Multimedia Information Extraction and Retrieval

Multimedia Interpretation

Ralf Moeller Hamburg Univ. of Technology

Media Interpretation

Possible interpretation:

- "Two workers empty garbage containers into a garbage truck"
- "A mailman distributes mail"

What is a possible high-level annotation for this image?

What do we need?

- Multimedia interpretation: from low-level to high-level (and back!)
- Low-level w.r.t. images: information in pixels
- Mid-levels w.r.t. images: several temporary steps
- High-level w.r.t. images: complex scene description
- Need of representation means for all levels
- ► ⇒ Ontologies can do!

Ontologies

- Tbox
- Abox
 - a:C / C(a) ... a \in C
 - (a,b):R / R(a,b) ... (a,b) \in R
- Rules (Datalog)

Interpretations = Metadata (1)

mailman ₁	:	Mailman
bicycle ₁	:	Bicycle
<i>mail_deliv</i> ₁	:	MailDeliv
$(mail_deliv_1, mailman_1)$:	hasPart
$(mail_deliv_1, bicycle_1)$:	hasPart
$(mail_deliv_1, url_1)$:	hasURL
$(mailman_1, url_2)$:	hasURL
$(bicycle_1, url_3)$:	hasURL
(url_1)	:	="http://www.img.de/image-1.jpg"
(<i>url_</i> 2)	:	="http://www.img.de/image-1.jpg#(200,400)/
(<i>url_</i> 3)	:	="http://www.img.de/image-1.jpg#(100,400)/

Interpretations = Metadata (2)

$garbageman_1$:	Garbageman
garbageman ₂	:	Garbageman
$garbagetruck_1$:	<i>Garbage_Truck</i>
gc_1	:	Garbage_Collection
$gc_1, garbageman_1)$:	hasPart
$gc_1, garbageman_2)$:	hasPart
$c_1, garbagetruck_1)$:	hasPart
(gc_1, url_4)	:	hasURL

. . .

g

. . .

Querying metadata

• Queries:

 $URLQuery_1 := \{(X, value(X)) \mid hasURL(mail_deliv_1, X)\}$ $URLQuery_2 := \{(X, value(X)) \mid hasURL(bicycle_1, X)\}$

 $ImageQuery_1 := \{(X, Y) \mid MailDeliv(X), Bicycle(Y), hasPart(X, Y)\}$

• Results :

- { $(mail_deliv_1, bicycle_1)$ }
- { (url₁, "http://www.img.de/image-1.jpg") }
- { (url₃, "http://www.img.de/image-1.jpg#(100,400)/(150/500)) }
- Exploit Tboxes: $Mailman \sqsubseteq Postal_Employee$

Mailman = Postman

How to derive metadata?

Image analysis

 Assumption: Result of image analysis represented as an Abox

 $pole_1: Pole$ $human_1: Human$ $bar_1: Bar$ $(bar_1, human_1): near$

Querying for a pole vault?

- Image will not be found
- Reason:
 - Pole vaults are not directly visible
 - There is no Abox individual for a pole vault
- Idea:
 - Pole vaults are "constructed" to explain the spatial configuration of a person, a bar, and a pole

Explanation via abduction

- Compute some set of assertions Δ such that $\Sigma \cup \Delta \models \Gamma$
- The knowledge base $\Sigma = (\mathcal{T}, \mathcal{A})$
- The set of observables Γ is a given set of low-level assertions

In our setting

Image analysis leads to an Abox

 $pole_1: Pole$ $human_1: Human$ $bar_1: Bar$ $(bar_1, human_1): near$

• The last assertion should be explained $\Sigma \cup \Gamma_1 \cup \Delta \models \Gamma_2$

• The Abox is split into parts Γ_1 and Γ_2

Side conditions

- Minimality
- Consilience

Example Tbox

 $Jumper \sqsubseteq Human$ $Pole \sqsubseteq Sports_Equipment$ $Bar \sqsubseteq Sports_Equipment$ $Pole \sqcap Bar \sqsubseteq \bot$ $Pole \sqcap Jumper \sqsubseteq \bot$ $Jumper \sqcap Bar \sqsubseteq \bot$ $Jumping_Event \sqsubseteq \exists_{\leq 1} hasParticipant.Jumper$ $Pole_Vault \sqsubseteq Jumping_Event \sqcap \exists hasPart.Pole \sqcap \exists hasPart.Bar$ $High_Jump \sqsubseteq Jumping_Event \sqcap \exists hasPart.Bar$ $near(Y,Z) \leftarrow Pole_Vault(X), hasPart(X,Y), Bar(Y),$ hasPart(X,W), Pole(W), hasPart(X,Z), Jumper(Z) $near(Y,Z) \leftarrow High_Jump(X), hasPart(X,Y), Bar(Y),$ hasParticipant(X,Z), Jumper(Z)

