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Syntax and Semantics of Bayesian
Networks




RSI
SERSIT,

Bayesian networks

A simple, graphical notation for conditional
independence assertions and hence for compact
specification of full joint distributions

Syntax:
— a set of nodes, one per variable
— adirected, acyclic graph (link = "directly influences")
— a conditional distribution for each node given its parents:
P (Xi| Parents (X))

In the simplest case, conditional distribution represented
as a conditional probability table (CPT) giving the
distribution over X, for each combination of parent values



Example

« Topology of network encodes conditional independence

assertions: M
Toothache @

« Weather is independent of the other variables

* Toothache and Catch are conditionally independent
given Cavity




Example

* I'm at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a

burglar?
« Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

* In this case, the network topology reflects "causal" knowledge:
— A burglar can set the alarm off
— An earthquake can set the alarm off
— The alarm can cause Mary to call
— The alarm can cause John to call

A formal in-depth treatment of
causality will be given in
lectures 5 to 9




Example contd.

P(B)

KE)

Earthquake

B E |P(AIB.E)
T T| .95

T F| .94

F T/| .29

F F | .o0l

A [P(MIA)

T| .70
F| Ol
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Compactness

A CPT for Boolean X with k Boolean parents has 2 rows for the

combinations of parent values /@

Each row requires one number p for X, = true ﬁ
(the number for X = false is just 1-p) @ @

If each variable has no more than k parents, the complete network requires
O(n - 25 numbers

i.e., grows linearly with n, vs. O(2") for the full joint distribution

For burglary net, 1 + 1 +4 + 2 + 2 = 10 numbers (vs. 2°>-1 = 31)



Semantics

The full joint distribution of a BN is defined as the product of the local
conditional distributions:

P (X, ..., X)) =TI, P (X/| Parents(X))

P(AIB,E)

.95
.94
.29
.001

Mm-S
mM-m -

A |P(MIA)

eg.,.P(amaan-ba-e) Gomcab T[ | (Fanca) [T] 70
F| .05 F| .0l

=P(j|a)P(m]|a)P(a| -b, —e)P(=b) P(-e)

= 0.90x0.7x0.001x0.999x0.998
~ 0.00063

Y
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Constructing Bayesian networks

* 1. Choose an ordering of variables X, ... , X_

e 2.Fori=1ton
— add X, to the network

— select parents from X, ... ,X;; such that
P (Xi | Parents(X)) =P (X | X4, ... X4)

This choice of parents guarantees:

(chain rule)
P (X, ....X) — ml, P (X | X, ..., Xi4)

(by construction)
= M, -,P (X;| Parents(X)))




Example

« Suppose we choose the ordering M, J, A, B, E

P(J|M)=P(J)?




Example

« Suppose we choose the ordering M, J, A, B, E

P(J | M) =P(J)? No
P(A | J, M) =P(A)? P(A | J, M) = P(A | J)?
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Example

« Suppose we choose the ordering M, J, A, B, E

(arycals)
e
(Ham)
P(J|M)=PUJ)?N
P(A|J, M) =P(A )’?P(A|J M) = P(A | J)? No
P(B|A, J,M)=P(B|A)?
P(B | A, J, M) = P(B)?
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Example

« Suppose we choose the ordering M, J, A, B, E

P(J | M)=P(J)? No
J,M)=P(A|J)? P(A| J, M) = P(A)? No

A, J,M)=P(B|A)? Yes

A, J, M) =P(B)? No

B, A ,J, M) =P(E | A)?

B, A, J, M) =P(E | A, B)?

-
>

U U
W W
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M

(
(
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Example

« Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)? No
(A]J, M)=P(A|J)? P(A|J, M) = P(A)? No
(B|A,J,M)=P(B|A)? Yes

P(B | A, J, M) = P(B)? No
(
(

E|B,A,J,M)=P(E|A)? No
E|B, A, J,M)=P(E|A, B)? Yes

IM FOCUS DAS LEBEN




Example contd.

