
Multimedia Information
Extraction and Retrieval

Probabilistic Information Retrieval

Ralf Moeller

Hamburg Univ. of Technology

Acknowledgements

•  Slides taken from:

 Introduction to Information Retrieval  

Christopher Manning and Prabhakar Raghavan

Query

How exact is the
representation of the document ?

How exact is the
representation of the query ?

How well is query
matched to data?
How relevant is the result
to the query ?

Document collection

Document Representation

Query
representation

Query
Answer TYPICAL IR

PROBLEM

Recall and Precision

Why probabilities in IR?

User
Information Need

Documents
Document

Representation

Query
Representation

In traditional IR systems, matching between each document and
query is attempted in a semantically imprecise space of index terms.

Probabilities provide a principled foundation for uncertain reasoning.
Can we use probabilities to quantify our uncertainties?

Uncertain guess of
whether document
has relevant content

Understanding
of user need is
uncertain

Why use probabilities ?

•  Information Retrieval deals with
uncertain information

•  Probability theory seems to be the
most natural way to quantify
uncertainty

Probabilistic Approaches to IR

•  Probability Ranking Principle (Robertson, 70ies;
Maron, Kuhns, 1959)

•  Information Retrieval as Probabilistic Inference (van
Rijsbergen & co, since 70ies)

•  Probabilistic Indexing (Fuhr & Co.,late 80ies-90ies)

•  Bayesian Nets in IR (Turtle, Croft, 90ies)

•  Probabilistic Logic Programming in IR (Fuhr & co,

90ies)

Success : varied

Next: Probability Ranking
Principle

Probability Ranking Principle

Probability Ranking Principle

Probability Ranking Principle

If a reference retrieval system’s response to each request is
a ranking of the documents in the collections in order of
decreasing probability of usefulness to the user who
submitted the request ...

… where the probabilities are estimated as accurately as
possible on the basis of whatever data made available to
the system for this purpose ...

… then the overall effectiveness of the system to its users

will be the best that is obtainable on the basis of that data.

W.S. Cooper

Let us remember Probability Theory

•  Bayesian probability formulas

• Odds:

)(1
)(

)(
)()(

yp
yp

yp
ypyO

−
==

)()|()()|(
)(
)()|()|(

)()|()()()|(

apabpbpbap
bp
apabpbap

apabpbapbpbap

=

=

=∩=

Odds vs. Probabilities

Probability Ranking Principle

Let x be a document in the retrieved collection.
Let R represent relevance of a document w.r.t. given (fixed)
query and let NR represent non-relevance.

)(
)()|()|(

)(
)()|()|(

xp
NRpNRxpxNRp

xp
RpRxpxRp

=

=

p(x|R), p(x|NR) - probability that if a relevant (non-relevant)
 document is retrieved, it is x.

Need to find p(R|x) - probability that a retrieved document x
is relevant.

p(R),p(NR) - prior probability
of retrieving a relevant or non-
relevant document, respectively

Probability Ranking Principle

)(
)()|()|(

)(
)()|()|(

xp
NRpNRxpxNRp

xp
RpRxpxRp

=

=

Ranking Principle (Bayes’ Decision Rule):
If p(R|x) > p(NR|x) then x is relevant,
otherwise x is not relevant

•  Note:

€

p(R | x) + p(NR | x) =1

Probability Ranking Principle

Claim: PRP minimizes the average probability of error

⎩
⎨
⎧

=
)|(
)|()|(
xNRp
xRpxerrorp

If we decide NR

If we decide R

∑=
x

xpxerrorperrorp)()|()(

p(error) is minimal when all p(error|x) are minimimal.
Bayes’ decision rule minimizes each p(error|x).

Probability Ranking Principle

•  More complex case: retrieval costs.

  C - cost of retrieval of relevant document

  C’ - cost of retrieval of non-relevant document

  let d, be a document

•  Probability Ranking Principle: if 

for all d’ not yet retrieved, then d is the next
document to be retrieved

))|(1()|())|(1()|(dRpCdRpCdRpCdRpC ʹ′−⋅ʹ′+ʹ′⋅≤−⋅ʹ′+⋅

PRP: Issues (Problems?)

•  How do we compute all those
probabilities?

 Cannot compute exact probabilities, have to

use estimates.

 Binary Independence Retrieval (BIR)

  See below

•  Restrictive assumptions

 “Relevance” of each document is independent
of relevance of other documents.

 Most applications are for Boolean model.

Next: Probabilistic
Inference

Probabilistic Inference

•  Represent each document as a collection
of sentences (formulas) in some logic.

