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Literature 

•  Chapter 14 (Section 1 and 2)




Syntax and Semantics of Bayesian 
Networks 



Bayesian networks 

•  A simple, graphical notation for conditional 
independence assertions and hence for compact 
specification of full joint distributions 

•  Syntax: 
–  a set of nodes, one per variable 
–  a directed, acyclic graph (link ≈ "directly influences") 
–  a conditional distribution for each node given its parents: 

P (Xi | Parents (Xi)) 
 

•  In the simplest case, conditional distribution represented 
as a conditional probability table (CPT) giving the 
distribution over Xi for each combination of parent values 



Example 

•  Topology of network encodes conditional independence 
assertions: 

 
 
 
 
 
 
•  Weather is independent of the other variables 
•  Toothache and Catch are conditionally independent 

given Cavity 



Example 

•  I'm at work, neighbor John calls to say my alarm is ringing, but neighbor 
Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a 
burglar? 

•  Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls 

•  In this case, the network topology reflects "causal" knowledge: 
–  A burglar can set the alarm off 
–  An earthquake can set the alarm off 
–  The alarm can cause Mary to call 
–  The alarm can cause John to call 

A formal in-depth treatment of 
causality will be given in  
lectures 5 to 9  



Example contd. 



Compactness 

•  A CPT for Boolean Xi with k Boolean parents has 2k rows for the 
combinations of parent values 

•  Each row requires one number p for Xi = true 
(the number for  Xi = false is just 1-p) 

•  If each variable has no more than k parents, the complete network requires 
O(n · 2k) numbers 

•  i.e., grows linearly with n, vs. O(2n) for the full joint distribution 

•  For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31) 



Semantics 

The full joint distribution of a BN  is defined as the product of the local 
conditional distributions: 

 

 P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi)) 
 

e.g., P(j ∧ m ∧ a ∧ ¬b ∧ ¬e) 
 

 = P(j | a) P(m | a) P(a | ¬b, ¬e) P(¬b) P(¬e) 
 = 0.90x0.7x0.001x0.999x0.998 
≈ 0.00063 
 

 
 

n 



Constructing Bayesian networks 

•  1. Choose an ordering of variables X1, … ,Xn 
•  2. For i = 1 to n 

–  add Xi to the network 
 

–  select parents from X1, … ,Xi-1 such that 
 P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1) 

 
This choice of parents guarantees: 
 

                        (chain rule)      
P (X1, … ,Xn)        =       πi =1 P (Xi | X1, … , Xi-1) 

    
   (by construction) 

                      =        πi =1P (Xi | Parents(Xi)) 
 

n 

n



•  Suppose we choose the ordering M, J, A, B, E 

P(J | M) = P(J)? 
 

Example 



•  Suppose we choose the ordering M, J, A, B, E 
 

P(J | M) = P(J)? No 
P(A | J, M) = P(A)? P(A | J, M) = P(A | J)?  
 

Example 



•  Suppose we choose the ordering M, J, A, B, E 

P(J | M) = P(J)? No 
P(A | J, M) = P(A)? P(A | J, M) = P(A | J)? No 
P(B | A, J, M) = P(B | A)?  
P(B | A, J, M) = P(B)? 

Example 



•  Suppose we choose the ordering M, J, A, B, E 

P(J | M) = P(J)? No 
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No 
P(B | A, J, M) = P(B | A)? Yes 
P(B | A, J, M) = P(B)? No 
P(E | B, A ,J, M) = P(E | A)? 
P(E | B, A, J, M) = P(E | A, B)? 

Example 



•  Suppose we choose the ordering M, J, A, B, E 
 

P(J | M) = P(J)? No  
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No 
P(B | A, J, M) = P(B | A)? Yes 
P(B | A, J, M) = P(B)? No 
P(E | B, A ,J, M) = P(E | A)? No 
P(E | B, A, J, M) = P(E | A, B)? Yes 

Example 



Example contd. 

•  Deciding conditional independence is hard in non-causal directions 
•  (Causal models and conditional independence seem hardwired for 

humans!) 
•  Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed 

instead of 10. 