Burglary
Earthquake

« Deciding conditional independence is hard in non-causal directions

« (Causal models and conditional independence seem hardwired for
humans!)

 Network is less compact: 1 + 2 +4 + 2 + 4 = 13 numbers needed
instead of 10.

RSI
SERSIT,



Hybrid (discrete+continuous) networks

BNs can also deal with continuous RVs or even hybrid ones

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Subsidy? [ @arves
Ccost)
‘ Buys? \

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete-+continuous parents (e.g., C'ost)
2) Discrete variable, continuous parents (e.g., Buys?)




Exact Inference on Bayesian Networks




Inference tasks

e —

Simple queries: compute posterior marginal P(X;|E=e)
e.g., P(NoGas|Gauge = empty, Lights = on, Starts= false)

Conjunctive queries: P(X;, X;|E=e) = P(X;|E=¢)P(X;|X;, E=e¢)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?

Explanation: why do | need a new starter motor?

Chapter 14.4-5



Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually
constructing its explicit representation

Simple query on the burglary network:

P(B|j,m) 2
=P(B,j,m)/P(j,m) .\/@{CE)
— QP(ija m)

:az(; Ea P(B,B,a,j,m) @ @

Rewrite full joint entries using product of CPT entries:
P(B|j,m)

=« 2, 22, P(B)P(e)P(a|B,e)P(j|a)P(m|a)

= aP(B) Y. P(e) 2, P(a|B,e)P(j|la)P(m|a)

Recursive depth-first enumeration: O(n) space, O(d") time

(Calculation over tree sum-product evaluation tree
with path length n (=number of RVs) and degree d
(=maximal number domain elements) )

Chapter 14.4-8 4



Enumeration algorithm

function ENUMERATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network with variables {X} U E U Y

Q(X) « a distribution over X, initially empty
for each value z; of X do

extend e with value z; for X

Q(z;) — ENUMERATE-ALL(VARS[bn], €)
return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars, e) returns a real number
if EMPTY?(vars) then return 1.0
Y« FIRST(vars)
if Y has value yin e
then return P(y | Pa(Y)) x ENUMERATE-ALL(REST(vars),e)
else return £, P(y | Pa(Y)) x ENUMERATE-ALL(REST(vars), e,)
where e, is e extended with ¥ = y

Chapter 14.4-5




Evaluation Tree

P(B) X, P(e) X, P(a| B, e)P(j|a) P(m|a) P(b)

Pce)
.002

PrAe)

P(a|b,e) P@Aalb,e) P(alb,—e) P@Aalbme)

95 .05 94 .06
ol raley)
P(jla) P@lma) P(jla) P(j|ma)
.90 .05 .90 .05

O O O O

P(m|a) Pm|=a) P(m|a) Pm|=a)
.70 01 .70 .01
9 U O 9 ) LU 9

Enumeration is inefficient: repeated computation
e.g., computes P(j|a)P(ml|a) for each value of ¢

Can do better with Variable Elimination (VE)




Basic Objects of VE

P(B) 2. P(e) 2, P(a|B,e)P(j|a)P(m|a)

e Track objects called factors /@>
(right-to-left, in tree: bottom up) /@{
e |nitial factors are local CPTs @ @
P(B) P(J|A) P(A|B, E) P(m|A
\__Y_/ \ -~ 7 . — .
f(B) f1(A, ) fACAB,E) ¢ (A

e During elimination create new factors

e‘“:”"
3 o
N

= Rz
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Basic Operations: Pointwise Product

 Pointwise product of factors f, and f,
— for example: f41(A,B) " f5,(B,C)= f(A,B,C)
— in general:
£ Xy XY g Y)Y, Y02y, 4)=
f(OX4se XY 1o Yoy 0 )

— has 2*%*'entries (if all variables are binary)




Join by pointwise product

Al fim(A) Al filA) Al fu(A) - . - . . - .
9] - [T 9 | [TF 71 P(B) X, P(e) ¥, P(a|B,¢)P(jla)P(m|a)

