Long queries are inefficient for typical IR 
engine.
• Long response times for user.
• High cost for retrieval system.
• Partial solution:

• Only reweight certain prominent terms
• Perhaps top 20 by term frequency

• Users are often reluctant to provide explicit 
feedback

• It’s often harder to understand why a 
particular document was retrieved after 
apply relevance feedback

Why?



R elevanc e Feedbac k E xample: 
Initia l Query and Top 8 R es ults

• Query: New space satellite applications

• + 1. 0.539, 08/13/91, NASA Hasn't Scrapped Imaging Spectrometer
• + 2. 0.533, 07/09/91, NASA Scratches Environment Gear From 

Satellite Plan
•    3. 0.528, 04/04/90, Science Panel Backs NASA Satellite Plan, But 

Urges Launches of Smaller Probes
•    4. 0.526, 09/09/91, A NASA Satellite Project Accomplishes 

Incredible Feat: Staying Within Budget
•    5. 0.525, 07/24/90, Scientist Who Exposed Global Warming 

Proposes Satellites for Climate Research
•    6. 0.524, 08/22/90, Report Provides Support for the Critics Of 

Using Big Satellites to Study Climate
•    7. 0.516, 04/13/87, Arianespace Receives Satellite Launch Pact 

From Telesat Canada
• + 8. 0.509, 12/02/87, Telecommunications Tale of Two Companies

Note: want high recall



R elevanc e Feedbac k 
E xample: E xpanded Query

• 2.074 new 15.106 space
• 30.816 satellite 5.660 application
• 5.991 nasa 5.196 eos
• 4.196 launch 3.972 aster
• 3.516 instrument 3.446 arianespace
• 3.004 bundespost 2.806 ss
• 2.790 rocket 2.053 scientist
• 2.003 broadcast 1.172 earth
• 0.836 oil 0.646 measure



Top 8 R es ults  A fter 
R elevanc e Feedbac k

• + 1. 0.513, 07/09/91, NASA Scratches Environment Gear From 
Satellite Plan

• + 2. 0.500, 08/13/91, NASA Hasn't Scrapped Imaging Spectrometer
•    3. 0.493, 08/07/89, When the Pentagon Launches a Secret 

Satellite, Space Sleuths Do Some Spy Work of Their Own
•    4. 0.493, 07/31/89, NASA Uses 'Warm‘ Superconductors For Fast 

Circuit
• + 5. 0.492, 12/02/87, Telecommunications Tale of Two Companies
•    6. 0.491, 07/09/91, Soviets May Adapt Parts of SS-20 Missile For 

Commercial Use
•    7. 0.490, 07/12/88, Gaping Gap: Pentagon Lags in Race To Match 

the Soviets In Rocket Launchers
•    8. 0.490, 06/14/90, Rescue of Satellite By Space Agency To Cost 

$90 Million



R elevanc e Feedbac k on the Web
[in 2003: now  les s  major s earc h eng ines , but s ame g enera l 

s tory]

• Some search engines offer a similar/related pages feature 
(this is a trivial form of relevance feedback)
• Google (link-based)
• Altavista
• Stanford WebBase

• But some don’t because it’s hard to explain to average user:
• Alltheweb
• msn
• Yahoo

• Excite initially had true relevance feedback, but abandoned it 
due to lack of use.

α/β/γ ??



R elevanc e Feedbac k
S ummary

 Relevance feedback has been shown to be very 
effective at improving relevance of results.
Requires enough judged documents, otherwise it’s 

unstable (≥ 5 recommended)
Requires queries for which the set of relevant 

documents is medium to large
 Full relevance feedback is painful for the user.
 Full relevance feedback is not very efficient in most 

IR systems.
 Other types of interactive retrieval may improve 

relevance by as much with less work.



The c omplete lands c ape

• Global methods
• Query expansion/reformulation

• Thesauri (or WordNet)
• Automatic thesaurus generation

• Global indirect relevance feedback
• Local methods

• Relevance feedback
• Pseudo relevance feedback



Query E xpans ion

• In relevance feedback, users give 
additional input (relevant/non-relevant) on 
documents, which is used to reweight 
terms in the documents

• In query expansion, users give additional 
input (good/bad search term) on words or 
phrases.



Query E xpans ion: E xample

Also: see www.altavista.com, www.teoma.com



Types  of Query E xpans ion

• Global Analysis: (static; of all documents in collection)
• Controlled vocabulary

• Maintained by editors (e.g., medline)
• Manual thesaurus

• E.g. MedLine: physician, syn: doc, doctor, MD, medico
• Automatically derived thesaurus

• (co-occurrence statistics)
• Refinements based on query log mining

• Common on the web
• Local Analysis: (dynamic)

• Analysis of documents in result set



C ontrolled V oc abulary



Thes aurus -bas ed Query 
E xpans ion

• This doesn’t require user input
• For each term, t, in a query, expand the query with synonyms 

and related words of t from the thesaurus
• feline → feline cat

• May weight added terms less than original query terms.
• Generally increases recall.
• Widely used in many science/engineering fields
• May significantly decrease precision, particularly with 

ambiguous terms.
• “interest rate” → “interest rate fascinate evaluate”

• There is a high cost of manually producing a thesaurus
• And for updating it for scientific changes



Automatic  Thes aurus  
G eneration

E xample



Query E xpans ion: S ummary

 Query expansion is often effective in increasing 
recall.
Not always with general thesauri
 Fairly successful for subject-specific collections

 In most cases, precision is decreased, often 
significantly.

 Overall, not as useful as relevance feedback; may 
be as good as pseudo-relevance feedback
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