Hybrid (discrete+continuous) networks 

BNs can also deal with continuous RVs or even hybrid ones 



Exact Inference on Bayesian Networks 





(Calculation over tree sum-product  evaluation tree 
with path length n (=number of RVs) and degree d  
(=maximal number domain elements) ) 





Evaluation Tree 

Can do better with Variable Elimination (VE) 



Basic Objects of VE 

•  Track objects called factors 
   (right-to-left, in tree: bottom up) 
•  Initial factors are local CPTs 

 
 
 

•  During elimination create new factors 
•  Form of  Dynamic Programming 

 

P(m|A) 
 
fM(A) 



Basic Operations: Pointwise Product 

•  Pointwise product of factors f1 and f2 
–  for example: f1(A,B) * f2(B,C)= f(A,B,C) 
–  in general: 

 f1(X1,...,Xj,Y1,…,Yk) *f2(Y1,…,Yk,Z1,…,Zl)=  
 f(X1,...,Xj,Y1,…,Yk,Z1,…,Zl) 

–  has 2j+k+l entries (if all variables are binary) 



Join by pointwise product 



Basic Operations: Summing out 

•  Summing out a variable from a product of factors 
–  Move any constant factors outside the summation 
–  Add up submatrices in pointwise product of remaining 

factors 
𝛴x f1* …*fk    =    f1*…*fi*𝛴x fi+1*…*fk�

 
       =    f1*…*fi* fX 

 
assuming f1, …, fi do not depend on X 



Summing out 

Summing out a 



VE result for Burglary Example 



Optimization by Finding Irrelevant Variables 

 {Alarm, Earthquake, Burglary} 

Irrelevant variables can be identified by a graph 
theoretical criterion on the associated  moral 
graph by m-separation 



What else can we do? 

 
•  General methodology: Consider special cases 

(special data structures) 
•  Here: Consider polytrees (singly connected 

networks) 
•  Following slides on Pearl‘s belief propagation 

algorithm based on slides by Tomas Singliar 
(adapted by Daniel Lowd) 

 
 



Polytree Bayesian Networks 

•  Bayesian network graph is a polytree (or singly 
connected network) iff there is at most one path between 
any two nodes, Vi and Vk  (iff the underlying non-directed 
graph is a tree) 

•  Exact BN inference is NP-hard but O(n) on polytree 
•  (Non-)Examples: 

V1 

V5 

V2 

V4 

V3 

V6 

V1 

V5 

V2 

V4 

V3 

V6 

V1 

V2 V3 

V4 

- + - 



Our inference task 

•  We know the values of some evidence variables E: 

•  We wish to compute the conditional probability P(Xi |E) 
for all non-evidence variables Xi. 

•  IDEA: 
–   Do variable elimination in parallel (locally on each node/

RV) 
–  Send/receive required knowledge to/from other nodes 
 

•  Following soldier counting example on message 
passing adapted from slides of M. Gormley 

||1
,...,

Eee VV



   Counting soldiers example (linear) 

3 
behind 
you 

2 
behind 
you 

1 
behind 
you 

4 
behind 
you 

5 
behind 
you 

1  
before 
you 

2 
before 
you 

there's 
1 of me 

3 
before 
you 

4 
before 
you 

5 
before 
you 

33 

adapted from MacKay (2003): Information Theory, Inference and Learning 
Algorithms.  
 



 Counting soldiers example (beliefs) 

3 
behind 
you 

2 
before 
you 

 there's 
 1 of me 

Belief: 
Must be 
2 + 1 + 3 = 6 
of us 

only see 
my incoming 
messages 

34 

2 
before 
you 



 Counting soldiers example (locality) 

4 
behind 
you 

1 
before 
you 

there's 
1 of me 

only see 
my incoming 
messages 

35 

Belief: 
Must be 
2 + 1 + 3 = 6 
of us 

Belief: 
Must be 
1 + 1 + 4 = 6 
of us 



 Counting soldiers example (in polytree) 

7 here 

3 here 

11 here 
(= 7+3+1) 

1 of me 

36 



3 here 

3 here 

7 here 
(= 3+3+1) 

37 

 Counting soldiers example (in polytree) 



7 here 

3 here 

11 here 
(= 7+3+1) 

38 

 Counting soldiers example (in polytree) 



7 here 

3 here 

3 here 

Belief: 
Must be 
14 of us 

39 

 Counting soldiers example (in polytree) 



7 here 

3 here 

3 here 

Belief: 
Must be 
14 of us 

wouldn't work correctly 
with a 'loopy' (cyclic) graph 

40 

 Counting soldiers example (non-circularity) 

But you might foresee  

the junction tree algorithm:  

One has to partition the graph  

into a tree of clusters  



Pearl‘s belief propagation algorithm 

•  Local computation for one node V desired 
•  Information flows through the links of G 

–  flows as messages of two types – λ and π 

•  V splits network into two disjoint parts 
–  Strong independence assumptions induced – crucial! 