—
W

fa—-(A.B.FE)
95
04
29 Al fim(A)
001 T .63
05 F [ .0005
06
71
099

—_—
s

faim(A. B E)
05 * 63
04 * 63
20 * 63
001 * .63
05 * 0005
06 * 0005
71 *.0005

099 * 0005

el Bl Bl B | » | .| ]
™ ! Lyl O | e | e | e | ™
e -| - - J1 s
! T T T | | ] ] ]

[e— i o i e
- — - — - — - — -
- 4 - - - 4 - s T4

el B™ Eaed BF™ s B™ B! ™ B
. | o] 4 | *4 i 4 i L5

Y 3 ] | - 3 3
- - ] — 1 - ] —
‘ ‘ - - ‘ n 4 -

DN B . | T et v v

-l - ] - - P

- - ’ , - -
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Basic Operations: Summing out

« Summing out a variable from a product of factors
— Move any constant factors outside the summation
— Add up submatrices in pointwise product of remaining
factors
Yofx LK = U f L KLU
= f* . *f

assuming f., ..., f.do not depend on X

RSI
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Summing out

P(B) ¥. P(e) £, P(a| B, e)P(j|a) P(m|a)

A[B|E| fasu(A B.E) .

TIT|[T| .95*.63 Summing out a B E fasu(B.E)

T|T|F 94 * .63 T|T 95 * 63 + .05 * .0005 = .5985
T|IF|T 20 * 63 TIF 94 * 63 + .06 * .0005 = .5922
T|F|F .001* 63 :> F|T 20 * 63 + .71 * .0005 = .1830
F1T|T| .05%.0005 F | F[.001* .63+ .999 * .0005 = .001129
FIT|[F| .06%.0005

F|F|T/| .71 *.0005

F|F|F | .999 * 0005
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VE result for Burglary Example

P(B|j,m)
= aP(B) Zeﬂd)z P(a|B e) P(jla) P(7zz|a)l
B E J M
(€) 2P (a \B ) P(jla) fyr(a)
(€)2aP(al B e) fs(a) far(a)
i

afA(a b,e)fi(a)fyla)

| | R | R A |
Q
T
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Optimization by Finding Irrelevant Variables

Consider the query P(JohnCalls|Burglary = true)

@ @

P(J|b) = aP(b) ( P(e) ;P(a\b, e)P(J|a)> P(m]a) ;&

S m

Sum over m is identically 1; A is irrelevant to the query @ @

Thm 1: YV is irrelevant unless Y € Ancestors({ X} UE)

Here, X = JohnCalls, E={Burglary}, and
Ancestors({ X} UE) = {Alarm, Earthquake, Burglary}
so MaryCualls is irrelevant

Irrelevant variables can be identified by a graph
theoretical criterion on the associated moral
graph by m-separation




What else can we do?

* General methodology: Consider special cases
(special data structures)

* Here: Consider polytrees (singly connected
networks)

* Following slides on Pearl’s belief propagation
algorithm based on slides by Tomas Singliar
(adapted by Daniel Lowd)

IIIIIIIIIIIIIIIIIIII
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Polytree Bayesian Networks

« Bayesian network graph is a polytree (or singly
connected network) iff there is at most one path between
any two nodes, V, and V, (iff the underlying non-directed
graph is a tree)

« Exact BN inference is NP-hard but O(n) on polytree
* (Non-)Examples:

o e w




Our inference task

« \We know the values of some evidence variables E:
V

el 2 M e| E|

* We wish to compute the conditional probability P(X; |E)
for all non-evidence variables X.