•  Represent each query as a sentence in the
same logic.

•  Treat Information Retrieval as a process
of inference: document D is relevant for
query Q if is high in the
inference system of selected logic.

)(QDp →

Probabilistic Inference: Notes

•  is the probability that the
description of the document in the logic
implies the description of the query.

  is not necessarily material implication:

•  Reasoning to be done in some kind of
probabilistic logic

)(QDp →

→

)(
)(
)()(BAp

Ap
BApBAp ∨¬≠

∧
=→

Probabilistic Logic

From: Th. Lukasievicz, U. Straccia

Probabilistic Inference: Roadmap

• Describe your own probabilistic logic/
inference system

 document / query representation

 inference rules

• Given query Q compute
for each document D

•  Select the “winners”

)(QDp →

Probabilistic Inference: Pros/Cons

•  Flexible: Create-
Your-Own-Logic
approach

•  Possibility for
provable properties
for PI based IR.

•  Another look at the
same problem ?

•  Vague: PI is just a
broad framework not
a cookbook

•  Efficiency:

  Computing

probabilities always
hard;

  Probabilistic Logics are
notoriously inefficient
(up to being
undecidable)

Pros: Cons:

Next: Bayesian Nets in IR

Bayesian Nets in IR

•  Bayesian Nets is the most popular way
of doing probabilistic inference.

• What is a Bayesian Net ?

• How to use Bayesian Nets in IR?

Bayesian Nets

a b

c

a,b,c - propositions (events).

p(c|ab) for all values
for a,b,c

p(a)

p(b)

•  Running Bayesian Nets:

Given probability distributions
for roots and conditional
probabilities can compute
apriori probability of any instance

Fixing assumptions (e.g., b
was observed) will cause
recomputation of probabilities

Conditional
dependence

For more information see J. Pearl, “Probabilistic Reasoning
in Intelligent Systems: Networks of Plausible Inference”,
1988, Morgan-Kaufman.

Toy Example

Gloom
(g)

Finals
(f)

Project Due
(d)

No Sleep
(n)

Triple Latte
(t)

7.02.01.001.0
3.08.09.099.0

g
g

dfdffdfd

¬

¬¬¬¬

6.0
4.0

d
d
¬7.0

3.0
f
f
¬

9.001.0
1.099.0

t
t

gg

¬

¬

7.01.0
3.09.0

n
n

ff

¬

¬

Independence Assumptions

•  Independence assumption:
 P(t|g, f)=P(t|g)
•  Joint probability
 P(f d n g t)
 =P(f) P(d) P(n|f) P(g|f d) P(t|g)

Gloom
(g)

Finals
(f)

Project Due
(d)

No Sleep
(n)

Triple Latte
(t)

Bayesian Nets for IR: Idea

Document Network

Query Network

Large, but
Compute once for each
document collection

Small, compute once for
every query

d1 dn d2

t1 t2 tn

r1 r2 r3 rk

di -documents
ti - document representations
ri - “concepts” tn’

I

q2 q1

cm c2 c1 ci - query concepts

qi - high-level concepts

I - goal node

Example: “reason trouble –two”

Hamlet Macbeth

reason double

reason two

OR NOT

User query

trouble

trouble

Document
Network

Query
Network

Bayesian Nets for IR: Roadmap

•  Construct Document Network (once !)

•  For each query

 Construct best Query Network

 Attach it to Document Network

 Find subset of di’s which maximizes the

probability value of node I (best subset).

 Retrieve these di’s as the answer to

query.

Bayesian Nets in IR: Pros / Cons

•  More of a cookbook
solution

•  Flexible:create-your-
own Document
(Query) Networks

•  Relatively easy to
update

•  Generalizes other
Probabilistic
approaches

  PRP

  Probabilistic Indexing

•  Best-Subset
computation is NP-
hard

  have to use quick

approximations

  approximated Best

Subsets may not
contain best
documents

•  Where Do we get the
numbers ?

•  Pros •  Cons

Next: Probabilistic Logic
Programming in IR

Probabilistic LP in IR

•  Probabilistic Inference estimates
in some probabilistic logic

•  Most probabilistic logics are hard

•  Logic Programming: possible solution

 logic programming languages are restricted

 but decidable

•  Logic Programs may provide flexibility (write
your own IR program)

•  Fuhr & Co: Probabilistic Datalog

)(QDp →

Probabilistic Datalog: Example

0.7 term(d1,ir).

0.8 term(d1,db).