•  Denote EV
+ the part of evidence accessible  

through the parents of V (causal or predictive) 
–  passed downward in π messages 

•  Analogously, let EV
- be the diagnostic evidence 

–  passed upwards in λ messages 



Pearl’s Belief Propagation 

V 

U2 

V1 V2 

U1 

π(U2) 

π(V1) 
π(V2) 

π(U1) 

λ(U1) 

λ(V2) 

λ(V1) 

λ(U2) 



The π Messages 

•  What are the messages? 
•  For simplicity, let the nodes be binary 

V1 

V2 

V1=T 0.8 
V1=F 0.2 

P V1=T V1=F 
V2=T 0.4 0.9 

V2=F 0.6 0.1 

The message passes on information. 

What information? Observe:  

P(V2) = P(V2| V1=T)P(V1=T) 

 + P(V2| V1=F)P(V1=F) 

  The information needed is the 
CPT of V1 = πV(V1) 

π Messages capture information 
passed from parent to child 



The Evidence 

•  Evidence – values of observed nodes 
–  V3 = T, V6 = 3 

•  Our belief in what the value of Vi 
‘should’ be changes. 

•  This belief is propagated 
•   As if the CPTs became 

V1 

V5 

V2 

V4 

V3 

V6 

V3=T 1.0 
V3=F 0.0 

P V2=T V2=F 
V6=1 0.0 0.0 

V6=2 0.0 0.0 

V6=3 1.0 1.0 



The Messages 

•  We know what the π messages are 
•  What about λ? 

•  The messages are π(V)=P(V|E+) and λ(V)=P(E-|V) 

V1 

V2 

Assume E = { V2 } and compute by Bayes rule: 

 

 

 

The information not available at V1 is P(V2|V1). To be 
passed upwards by a λ-message. Again, this is not in 
general exactly the CPT, but the belief based on evidence 
down the tree. 

P(V1 |V2 ) =
P(V1)P(V2 |V1)

P(V2 )
=αP(V1)P(V2 |V1)



Combination of evidence in node V  

•  Recall that EV = EV
+ ∪ EV

- and let us compute 

•  α is the normalization constant (  1/P(E-|E+)  ) 
•  normalization is not necessary (can do it at the end) 
•  but may prevent numerical underflow problems 

)()()(
)|()|()()|()|('

)()|,('),|()|(

VBELVV
EVPVEPVPVEPVEP
VPVEEPEEVPEVP

VVVV

VVVV

=

==
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+−+−

−+−+

παλ

αα

α



 λ message combination  

•  Assume X received λ-messages from neighbors 
•  How to compute λ(x) = P(e-|x)? 
•  Let Y1, … , Yc be the children of X 
•  λXY(x) denotes the λ-message sent between X and Y 

∏
=

=
c

j
XY xx
ij

1

)()( λλ

Derivation clear: Assume two children Y, Z of X,  
 then P(e-|x) = P(e-

Y, e-
Z|x) = P(e-

Y|x)* P(e-
Z|x)  

(siblings independent given parent) 



 π message combination 

•  Assume X received π -messages from neighbors 
•  How to compute π(x) = P(x|e+) ? 
•  Let U1, … , Up be the parents of X 
•  πXY(x) denotes the π-message sent between X and Y 
•  summation over the CPT 

 ∑ ∏
=

=
p

ij
uu

p

j
jXUp uuuxPx

,..., 1
1

1

)(),...,|()( ππ

Derivation: Condition on all Ui and note that each pair  
(parent Ui,evidence e+

i) is independent of the other pairs (Uj,e+
j) 



Messages to pass 

•  We need to compute πXY(x) 

 

∏
≠

=
jk

XYXXY xxx
kJ

)()()( λαππ

Derivation 
πXYJ  
= P(x | e+

XYj)  
= P(x | e – e-

XYj) =  
= [ Bel(x) when evidence e-

Xyj is surpressed] 
= Bel(x) setting λXYj(x) = 1  
= formula above  
 



Messages to pass 

•  Symbolically, group other (≠X) parents of Yj into single complex  
     V = V1, … , Vq and treat link X->Yj vs. V-> Yj  
 