Abduction as query answering

Abduction equation

$\Sigma \cup \Gamma_1 \cup \varDelta \models \Gamma_2$

 Entailment of assertions as answering boolean queries w.r.t. Tboxes and Aboxes

$$Q_1 := \{ () \mid near(bar_1, human_1) \}$$

Abductive query answering

- The answer should be true!
- What must be added to the Abox to ensure this?
- Idea: Look at the rules
 - Assumption: The rules define the set of abducibles
 - Apply the rules in a backward-chaining way

Backward-chaining

• $near(Y,Z) \leftarrow Pole_Vault(X), hasPart(X,Y), Bar(Y), \\ hasPart(X,W), Pole(W), hasParticipant(X,Z), Jumper(Z) \\ near(Y,Z) \leftarrow High_Jump(X), hasPart(X,Y), Bar(Y), \\ hasParticipant(X,Z), Jumper(Z)$

 $Q_1 := \{() \mid near(bar_1, human_1)\}$

- Determine a substitution for variables
 - Match HEAD with the query
- Expand rules
 - Check all combinations for unbound variables (including new individuals)
 - Role of the Tbox: Discard inconsistent Aboxes obtained by substitutions
- No recursion allowed

Example

- $-\Delta_{1} = \{new_ind_{1} : Pole_Vault, (new_ind_{1}, bar_{1}) : hasPart, (new_ind_{1}, new_ind_{2}) : hasPart, new_ind_{2} : Pole, (new_ind_{1}, human_{1}) : hasParticipant, human_{1} : Jumper\}$
- $-\Delta_2 = \{new_ind_1 : Pole_Vault, (new_ind_1, bar_1) : hasPart, (new_ind_1, pole_1) : hasPart,$
 - $(new_ind_1, human_1) : hasParticipant, human_1 : Jumper\}$
- $-\Delta_3 = \{new_ind_1 : High_Jump, (new_ind_1, bar_1) : hasPart, (new_ind_1, human_1) : hasParticipant, \\ hasParticipant, \\ -\Delta_3 = \{new_ind_1 : High_Jump, (new_ind_1, bar_1) : hasPart, (new_ind_1, human_1) : hasParticipant, \\ -\Delta_3 = \{new_ind_1 : High_Jump, (new_ind_1, bar_1) : hasPart, (new_ind_1, human_1) : hasParticipant, \\ -\Delta_3 = \{new_ind_1 : High_Jump, (new_ind_1, bar_1) : hasPart, (new_ind_1, human_1) : hasParticipant, \\ -\Delta_3 = \{new_ind_1 : High_Jump, (new_ind_1, bar_1) : hasPart, (new_ind_1, human_1) : hasParticipant, \\ -\Delta_3 = \{new_ind_1 : High_Jump, (new_ind_1, bar_1) : hasPart, (new_ind_1, human_1) : hasParticipant, \\ -\Delta_3 = \{new_ind_1 : High_Jump, (new_ind_1, bar_1) : hasPart, (new_ind_1, human_1) : hasParticipant, \\ -\Delta_4 = \{new_ind_1 : High_Jump, (new_ind_1, bar_1) : hasPart, (new_ind_1, human_1) : hasParticipant, \\ -\Delta_4 = \{new_ind_1 : High_Jump, (new_ind_1, bar_1) : hasPart, (new_ind_1, human_1) : hasParticipant, \\ -\Delta_4 = \{new_ind_1 : High_Jump, (new_ind_1, bar_1) : hasPart, (new_ind_1, human_1) :$

 $human_1: Jumper\}$

Preference measures

- When more than one explanation is found, the criteria for selecting the best explanation are:
 - Simplicity
 - $S_s(\Delta) = |\Delta|$
 - Consilience
 - $S_c(\Delta) = | \{ \alpha \in \Gamma_1 : O \cup \Delta | = \alpha \} |$
- In total

•
$$S_{\omega}(\Delta) := \omega S_{c}(\Delta) - (1 - \omega)S_{s}(\Delta)$$

Fusion

- Goals:
 - Disambiguation
 - Rule out possible interpretations
- Information accumulation (for better query answering)

Kajsa Bergqvist clears 2:06 in Eberstadt

Explicitly represent the document structure

Exploit the document structure

- Abduction is used to find explanations for the relations between the multimedia objects
- We assume the following rule

```
hasCaption(X,A) :-
Image(X),
depicts(X,Y),
Caption(A),
depicts(A,B),
same-as(Y,B)
```

Structure identification

Also: Intra-modality fusion

- Example (two sentences):
 - "This car has always been in a garage."
 - "It always worked well."
- Disambiguation required:
 - It is the car that worked well, not the garage
 - The car is indeed a good one (not a one that always was in a repair shop)
- Fusion:
 - "This car" = car_1
 - "It" = thing_1
 - Gives rise to abducing car_1 = thing_1

Acknowledgements

- Thanks to the TUHH members of the BOEMIE project (Bootstrapping Ontology Evolution for Multimedia IntEpretation)
 - Sofia Espinosa Peraldi
 - Atila Kaya
 - Sylvia Melzer
- Thanks to Bernd Neumann, UniHH
- Thanks to Michael Wessel