0.5 link(d2,d1).

about(D,T):- term(D,T).
about(D,T):- link(D,D1), about(D1,T).

•  Sample Program:

•  Query/Answer:

:- term(X,ir) & term(X,db).
X= 0.56 d1

Probabilistic Datalog: Example

0.7 term(d1,ir).

0.8 term(d1,db).

0.5 link(d2,d1).

about(D,T):- term(D,T).
about(D,T):- link(D,D1), about(D1,T).

•  Sample Program:

•  Query/Answer:
q(X):- term(X,ir).
q(X):- term(X,db).
:-q(X)
X= 0.94 d1

Probabilistic Datalog: Example

0.7 term(d1,ir).

0.8 term(d1,db).

0.5 link(d2,d1).

about(D,T):- term(D,T).
about(D,T):- link(D,D1), about(D1,T).

•  Sample Program:

•  Query/Answer:

:- about(X,db).
X= 0.8 d1;
X= 0.4 d2

Probabilistic Datalog: Example

0.7 term(d1,ir).

0.8 term(d1,db).

0.5 link(d2,d1).

about(D,T):- term(D,T).
about(D,T):- link(D,D1), about(D1,T).

•  Sample Program:

•  Query/Answer:

:- about(X,db)& about(X,ir).
X= 0.56 d1
X= 0.28 d2 # NOT 0.14 = 0.8*0.5*0.7*0.5

Probabilistic Datalog: Issues

•  Possible Worlds Semantics

•  Lots of restrictions (!)

 all statements are either independent or
disjoint

 not clear how this is distinguished

syntactically

 point probabilities

 needs to carry a lot of information along

to support reasoning because of
independence assumption

Next: Relevance Models

Relevance models

Binary Independence Retrieval

•  Traditionally used in conjunction with PRP

•  “Binary” = Boolean: documents are represented as

binary vectors of terms:

 

  iff term i is present in document x.

•  “Independence”: terms occur in documents
independently

•  Different documents can be modeled as same
vector.

),,(1 nxxx …

=
1=ix

Binary Independence Retrieval

• Queries: binary vectors of terms

• Given query q,

 for each document d need to compute  
p(R|q,d).

 replace with computing p(R|q,x) where x
is vector representing d

•  Interested only in ranking

• Will use odds:

),|(
),|(

)|(
)|(

),|(
),|(),|(

qNRxp
qRxp

qNRp
qRp

xqNRp
xqRpxqRO 






⋅==

Binary Independence Retrieval

•  Using Independence Assumption:

∏
=

=
n

i i

i

qNRxp
qRxp

qNRxp
qRxp

1),|(
),|(

),|(
),|(




),|(
),|(

)|(
)|(

),|(
),|(),|(

qNRxp
qRxp

qNRp
qRp

xqNRp
xqRpxqRO 






⋅==

Constant for
each query Needs estimation

∏
=

⋅=
n

i i

i

qNRxp
qRxpqROdqRO

1),|(
),|()|(),|(• So :

Binary Independence Retrieval

∏
=

⋅=
n

i i

i

qNRxp
qRxpqROdqRO

1),|(
),|()|(),|(

•  Since xi is either 0 or 1:

∏∏
== =

=
⋅

=

=
⋅=

01),|0(
),|0(

),|1(
),|1()|(),|(

ii x i

i

x i

i

qNRxp
qRxp

qNRxp
qRxpqROdqRO

•  Let);,|1(qRxpp ii ==);,|1(qNRxpr ii ==

•  Assume, for all terms not occuring in the query (qi=0) ii rp =

Then...

All matching terms Non-matching
query terms

Binary Independence Retrieval

All matching terms All query terms

∏∏

∏∏

===

=
===

−

−
⋅

−

−
⋅=

−

−
⋅⋅=

11

1
01

1
1

)1(
)1()|(

1
1)|(),|(

iii

i
iii

q i

i

qx ii

ii

q
x i

i

qx i

i

r
p

pr
rpqRO

r
p

r
pqROxqRO 

Binary Independence Retrieval

Constant for
each query

Only quantity to be estimated
for rankings

∏∏
=== −

−
⋅

−

−
⋅=

11 1
1

)1(
)1()|(),|(

iii q i

i

qx ii

ii

r
p

pr
rpqROxqRO 

•  Retrieval Status Value:

∑∏
==== −

−
=

−

−
=

11)1(
)1(log

)1(
)1(log

iiii qx ii

ii

qx ii

ii

pr
rp

pr
rpRSV

Binary Independence Retrieval

•  All boils down to computing RSV.

