Multimedia Content Management: Link Analysis

Ralf Moeller Hamburg Univ. of Technology

Today's lecture

- Anchor text
- Link analysis for ranking
 - Pagerank and variants
 - HITS

The Web as a Directed Graph

Assumption 1: A hyperlink between pages denotes author perceived relevance (quality signal)

Assumption 2: The anchor of the hyperlink describes the target page (textual context)

Anchor Text

WWW Worm - McBryan [Mcbr94]

- For *ibm* how to distinguish between:
 - IBM's home page (mostly graphical)
 - IBM's copyright page (high term freq. for 'ibm')
 - Rival's spam page (arbitrarily high term freq.)

Indexing anchor text

• When indexing a document *D*, include anchor text from links pointing to *D*.

Indexing anchor text

- Can sometimes have unexpected side effects – *e.g.*, *evil empire*.
- Can index anchor text with less weight.

Anchor Text

- Other applications
 - Weighting/filtering links in the graph
 HITS [Chak98], Hilltop [Bhar01]
 - Generating page descriptions from anchor text [Amit98, Amit00]

Citation Analysis

- Citation frequency
- Co-citation coupling frequency
 - Cocitations with a given author measures "impact"
 - Cocitation analysis [Mcca90]
- Bibliographic coupling frequency
 - Articles that co-cite the same articles are related
- Citation indexing
 - Who is author cited by? (Garfield [Garf72])
- Pagerank (preview: Pinsker and Narin '60s)

Query-independent ordering

- First generation: using link counts as simple measures of popularity.
- Two basic suggestions:
 - <u>Undirected popularity:</u>
 - Each page gets a score = the number of in-links plus the number of out-links (3+2=5).
 - Directed popularity:
 - Score of a page = number of its in-links (3).

Query processing

- First retrieve all pages meeting the text query (say *venture capital*).
- Order these by their link popularity (either variant on the previous page).

Spamming simple popularity

- Exercise: How do you spam each of the following heuristics so your page gets a high score?
- Each page gets a score = the number of in-links plus the number of outlinks.
- Score of a page = number of its inlinks.

Pagerank scoring

- Imagine a browser doing a random walk on web pages:
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably
- "In the steady state" each page has a long-term visit rate – use this as the page's score.

Not quite enough

- The web is full of dead-ends.
 - Random walk can get stuck in dead-ends.
 - Makes no sense to talk about long-term visit rates.

Teleporting

- At a dead end, jump to a random web page.
- At any non-dead end, with probability 10%, jump to a random web page.
 - With remaining probability (90%), go out on a random link.
 - 10% a parameter.

Result of teleporting

- Now cannot get stuck locally.
- There is a long-term rate at which any page is visited (not obvious, will show this).
- How do we compute this visit rate?

Markov chains

- A Markov chain consists of *n* states, plus an *n×n* transition probability matrix **P**.
- At each step, we are in exactly one of the states.
- For $1 \le i,j \le n$, the matrix entry P_{ij} tells us the probability of *j* being the next state, given we are currently in state *i*.

 P_{i}

Markov chains

- Clearly, for all i, $\sum_{j=1}^{n} P_{ij} = 1$.
- Markov chains are abstractions of random walks.
- Exercise: represent the teleporting random walk from 3 slides ago as a Markov chain, for this case:

Ergodic Markov chains

- A Markov chain is <u>ergodic</u> if
 - you have a path from any state to any other (reducibility)
 - returns to states occur at irregular times (aperiodicity)
 - For any start state, after a finite transient time
 T₀, <u>the probability of being in any state at a fixed</u> <u>time T>T₀ is nonzero.</u> (positive recurrence)

Ergodic Markov chains

- For any ergodic Markov chain, there is a unique <u>long-term visit rate</u> for each state.
 - Steady-state probability distribution.
- Over a long time-period, we visit each state in proportion to this rate.
- It doesn't matter where we start.

Probability vectors

- A probability (row) vector $\mathbf{x} = (x_1, \dots, x_n)$ tells us where the walk is at any point.
- E.g., (000...1...000) means we're in state *i*. 1 *i n*

More generally, the vector $\mathbf{x} = (x_1, \dots, x_n)$ means the walk is in state i with probability x_i .

$$\sum_{i=1}^n x_i = 1.$$

Change in probability vector

- If the probability vector is x = (x₁, ... x_n) at this step, what is it at the next step?
- Recall that row *i* of the transition prob. Matrix P tells us where we go next from state *i*.
- So from x, our next state is distributed as xP.

Steady state example

- The steady state looks like a vector of probabilities $\mathbf{a} = (a_1, \dots a_n)$:
 - a_i is the probability that we are in state *i*.

For this example, $a_1 = 1/4$ and $a_2 = 3/4$.

How do we compute this vector?

- Let a = (a₁, ... a_n) denote the row vector of steady-state probabilities.
- If we our current position is described by **a**, then the next step is distributed as **aP**.
- But **a** is the steady state, so **a**=**aP**.
- Solving this matrix equation gives us **a**.
 - So a is the (left) eigenvector for P.
 - (Corresponds to the "principal" eigenvector of P with the largest eigenvalue.)
 - Transition probability matrices always have largest eigenvalue 1.

