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Query 

How exact is the  
representation of the document ? 

How exact is the  
representation of the query ? 

How well is query  
matched to data? 
How relevant is the result 
to the query ? 

Document collection 

Document Representation 

Query  
representation 

Query 
Answer TYPICAL IR 

PROBLEM 



Recall and Precision




Why probabilities in IR?


User  
Information Need 

Documents 
Document 

Representation 

Query 
Representation 

In traditional IR systems, matching between each document and 
query is attempted in a semantically imprecise space of index terms. 

Probabilities provide a principled foundation for uncertain reasoning. 
Can we use probabilities to quantify our uncertainties? 

Uncertain guess of 
whether document 
has relevant content 

Understanding 
of user need is 
uncertain 



Why use probabilities ?


•  Information Retrieval deals with 
uncertain information


•  Probability theory seems to be the 
most natural way to quantify 
uncertainty




Probabilistic Approaches to IR


•  Probability Ranking Principle (Robertson, 70ies; 
Maron, Kuhns, 1959)


•  Information Retrieval as Probabilistic Inference (van 
Rijsbergen & co, since 70ies)


•  Probabilistic Indexing (Fuhr & Co.,late 80ies-90ies)

•  Bayesian Nets in IR (Turtle, Croft, 90ies)

•  Probabilistic Logic Programming in IR (Fuhr & co, 

90ies)


Success : varied 



Next: Probability Ranking 
Principle




Probability Ranking Principle




Probability Ranking Principle




Probability Ranking Principle


If a reference retrieval system’s response to each request is 
a ranking of the documents in the collections in order of 
decreasing probability of usefulness to the user who 
submitted the request ...


… where the probabilities are estimated as accurately as 
possible on the basis of whatever data made available to 
the system for this purpose  ...


… then the overall effectiveness of the system to its users 

will be the best that is obtainable on the basis of that data.

W.S. Cooper




Let us remember Probability Theory


•  Bayesian probability formulas


• Odds:
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Odds vs. Probabilities




Probability Ranking Principle


Let x be a document in the retrieved collection.  
Let R represent  relevance of a document w.r.t. given (fixed)  
query  and let NR represent non-relevance. 
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p(x|R), p(x|NR) - probability that if a relevant (non-relevant) 
 document is retrieved, it is x. 

Need to find p(R|x) - probability that a retrieved document x  
is relevant. 

p(R),p(NR) - prior probability 
of retrieving a relevant or non- 
relevant document, respectively 



Probability Ranking Principle
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Ranking Principle (Bayes’ Decision Rule): 
If p(R|x) > p(NR|x) then  x   is relevant, 
otherwise x  is not relevant 

•  Note: 

€ 

p(R | x) + p(NR | x) =1



Probability Ranking Principle


Claim: PRP minimizes the average probability of error 
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p(error) is minimal when all p(error|x) are minimimal. 
Bayes’ decision rule minimizes each p(error|x). 



Probability Ranking Principle


•  More complex case: retrieval costs.

  C - cost of retrieval of relevant document

  C’ - cost of retrieval of non-relevant document

  let d, be a document


•  Probability Ranking Principle: if 

for all d’ not yet retrieved, then d is the next 
document to be retrieved
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PRP: Issues (Problems?)


•  How do we compute all those 
probabilities?

 Cannot compute exact probabilities, have to 

use estimates. 

 Binary Independence Retrieval (BIR)


  See below 

•  Restrictive assumptions


 “Relevance” of each document is independent 
of relevance of other documents.


 Most applications are for Boolean model.




Next: Probabilistic 
Inference




Probabilistic Inference


•  Represent each document as a collection 
of sentences (formulas) in some logic.


•  Represent each query as a sentence in the 
same logic.


•  Treat Information Retrieval as a process 
of inference: document D is relevant for 
query Q if                       is high in the 
inference system of selected logic.
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Probabilistic Inference: Notes


•                   is the probability that the 
description of the document in the logic 
implies the description of the query.

        is not necessarily material implication: 


•  Reasoning to be done in some kind of 
probabilistic logic
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Probabilistic Logic


From: Th. Lukasievicz, U. Straccia 



Probabilistic Inference: Roadmap


• Describe your own probabilistic logic/
inference system

 document / query representation

 inference rules


• Given query Q compute                       
for each document D  


•  Select the “winners”


)( QDp →



Probabilistic Inference: Pros/Cons


•  Flexible: Create-
Your-Own-Logic 
approach


•  Possibility for 
provable properties 
for PI based IR.


•  Another look at the 
same problem ?


•  Vague: PI is just a 
broad framework not 
a cookbook


•  Efficiency: 

  Computing 

probabilities always 
hard; 


  Probabilistic Logics are 
notoriously inefficient 
(up to being 
undecidable)


Pros: Cons: 



Next: Bayesian Nets in IR




Bayesian Nets in IR


•  Bayesian Nets is the most popular way 
of doing probabilistic inference.