∑∏
==== −

−
=

−

−
=

11)1(
)1(log

)1(
)1(log

iiii qx ii

ii

qx ii

ii

pr
rp

pr
rpRSV

∑
==

=
1
;

ii qx
icRSV

)1(
)1(log
ii

ii
i pr

rpc
−

−
=

So, how do we compute ci’s from our data ?

Binary Independence Retrieval

•  Estimating RSV coefficients.
•  For each term i look at the following table:

Document

Relevant Non-Relevant Total

X i=1 s n-s n
X i= 0 S-s N-n-S+s N-n
Total S N-S N

S
spi ≈)(

)(
SN
snri −

−
≈

)()(
)(log),,,(

sSnNsn
sSssSnNKci +−−−

−
=≈

•  Estimates:

Binary Independence Indexing

•  “Learning” from queries

 More queries: better results

•  p(q|x,R) - probability that if
document x had been deemed
relevant, query q had been asked

•  The rest of the framework is similar
to BIR

)|(
)|(),|(),|(

xqp
xRpRxqpxqRp 



=

Binary Independence Indexing vs.
Binary Independence Retrieval

)|(
)|(),|(),|(

qxp
qRpRqxpxqRp 



=

)|(
)|(),|(),|(

xqp
xRpRxqpxqRp 



=

•  Many Documents,  
One Query

•  Bayesian Probability:

•  Varies: document
representation

•  Constant: query
(representation)

•  One Document,  
Many Queries

•  Bayesian Probability

•  Varies: query

•  Constant: document

Estimation – key challenge

•  If non-relevant documents are approximated by
the whole collection, then ri (prob. of occurrence
in non-relevant documents for query) is n/N and

  log (1– ri)/ri = log (N– n)/n ≈ log N/n = IDF!

•  pi (probability of occurrence in relevant
documents) can be estimated in various ways:

  from relevant documents if know some

  Relevance weighting can be used in feedback loop

  constant (Croft and Harper combination match) – then

just get idf weighting of terms

  proportional to prob. of occurrence in collection

  more accurately, to log of this (Greiff, SIGIR 1998)

•  We have a nice theoretical foundation of wTD.IDF

54

Iteratively estimating pi

1.  Assume that pi constant over all xi in query

  pi = 0.5 (even odds) for any given doc

2.  Determine guess of relevant document set:

  V is fixed size set of highest ranked documents on this

model (note: now a bit like tf.idf!)

3.  We need to improve our guesses for pi and ri, so

  Use distribution of xi in docs in V. Let Vi be set of
documents containing xi

  pi = |Vi| / |V|

  Assume if not retrieved then not relevant

  ri = (ni – |Vi|) / (N – |V|)

4.  Go to 2. until converges then return ranking

Probabilistic Relevance Feedback

1.  Guess a preliminary probabilistic description of R
and use it to retrieve a first set of documents V, as
above.

2.  Interact with the user to refine the description:
learn some definite members of R and NR

3.  Reestimate pi and ri on the basis of these

  Or can combine new information with original guess (use

Bayesian prior):

7.  Repeat, thus generating a succession of
approximations to R.

κ is
prior

weight

PRP and BIR: The lessons

•  Getting reasonable approximations of
probabilities is possible.

•  Simple methods work only with restrictive
assumptions:

 term independence

 terms not in query do not affect the

outcome

 boolean representation of documents/

queries

 document relevance values are

independent

•  Some of these assumptions can be removed

Removing term independence

•  In general, index terms
aren’t independent

•  Dependencies can be
complex

•  van Rijsbergen (1979)
proposed model of simple
tree dependencies

  Exactly Friedman and

Goldszmidt’s Tree
Augmented Naive Bayes
(AAAI 13, 1996)

•  Each term dependent on
one other

•  In 1970s, estimation
problems held back success
of this model

Food for thought

•  Think through the differences between
standard tf.idf and the probabilistic
retrieval model in the first iteration

•  Think through the differences between
vector space (pseudo) relevance
feedback and probabilistic (pseudo)
relevance feedback

Good and Bad News

•  Standard Vector Space Model

  Empirical for the most part; success measured by results

  Few properties provable

•  Probabilistic Model Advantages

  Based on a firm theoretical foundation

  Theoretically justified optimal ranking scheme

•  Disadvantages

  Making the initial guess to get V

  Binary word-in-doc weights (not using term frequencies)

  Independence of terms (can be alleviated)

  Amount of computation

  Has never worked convincingly better in practice