+ IDEA:

— Do variable elimination in parallel (locally on each node/
RV)

— Send/receive required knowledge to/from other nodes

* Following soldier counting example on message

RSI
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35}%&; \\\\\\\\\\\\\\\\\\\\\\\\\\\\\
oy
75 ars®



Counting soldiers example (linear)

adapted from MacKay (2003): Information Theory, Inference and Learning
Algorithms.
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Counting soldiers example (beliefs)

A N
A N ﬂt
2 i

HO
HO

\
only see
my incoming
messages
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Counting soldiers example (locality)

Belief:
Must be

1+1+4=6
of us

Xonly see
my incoming

mesSsages
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Counting soldiers example (in polytree)




Counting soldiers example (in polytree)




Counting soldiers example (in polytree)




Counting soldiers example (in polytree)




Counting soldiers example (non-circularity)

wouldn't work correctly

with a 'loopy' (cyclic) grapt ight foresee

But you Mig -
the junction tree algorithn:
One has 10 partition the graph
into a tree of clusters




Pearl's belief propagation algorithm

* Local computation for one node V desired

* Information flows through the links of G
— flows as messages of two types — Aand

* V splits network into two disjoint parts
— Strong independence assumptions induced — crucial!

* Denote E,,* the part of evidence accessible

through the parents of \V (causal or predictive)
— passed downward in T messages

* Analogously, let £,/ be the diagnostic evidence
— passed upwards in A messages

RSI
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Pearl’ s Belief Propagation




The m Messages

* What are the messages?
* For simplicity, let the nodes be binary

RSI
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The message passes on information.

What information? Observe;

P(V,) = P(V,| V,=T)P(V,=T)

V,=T |0.8

V,=F [0.2
P V=T |V,=F
V,=T |04 |0.9
V,=F 0.6 |0.1

+ P(V,| V,=F)P(V,=F)

The information needed is the
CPTof V, = m,(V,)

n Messages capture information
passed from parent to child



RSI
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The Evidence

Evidence — values of observed nodes
— V,=T,Vs=3
Our belief in what the value of V,

‘should’” be changes.
This belief is propagated
As if the CPTs became

<
“i
_|

1.0

0.0

P V,=T | V,=
Ve=1 [0.0 [0.0
Ve=2 [0.0 [0.0
Ve=3 [1.0 [1.0




The Messages

We know what the = messages are
What about \?

Assume E = {V, } and compute by Bayes rule:

v,
() PV 1V =2 (Vlialz(vvi Y _apvpv, 1v)

v The information not available at V, is P(V,|V,). To be
@ passed upwards by a A-message. Again, this is not in

2 general exactly the CPT, but the belief based on evidence
down the tree.

The messages are «(V)=P(V|E") and \L(V)=P(E|V)

RSI
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Combination of evidence in node V

Recall that E,, = E,, U E,, and let us compute

P(V|E)=P(V |E!,E;)=a'P(E;,E; |V)P(V) =
o' P(E; |V)P(E} |V)P(V)=aP(E; |V)P(V |E}) =
oAV (V) = BEL(V)

a is the normalization constant ( 1/P(E|[E*) )
normalization is not necessary (can do it at the end)
but may prevent numerical underflow problems

RSI
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A message combination

« Assume X received A-messages from neighbors

« How to compute A(x) = P(e[x)?

« LetY,, ..., Y_be the children of X

* Ay(X) denotes the A-message sent between X and Y

M) = T, ()

Derivation clear: Assume two children Y, Z of X,
then P(e’|x) = P(e, e,|x) = P(ey|x)* P(e4|x)
(siblings independent given parent)

RSI
SERSIT,



T message combination

« Assume X received 11 -messages from neighbors

« How to compute 11(x) = P(x|e") ?

* LetU,, ..., U, be the parents of X

* Ty (X) denotes the m-message sent between X and Y
« summation over the CPT

Derivation: Condition on all U, and note that each pair
(parent U,evidence e*) is independent of the other pairs (U;,e*)

RSI
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Messages to pass

We need to compute 11, (X)

T xy, (x) =omy (X)l_[ )\’YkX (x)

Derivation

Txvy

=P | exy)

=P(x|e—eyy)=

= [ Bel(x) when evidence ey, is surpressed]
= Bel(x) setting Ayy(x) = 1

= formula above

UUUUUUUUUUUUUUUUU
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Messages to pass

+
€ xy

vy Derivation hint
* Ajx = Plexylx)
= P(e*yy;evylX)
* then conditionon YJandV,
\%  And use independences
/ ° Y, seperates e’ from e,
Y]  V seperates e’ from X