• What is a Bayesian Net ?

• How to use Bayesian Nets in IR?




Bayesian Nets


a b 

c 

a,b,c - propositions (events). 

p(c|ab) for all values  
for a,b,c 

p(a) 

p(b) 

•  Running Bayesian Nets: 

Given probability distributions 
for roots and conditional  
probabilities can compute  
apriori probability of any instance 

Fixing assumptions (e.g., b  
was observed) will cause  
recomputation of probabilities  

Conditional  
dependence 

For more information see J. Pearl, “Probabilistic Reasoning  
in Intelligent Systems: Networks of Plausible Inference”, 
1988, Morgan-Kaufman. 



Toy Example


Gloom 
(g) 

Finals 
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(d) 
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Independence Assumptions


•   Independence assumption: 
    P(t|g, f)=P(t|g) 
•   Joint probability 
   P(f d n g t) 
   =P(f) P(d) P(n|f) P(g|f d) P(t|g) 

Gloom 
(g) 

Finals 
(f) 

Project Due 
(d) 

No Sleep 
(n) 

Triple Latte 
(t) 



Bayesian Nets for IR: Idea


Document Network 

Query Network 

Large, but 
Compute once for each  
document collection 

Small, compute once for 
every query 

d1 dn d2 

t1 t2 tn 

r1 r2 r3 rk 

di -documents 
ti - document representations 
ri - “concepts” tn’ 

I 

q2 q1 

cm c2 c1 ci - query concepts 

qi - high-level concepts 

I - goal node 



Example: “reason trouble –two”


Hamlet Macbeth 

reason double 

reason two 

OR NOT 

User query 

trouble 

trouble 

Document 
Network 

Query 
Network 



Bayesian Nets for IR: Roadmap


•  Construct Document Network (once !)

•  For each query


 Construct best Query Network 

 Attach it to Document Network

 Find subset of di’s which maximizes the 

probability value of node I (best subset).

 Retrieve these di’s as the answer to 

query.




Bayesian Nets in IR: Pros / Cons


•  More of a cookbook 
solution


•  Flexible:create-your- 
own Document 
(Query)  Networks


•  Relatively easy to 
update


•  Generalizes other 
Probabilistic 
approaches

  PRP

  Probabilistic Indexing


•  Best-Subset 
computation is NP-
hard

  have to use quick 

approximations

  approximated Best 

Subsets may not 
contain best 
documents


•  Where Do we get the 
numbers ?


•  Pros •  Cons 



Next: Probabilistic Logic 
Programming in IR




Probabilistic LP in IR


•  Probabilistic Inference estimates                             
in some probabilistic logic


•  Most probabilistic logics are hard

•  Logic Programming: possible solution


 logic programming languages are restricted

 but decidable


•  Logic Programs may provide flexibility (write 
your own IR program)


•  Fuhr & Co: Probabilistic Datalog


)( QDp →



Probabilistic Datalog: Example


0.7 term(d1,ir). 

0.8 term(d1,db). 

0.5 link(d2,d1).  

about(D,T):- term(D,T). 
about(D,T):- link(D,D1), about(D1,T). 

•  Sample Program: 

•  Query/Answer: 

:- term(X,ir) & term(X,db). 
X= 0.56 d1 



Probabilistic Datalog: Example


0.7 term(d1,ir). 

0.8 term(d1,db). 

0.5 link(d2,d1).  

about(D,T):- term(D,T). 
about(D,T):- link(D,D1), about(D1,T). 

•  Sample Program: 

•  Query/Answer: 
q(X):- term(X,ir). 
q(X):- term(X,db). 
:-q(X) 
X= 0.94 d1 



Probabilistic Datalog: Example


0.7 term(d1,ir). 

0.8 term(d1,db). 

0.5 link(d2,d1).  

about(D,T):- term(D,T). 
about(D,T):- link(D,D1), about(D1,T). 

•  Sample Program: 

•  Query/Answer: 

:- about(X,db). 
X= 0.8 d1; 
X= 0.4 d2 



Probabilistic Datalog: Example


0.7 term(d1,ir). 

0.8 term(d1,db). 

0.5 link(d2,d1).  

about(D,T):- term(D,T). 
about(D,T):- link(D,D1), about(D1,T). 

•  Sample Program: 

•  Query/Answer: 

:- about(X,db)& about(X,ir). 
X= 0.56 d1 
X= 0.28 d2  # NOT 0.14 = 0.8*0.5*0.7*0.5 



Probabilistic Datalog: Issues


•  Possible Worlds Semantics

•  Lots of restrictions (!)


 all statements are either independent or 
disjoint

 not clear how this is distinguished 

syntactically

 point probabilities 

 needs to carry a lot of information along 

to support reasoning because of 
independence assumption




Next: Relevance Models




Relevance models




Binary Independence Retrieval


•  Traditionally used in conjunction with PRP

•  “Binary” = Boolean: documents are represented as 

binary vectors of terms:

   

                iff  term i is present in document x.