∑ ∑ ∏
=

=
j q

jkjj
y vv

q

k
kYVqjYXY vvvypyx

,..., 1
1

1

)(),...,|()()( πλλ

Yj 

X V 

e+
VY 

e+
XY 

Derivation hint 
•  λYjX = P(e-

XYj|x)  
   =    P(e+

VYj,e-
Yj|X)  

•  then  condition on YJ and V,  
•  And use independences 

•  Yj seperates e+
VYj from e-

Yj  
•  V seperates e+

VYj from X 

e-
Y 

λYjX 

λYj 



Pearl’s Belief Propagation Algorithm 
–  Initialization step 

•  For all Vi=ei in E:  
–  λ(xi) = 1 whenever xi = ei ;  0 otherwise 
–  π(xi) = 1 whenever xi = ei ;  0 otherwise 

•  For nodes without parents 
–  π(xi) = p(xi)  -  prior probabilities 

•  For nodes without children 
–  λ(xi) = 1 uniformly (normalize at end) 



Pearl’s Belief Propagation Algorithm 
–  Iterate until no change occurs 

•  (For each node X) if X has received all the π messages from its 
parents, calculate π(x) 

•  (For each node X) if X has received all the λ messages from its 
children, calculate λ(x) 

•  (For each node X) if π(x) has been calculated and X received all the 
λ-messages from all its children (except Y), calculate πXY(x) and 
send it to Y. 

•  (For each node X) if λ(x) has been calculated and X received all the 
π-messages from all parents (except U), calculate λXU(u) and send 
it to U. 

–  Compute BEL(X) = λ(x)π(x) and normalize 



Complexity 

•  On a polytree, the BP algorithm converges in time 
proportional to diameter of network – at most linear 

•  Work done in a node is proportional to the size of CPT 
•  Hence BP is linear in number of network parameters 
•  For general BNs 

–  Exact inference is NP-hard 
–  Approximate inference is NP-hard 

•  Most BNs are not polytrees. What to do? 
–  Clustering (e.g., junction tree) algorithm (somewhat later) 

to make graph tree like and then use BP  
–  Approximate inference (next slides) 



Approximate Inference over BNs 



Approximation 

•  We are going to approximate answers to queries 
such as the posterior (PX|E). 

•  Here we assume an intuitive of approximation:  
–  The answer may be erroneous up to some amount 
 

•  Formally treated in PAC theory (Probably 
Approximately Correct) by parameters (δ,ε) 
–  Confidence (quantified by δ) in that found solution 

maximally deviates from true solution up to ε 

•  PAC discussed in one of the next lectures 
55 



Approximate Inference in Bayesian Networks 

Monte Carlo algorithm 
–  Widely used to estimate quantities that are difficult to calculate 

exactly (Remember:  for BNs NP-hardness) 
–  Randomized sampling algorithm 
–  Accuracy depends on the number of samples 
–  Two families 

•  Direct sampling 
•  Markov chain sampling 



Inference by stochastic simulation 



Example in simple case 

Cloudy 

WetGrass 

Sprinkler Rain 

S  R    P(W|S,R) 

______________ 

t  t  .99 

t  f  .90 

f  t  .90 

f  f  .00 

P(C)=.5 

C    P(R|C) 

________ 

t  .80 

f  .20 

C   P(S|C) 

________ 

t  .10 

f  .50 

[Cloudy, Sprinkler, Rain, WetGrass] 

[true,         ,       ,       ] 

[true, false,       ,       ] 

[true, false, true,       ] 

[true, false, true, true] 

Sampling 

N = 1000              (# generated samples) 
N(Rain=true) = N([ _ , _ , true, _ ]) = 511  

      (# of samples for this event) 
P(Rain=true) = 0.511               (approximated probability)  

Estimating 



Sampling from empty network 

•  Generating samples from a network that has no 
evidence associated with it (empty network) 

•  Basic idea 
–  sample a value for each variable in topological order 
–  using the specified conditional probabilities 



Properties 



What if evidence is given? 