)\ij

M o
« Symbolically, group other (#X) parents of Y| into single complex
V=V, ..., V,and treat link X->Yj vs. V-> Y]

5 WU © UNIVERSITAT ZU LUBECK
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Pearl’s Belief Propagation Algorithm

— Initialization step
* Forall V=g, in E:
— MX) = 1 whenever x, = e;; 0 otherwise
— n(x;) = 1 whenever x; = e,;; 0 otherwise
* For nodes without parents
— 71(X;) = p(x;) - prior probabilities
* For nodes without children
— MXx;) = 1 uniformly (normalize at end)



Pearl’s Belief Propagation Algorithm

— lterate until no change occurs

» (For each node X) if X has received all the T messages from its
parents, calculate 171(x)

» (For each node X) if X has received all the A messages from its
children, calculate A(x)

» (For each node X) if 11(x) has been calculated and X received all the
A-messages from all its children (except Y), calculate . (x) and
sendittoY.

» (For each node X) if A(x) has been calculated and X received all the
T-messages from all parents (except U), calculate A, ,(u) and send

it to U.
— Compute BEL(X) = A(x)11(x) and normalize

RSI
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Complexity

* On a polytree, the BP algorithm converges in time
proportional to diameter of network — at most linear

« Work done in a node is proportional to the size of CPT
 Hence BP is linear in number of network parameters

* For general BNs
— Exact inference is NP-hard
— Approximate inference is NP-hard

* Most BNs are not polytrees. What to do?

— Clustering (e.g., junction tree) algorithm (somewhat later)
to make graph tree like and then use BP

— Approximate inference (next slides)




Approximate Inference over BNs

UNIVERSITAT ZU LUBECK
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Approximation

* We are going to approximate answers to queries
such as the posterior (PX|E).

* Here we assume an intuitive of approximation:
— The answer may be erroneous up to some amount

* Formally treated in PAC theory (Probably
Approximately Correct) by parameters (9,¢)

— Confidence (quantified by d) in that found solution
maximally deviates from true solution up to €

55



Approximate Inference in Bayesian Networks

Monte Carlo algorithm

— Widely used to estimate quantities that are difficult to calculate
exactly (Remember: for BNs NP-hardness)

— Randomized sampling algorithm
— Accuracy depends on the number of samples
— Two families

* Direct sampling

« Markov chain sampling

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS



Inference by stochastic simulation

Basic idea:
1) Draw N samples from a sampling distribution S

2) Compute an approximate posterior probability P

3) Show this converges to the true probability
Outline: @

— Sampling from an empty network

— Rejection sampling: reject samples disagreeing with evidence

— Likelihood weighting: use evidence to weight samples

— Markov chain Monte Carlo (MCMC): sample from a stochastic process
whose stationary distribution is the true posterior

RSI
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Example in simple case

@ Sampling
c P(S|C) @ ¢ PRIC) [Cloudy, Sprinkler, Rain, WetGrass]

¢ 80 [true ]
_ ] .

SO o | e
50 :

[true, false, , ]

[true, false, true, ]

[true, false, true, truej

S R P(WS,R)
Estimating

N = 1000 (# generated samples)
N(Rain=true) = N([ _, _, true, _]) =511

(# of samples for this event)
P(Rain=true) = 0.511 (approximated probability)

3RS 5 VINSTITUT FOR (NFORMATIONSSYSTEME
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Sampling from empty network

« (Generating samples from a network that has no
evidence associated with it (empty network)
« Basicidea

— sample a value for each variable in topological order
— using the specified conditional probabilities

function PRIOR-SAMPLE(bn) returns an event sampled from bn
inputs: bn, a belief network specifying joint distribution P(X... ... X,)

X < an event with n elements
for: = 1tondo
r; <—a random sample from P (X, | parents(X;))
given the values of Parents(X;) in x
return x

N
H "*g}-g,,";
S RELYT & UNIVERSITAT ZU LUBECK
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Properties