Eigenvalues & Eigenvectors

• **Eigenvectors** (for a square *m×m* matrix **S**)

• How many eigenvalues are there at most?

$$\mathbf{Sv} = \lambda \mathbf{v} \iff (\mathbf{S} - \lambda \mathbf{I}) \mathbf{v} = \mathbf{0}$$

only has a non-zero solution if $|\mathbf{S} - \lambda \mathbf{I}| = 0$

this is a *m*-th order equation in λ which can have at most *m* distinct solutions (roots of the characteristic polynomial) - <u>can</u> be complex even though S is real.

One way of computing a

- Recall, regardless of where we start, we eventually reach the steady state **a**.
- Start with any distribution (say x=(10...0)).
- After one step, we're at **xP**;
- after two steps at **xP**², then **xP**³ and so on.
- "Eventually" means for "large" k, $\mathbf{xP}^k = \mathbf{a}$.
- Algorithm: multiply x by increasing powers of P until the product looks stable.

Pagerank summary

- Preprocessing:
 - Given graph of links, build matrix P.
 - From it compute **a**.
 - The entry a_i is a number between 0 and 1: the pagerank of page *i*.
- Query processing:
 - Retrieve pages meeting query.
 - Rank them by their pagerank.
 - Order is query-*independent*.

The reality

Pagerank is used in google, but so are many other clever heuristics.

Pagerank: Issues and Variants

- How realistic is the random surfer model?
 - What if we modeled the back button? [Fagi00]
 - Surfer behavior sharply skewed towards short paths [Hube98]
 - Search engines, bookmarks & directories make jumps non-random.
- Biased Surfer Models
 - Weight edge traversal probabilities based on match with topic/query (non-uniform edge selection)
 - Bias jumps to pages on topic (e.g., based on personal bookmarks & categories of interest)

Topic-Specific Pagerank [Have02]

- Conceptually, we use a random surfer who teleports, with say 10% probability, using the following rule:
 - Selects a category (say, one of the 16 top level ODP categories) based on a query & user –specific distribution over the categories
 - Teleport to a page uniformly at random within the chosen category
 - Sounds hard to implement: can't compute PageRank at query time!

ODP = Open Directory Project

Topic-Specific Pagerank [Have02]

Implementation

 Offline: Compute pagerank distributions wrt to *individual* categories

Query-independent model as before

Each page has multiple pagerank scores – one for each ODP category, with teleportation only to that category

 Online: Distribution of weights over categories computed by query context classification

Generate a dynamic pagerank score for each page – weighted sum of category-specific pageranks

Influencing PageRank ("Personalization")

- Input:
 - Web graph *W*
 - influence vector v
 - \mathbf{v} : (page \rightarrow degree of influence)
- Output:
 - Rank vector r:
 (page → page importance wrt v)
- $\mathbf{r} = PR(W, \mathbf{v})$

Non-uniform Teleportation

Teleport with 10% probability to a Sports page

Interpretation of Composite Score

For a set of personalization vectors {v_j}

 $\sum_{j} [\mathbf{w}_{j} \cdot \mathsf{PR}(W, \mathbf{v}_{j})] = \mathsf{PR}(W, \sum_{j} [\mathbf{w}_{j} \cdot \mathbf{v}_{j}])$

 Weighted sum of rank vectors itself forms a valid rank vector, because PR() is linear wrt V_j

Interpretation

10% Sports teleportation

Interpretation

10% Health teleportation

Interpretation

 $pr = (0.9 PR_{sports} + 0.1 PR_{health})$ gives you: 9% sports teleportation, 1% health teleportation

Hyperlink-Induced Topic Search (HITS) - Klei98

- In response to a query, instead of an ordered list of pages each meeting the query, find <u>two</u> sets of inter-related pages:
 - *Hub pages* are good lists of links on a subject.
 - e.g., "Bob's list of cancer-related links."
 - Authority pages occur recurrently on good hubs for the subject.
- Best suited for "broad topic" queries rather than for page-finding queries.
- Gets at a broader slice of common *opinion*.

Hubs and Authorities

- Thus, a good hub page for a topic *points* to many authoritative pages for that topic.
- A good authority page for a topic is pointed to by many good hubs for that topic.
- Circular definition will turn this into an iterative computation.

High-level scheme

- Extract from the web a <u>base set</u> of pages that *could* be good hubs or authorities.
- From these, identify a small set of top hub and authority pages;
 →iterative algorithm.

Base set

- Given text query (say *browser*), use a text index to get all pages containing *browser*.
 - Call this the <u>root set</u> of pages.
- Add in any page that either
 - points to a page in the root set, or
 - is pointed to by a page in the root set.
- Call this the <u>base set</u>.