•  “Independence”: terms occur in documents 
independently  


•  Different documents can be modeled as same 
vector.
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Binary Independence Retrieval


• Queries: binary vectors of terms

• Given query q, 


 for each document d need to compute  
p(R|q,d).


 replace with computing p(R|q,x) where x 
is vector representing d


•  Interested only in ranking

• Will use odds:


),|(
),|(

)|(
)|(

),|(
),|(),|(

qNRxp
qRxp

qNRp
qRp

xqNRp
xqRpxqRO 






⋅==



Binary Independence Retrieval


•  Using Independence Assumption: 

∏
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Constant for 
each query Needs estimation 
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Binary Independence Retrieval
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Then... 



All matching terms Non-matching 
query terms 

Binary Independence Retrieval


All matching terms All query terms 
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Binary Independence Retrieval


Constant for 
each query 

Only quantity to be estimated  
for rankings 
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Binary Independence Retrieval


•  All boils down to computing RSV. 
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So, how do we compute ci’s from our data ? 



Binary Independence Retrieval


•  Estimating RSV coefficients. 
•  For each term i look at the following table: 

Document 
 

Relevant Non-Relevant Total 

X i=1 s n-s n 
X i= 0  S-s N-n-S+s N-n 
Total S N-S N 
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•  Estimates: 



Binary Independence Indexing


•  “Learning” from queries

 More queries: better results


•  p(q|x,R) - probability that if 
document x had been deemed 
relevant, query q had been asked


•  The rest of the framework is similar 
to BIR
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Binary Independence Indexing vs. 
Binary Independence Retrieval
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•  Many Documents,  
One Query


•  Bayesian Probability:


•  Varies: document 
representation


•  Constant: query 
(representation)


•  One Document,  
Many Queries


•  Bayesian Probability


•  Varies: query

•  Constant: document




Estimation – key challenge


•  If non-relevant documents are approximated by 
the whole collection, then ri (prob. of occurrence 
in non-relevant documents for query) is n/N and

  log (1– ri)/ri = log (N– n)/n ≈ log N/n = IDF!


•  pi (probability of occurrence in relevant 
documents) can be estimated in various ways:

  from relevant documents if know some


  Relevance weighting can be used in feedback loop

  constant (Croft and Harper combination match) – then 

just get idf weighting of terms

  proportional to prob. of occurrence in collection


  more accurately, to log of this (Greiff, SIGIR 1998)


•  We have a nice theoretical foundation of wTD.IDF




54 

Iteratively estimating pi


1.  Assume that pi constant over all xi  in query

  pi = 0.5 (even odds) for any given doc


2.  Determine guess of relevant document set:

  V is fixed size set of highest ranked documents on this 

model (note: now a bit like tf.idf!)

3.  We need to improve our guesses for pi and ri, so


  Use distribution of xi in docs in V. Let Vi be set of 
documents containing xi 

  pi = |Vi| / |V|


  Assume if not retrieved then not relevant 

  ri  = (ni – |Vi|) / (N – |V|)


4.  Go to 2. until converges then return ranking




Probabilistic Relevance Feedback


1.  Guess a preliminary probabilistic description of R 
and use it to retrieve a first set of documents V, as 
above.


2.  Interact with the user to refine the description: 
learn some definite members of R and NR


3.  Reestimate pi and ri on the basis of these

  Or can combine new information with original guess (use 

Bayesian prior):


7.  Repeat, thus generating a succession of 
approximations to R. 


κ  is  
prior 

weight 



PRP and BIR: The lessons


•  Getting reasonable approximations of 
probabilities is possible.


•  Simple methods work only with restrictive 
assumptions:

 term independence

 terms not in query do not affect the 

outcome

 boolean representation of documents/

queries

 document relevance values are 

independent

•  Some of these assumptions can be removed




Removing term independence


•  In general, index terms 
aren’t independent


•  Dependencies can be 
complex


•  van Rijsbergen (1979) 
proposed model of simple 
tree dependencies

  Exactly Friedman and 

Goldszmidt’s Tree 
Augmented Naive  Bayes 
(AAAI 13, 1996)


•  Each term dependent on 
one other


•  In 1970s, estimation 
problems held back success 
of this model




Food for thought


•  Think through the differences between 
standard tf.idf and the probabilistic 
retrieval model in the first iteration


•  Think through the differences between 
vector space (pseudo) relevance 
feedback and probabilistic (pseudo) 
relevance feedback




Good and Bad News


•  Standard Vector Space Model

  Empirical for the most part; success measured by results

  Few properties provable


•  Probabilistic Model Advantages

  Based on a firm theoretical foundation

  Theoretically justified optimal ranking scheme


•  Disadvantages

  Making the initial guess to get V

  Binary word-in-doc weights (not using term frequencies)

  Independence of terms (can be alleviated)

  Amount of computation

  Has never worked convincingly better in practice