•  Sampling as defined above would generate cases 
that cannot be used 



•  Used to compute conditional probabilities 
•  Procedure 

–  Generating sample from prior distribution specified by 
the Bayesian Network 

–  Rejecting all that do not match the evidence 
–  Estimating probability 

Rejection Sampling 



Rejection Sampling 



•  Let us assume we want to estimate P(Rain|Sprinkler = true) with 
100 samples 

•  100 samples 
–  73 samples => Sprinkler = false 
–  27 samples => Sprinkler = true 

•  8 samples => Rain = true 
•  19 samples =>  Rain = false 

•  P(Rain|Sprinkler = true) = NORMALIZE((8,19)) = (0.296,0.704) 

•  Problem 
–  It rejects too many samples 

Rejection Sampling Example 



Analysis of rejection sampling 



Likelihood Weighting 

•  Goal 
–  Avoiding inefficiency of rejection sampling 

•  Idea 
–  Generating only events consistent with evidence 
–  Each event is weighted by likelihood that the event 

accords to the evidence 



Likelyhood Weighting: Example 

•  P(Rain|Sprinkler=true,  
            WetGrass = true)? 

•  Sampling 
–  The weight is set to 1.0 
–  Sample from P(Cloudy) = (0.5,0.5) => true 
–  Sprinkler is an evidence variable with value  true  

 w ç w * P(Sprinkler=true | Cloudy = true) = 0.1 
–  Sample from P(Rain|Cloudy=true)=(0.8,0.2) => true 
–  WetGrass is an evidence variable with value true 

 w çw * P(WetGrass=true |Sprinkler=true, Rain = true) = 0.099 
–  [true, true, true, true] with weight 0.099 

•  Estimating 
–  Accumulating weights to either Rain=true or Rain=false 
–  Normalize (= divide by sum of weights) 



Likelyhood Weighting: Example 

•  P(Rain|Cloudy=true,  
            WetGrass = true)? 

•  Sampling 
–  Cloudy is an evidence  

 w ç w * P(Cloudy = true) = 0.5 
–  Sprinkler no evidence  

 Sample from P(Sprinkler| Cloudy=true)=(0.1, 0.9) => false 
–  Sample from P(Rain|Cloudy=true)=(0.8,0.2) => true 
–  WetGrass is an evidence variable with value true 

 w çw * P(WetGrass=true |Sprinkler=false, Rain = true) = 0.45 
–  [true, false, true, true] with weight 0.45 



Likelihood analysis 



Likelihood weighting 



•  Let’s think of the network as being in a particular current 
state specifying a value for every variable 

•  MCMC generates each event by making a random 
change to the preceding event 

•  The next state is generated by randomly sampling a 
value for one of the non-evidence variables Xi, 
conditioned on the current values of the variables in the 
Markov blanket of Xi 

•  Likelihood Weighting only takes into account the 
evidences of the parents. (Problematic if evidence on 
leafs).  

Markov Chain Monte Carlo 



Markov Blanket 

•  Markov blanket: Parents + children + children’s parents 
•  Node is conditionally independent of all other nodes in network, 

given its Markov Blanket 



Arrows describe transition probabilities; leads to a (the Markov) chain of states   



•  P(Rain|Sprinkler = true, WetGrass = true) = ? 
•  Initial state is [true, true, false, true] (for [Cloudy,Sprinkler,Rain,WetGrass]) 

•  The following steps are executed repeatedly: 
–  Cloudy is sampled, given the current values of its Markov blanket variables 

 So, we sample from P(Cloudy|Sprinkler= true, Rain=false) 
 Suppose the result is Cloudy = false. 

–  Now current state is [false, true, false, true] and counts are updated 
–  Rain is sampled, given the current values of its Markov blanket variables 

 So, we sample from P(Rain|Cloudy=false,Sprinkler=true, WetGrass=true) 
 Suppose the result is Rain = true. 

–  Then current state is [false, true, true, true] 
•  After all the iterations, let’s say the process visited 20 states where Rain is true 

and 60 states where Rain is false then the answer of the query is 
NORMALIZE((20,60))=(0.25,0.75) 

Markov Chain Monte Carlo: Example 



MCMC 

Z 
s 

s 

s 
s 

s 



Summary 

•  Bayesian networks provide a natural representation for 
(causally induced) conditional independence 

•  Topology + CPTs = compact representation of joint 
distribution 

•  Generally easy for domain experts to construct 
•  Exact inference by variable elimination 

–  polytime on polytrees, NP-hard on general graphs 
–  space can be exponential as well 

•  Exact Inference by belief propagation on polytress 
•  Approximate inference based on sampling and counting 

help to overcome complexity of exact inference 