Visualization

Assembling the base set [Klei98]

- Root set typically 200-1000 nodes.
- Base set may have up to 5000 nodes.
- How do you find the base set nodes?
 - Follow out-links by parsing root set pages.
 - Get in-links (and out-links) from a connectivity server.
 - (Actually, suffices to text-index strings of the form *href="<u>URL</u>*" to get in-links to <u>URL</u>.)

Distilling hubs and authorities

- Compute, for each page x in the base set, a <u>hub score</u> h(x) and an <u>authority score</u> a(x).
- Initialize: for all x, $h(x) \leftarrow 1$; $a(x) \leftarrow 1$;
- Iteratively update all h(x), a(x);
- After iterations
 - output pages with highest h() scores as top hubs
 - highest a() scores as top authorities.

Iterative update

• Repeat the following updates, for all x:

 $h(x) \leftarrow \sum_{x \mapsto y} a(y)$

 $a(x) \leftarrow \sum_{y \mapsto x} h(y)$

Scaling

- To prevent the *h()* and *a()* values from getting too big, can scale down after each iteration.
- Scaling factor doesn't really matter:
 we only care about the *relative* values of the scores.

How many iterations?

- Claim: relative values of scores will converge after a few iterations:
 - In fact, suitably scaled, h() and a() scores settle into a steady state!
- We only require the <u>relative orders</u> of the *h()* and *a()* scores not their absolute values.
- In practice, ~5 iterations get you close to stability.

Japan Elementary Schools

Hubs

- schools
- LINK Page-13
- "ú–{,ÌŠwZ
- a‰"¬ŠwZfz[ffy[fW
- 100 Schools Home Pages (English)
- K-12 from Japan 10/...rnet and Education)
- http://www...iglobe.ne.jp/~IKESAN
- ,I,f,j¬ŠwZ,U"N,P'g•¨Œê
- ÒŠ—'¬—§ÒŠ—"Œ¬ŠwZ
- Koulutus ja oppilaitokset
- TOYODA HOMEPAGE
- Education
- Cay's Homepage(Japanese)
- –y"쬊wZ,Ìfz[ffy[fW
- UNIVERSITY
- ‰J—³¬ŠwZ DRAGON97-TOP
- ‰ª¬ŠwZ,T"N,P'gfz[ffy[fW
- ¶µ°é¼ÂÁ© ¥á¥Ë¥å¡¼ ¥á¥Ë¥å¡¼

Authorities

- The American School in Japan
- The Link Page
- 仏s—§^ä"c¬ŠwZfz[ffy[fW
- Kids' Space
- ^Àés—§^À鼕"¬ŠwZ
- <{é<³^ç'åŠw•'®¬ŠwZ
- KEIMEI GAKUEN Home Page (Japanese)
- Shiranuma Home Page
- fuzoku-es.fukui-u.ac.jp
- welcome to Miasa E&J school
- __"Þ쌧E‰j•ls—§'†ì¼¬ŠwZ,̃y
- http://www...p/~m_maru/index.html
- fukui haruyama-es HomePage
- Torisu primary school
- goo
- Yakumo Elementary, Hokkaido, Japan
- FUZOKU Home Page
- Kamishibun Elementary School...

Things to note

- Pulled together good pages regardless of language of page content.
- Use only link analysis <u>after</u> base set assembled
 - Iterative scoring is query-independent.
- Iterative computation <u>after</u> text index retrieval – significant overhead.

Proof of convergence

- *n*×*n* <u>adjacency matrix</u> **A**:
 - Each of the *n* pages in the base set has a row and column in the matrix.
 - Entry A_{ij} = 1 if page *i* links to page *j*, else = 0.

Hub/authority vectors

- View the hub scores h() and the authority scores a() as vectors with n components.
- Recall the iterative updates

$$h(x) \leftarrow \sum_{x \mapsto y} a(y)$$
$$a(x) \leftarrow \sum_{y \mapsto x} h(y)$$

Rewrite in matrix form

•
$$h=Aa$$
.
• $a=A^{t}h$.
• $a=A^{t}h$.
• $a=A^{t}h$.
• $a=A^{t}h$.

Substituting, $h=AA^{t}h$ and $a=A^{t}Aa$. Thus, h is an eigenvector of AA^{t} and a is an eigenvector of $A^{t}A$.

Further, our algorithm is a particular, known algorithm for computing eigenvectors: the power iteration method.

Guaranteed to converge.

Issues

- Topic Drift
 - Off-topic pages can cause off-topic "authorities" to be returned
 - E.g., the neighborhood graph can be about a "super topic"
- Mutually Reinforcing Affiliates
 - Affiliated pages/sites can boost each others' scores
 - Linkage between affiliated pages is not a useful signal

Resources

- IIR Chap 21
- <u>http://www2004.org/proceedings/docs/</u> <u>1p309.pdf</u>
- <u>http://www2004.org/proceedings/docs/</u> <u>1p595.pdf</u>
- http://www2003.org/cdrom/papers/ refereed/p270/kamvar-270-xhtml/ index.html
- <u>http://www2003.org/cdrom/papers/</u> refereed/p641/xhtml/p641-mccurley.html