Probability that PRIORSAMPLE generates a particular event
Sps(xy...x,) = II[_ P(a;|parents(X;)) = P(xy...x,)
I.e., the true prior probability

E.g., Sps(t, f,t,t) =0.5x0.9x0.8x09=0.324 = P(t, f, t,1)
Let Npg(aq...x,) be the number of samples generated for event x4, ... 7,
Then we have

lim P(:z?l, e ) = A}im Nps(xy,...,x,)/N
— 00

N—oo
= Sps(x1,...,7p)
= Plxy...12p)

That is, estimates| derived from PRIORSAMPLE are consistent

Shorthand: P(Tl ooy Tp) & P(xy .. xy)

ivi rocud vAS LEBEN




What if evidence is given?

« Sampling as defined above would generate cases
that cannot be used
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Rejection Sampling

« Used to compute conditional probabilities

* Procedure

— Generating sample from prior distribution specified by
the Bayesian Network

— Rejecting all that do not match the evidence
— Estimating probability

UN
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Rejection Sampling

P(X|e) estimated from samples agreeing with e

>

function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of (X
local variables: N, a vector of counts over X, initially zero

for j=1to Ndo
X «— PRIOR-SAMPLE(bn)
if x is consistent with e then
N[1] < N[2]+1 where = is the value of X in x
return NORMALIZE(N[A])

e)

UNIVERSIT AT ZU LUBECK
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Rejection Sampling Example

« Let us assume we want to estimate P(Rain|Sprinkler = true) with
100 samples

100 samples
— 73 samples => Sprinkler = false
— 27 samples => Sprinkler = true
« 8 samples => Rain = true
* 19 samples => Rain = false

* P(Rain|Sprinkler = true) = NORMALIZE((8,19)) = (0.296,0.704)

* Problem
— It rejects too many samples




Analysis of rejection sampling

P(X\ef) — aNpg(X. e) (algorithm defn.)
= Nps(X.e)/Npgle) (normalized by Npg(e))
~P(X,e)/Ple) (property of PRIORSAMPLE)
= P(Xle) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates
Problem: hopelessly expensive if P(e) is small

P(e) drops off exponentially with number of evidence variables!




Likelihood Weighting

+ Goal
— Avoiding inefficiency of rejection sampling

* |dea
— Generating only events consistent with evidence

— Each event is weighted by likelihood that the event
accords to the evidence

UN
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Likelyhood Weighting: Example

«  P(Rain|Sprinkler=true, (o)

WetGrass = true)?

C [ P(S) C | P(R)
«  Sampling 71 50 i 712

—  The weight is set to 1.0

—  Sample from P(Cloudy) = (0.5,0.5) => true S R[PW)
—  Sprinkler is an evidence variable with value true | ! ! o
w € w * P(Sprinkler=true | Cloudy = true) = 0.1 |/ '; 90

—  Sample from P(Rain|Cloudy=true)=(0.8,0.2) => true
—  WetGrass is an evidence variable with value true
w €w * P(WetGrass=true |Sprinkler=true, Rain = true) = 0.099
—  [true, true, true, true] with weight 0.099
Estimating
—  Accumulating weights to either Rain=true or Rain=false
— Normalize (= divide by sum of weights)
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Likelyhood Weighting: Example

P(C)=.5
o
: _ C | Ps) C | P(R)
P(Ra|n|CIoudy—tru_e, ? o (Sprinkte) AE:
WetGrass = true)” T
. Sampllng S
Cloudy is an evidence 1| 99
w € w * P(Cloudy = true) = 0.5 A e
—  Sprinkler no evidence U

Sample from P(Sprinkler| Cloudy=true)=(0.1, 0.9) => false
—  Sample from P(Rain|Cloudy=true)=(0.8,0.2) => true
—  WetGrass is an evidence variable with value true

w €w * P(WetGrass=true |Sprinkler=false, Rain = true) = 0.45
—  [true, false, true, true] with weight 0.45

IM FOCUS DAS LEBEN




Likelihood analysis

Sampling probability for WEIGHTEDSAMPLE is
Sws(z.e) = Hi':lp(:j parents(Z;))
Note: pays attention to evidence in ancestors only
—  somewhere “in between” prior and
posterior distribution (Sprinkler Ra

>/

Weight for a given sample z. e is

w(z,e) = II'_, P(e;|parents(E;))

Weighted sampling probability is
Sws(z, e)w(z,e)
= Hf-:lp(:l- parents(Z;)) II_,P(e;|parents(E;))
— P(z,e) (by standard global semantics of network)

Hence likelihood weighting returns consistent estimates
but performance still degrades with many evidence variables
because a few samples have nearly all the total weight

IM FOCUS DAS LEBEN




Likelihood weighting

function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X|e)
local variables: W, a vector of weighted counts over X, initially zero

for j=1to Ndo

X, W+« WEIGHTED-SAMPLE(bn)

Wz] « W]z| + w where 2 is the value of X in x
return NORMALIZE(W|[X])

function WEIGHTED-SAMPLE(bn, e) returns an event and a weight

X < an event with n elements; w+« 1
for 1 =1ton do
if X; has a value z; in e
then w«— w x P(X;,= ;| parents(X;))
else z; < a random sample from P(.X;

parents(X;))
return x, w
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Markov Chain Monte Carlo

» Let’s think of the network as being in a particular current
state specifying a value for every variable

« MCMC generates each event by making a random
change to the preceding event

* The next state is generated by randomly sampling a
value for one of the non-evidence variables X,
conditioned on the current values of the variables in the
Markov blanket of X,

« Likelihood Weighting only takes into account the
evidences of the parents. (Problematic if evidence on
leafs).




Markov Blanket

 Markov blanket: Parents + children + children’s parents

« Node is conditionally independent of all other nodes in network,
given its Markov Blanket




With Sprinkler =true, WetGrass =true, there are four states:

Wander about for a while, average what you see
.- Arrows describe transition probabilities; leads to a (the Markov) chain of states




Markov Chain Monte Carlo: Example

C | P(S) C
e G
£l .50 fl2

S R

t ] .99
rf

It

« P(Rain|Sprinkler = true, WetGrass = true) = ? / 'f 20
« Initial state is [true, true, false, true] (for [Cloudy,Sprinkler,Rain,WetGrass])

» The following steps are executed repeatedly:

— Cloudy is sampled, given the current values of its Markov blanket variables
So, we sample from P(Cloudy|Sprinkler= true, Rain=false)
Suppose the result is Cloudy = false.

— Now current state is [false, true, false, true] and counts are updated

— Rain is sampled, given the current values of its Markov blanket variables
So, we sample from P(Rain|Cloudy=false,Sprinkler=true, WetGrass=true)
Suppose the result is Rain = true.

— Then current state is [false, true, true, true]

« After all the iterations, let's say the process visited 20 states where Rain is true
and 60 states where Rain is false then the answer of the query is
NORMALIZE((20,60))=(0.25,0.75)

uuuuuuuuuuuuuuuuuu
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MCMC

“State’ of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

function MCNMC-ASK(X e, bn, N) returns an estimate of P(X|e)
local variables: N|X], a vector of counts over X, initially zero
Z, the nonevidence variables in bn

g » the current state of the network, initially copied from e

initializ¢ § with random values for the variables ir Z
for j=1to Ndo
for each Z;, in Z do
sample the value of Z; in S from P(7:lmb(Z;))
given the values of M B(Z;)in S
N[z] < N|z] + 1 where z is the value of X'in S

-

return NORMALIZE(IN[.X])

Can also choose a variable to sample at random each time




Summary

« Bayesian networks provide a natural representation for
(causally induced) conditional independence

« Topology + CPTs = compact representation of joint
distribution

* Generally easy for domain experts to construct

« Exact inference by variable elimination
— polytime on polytrees, NP-hard on general graphs
— space can be exponential as well

« Exact Inference by belief propagation on polytress

« Approximate inference based on sampling and counting
help to overcome complexity of exact inference




