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What this course is about

Differentiable Programming and
Probabilistic Programming for
Machine LearningV

1) Yes, this is a footnote on a slide, believe it or not. The three lines summarizing the topic of the course is the optimal outcome w.r.t my subjective
measure - using a non-gradient optimziation procedure starting from the original course name: Probabilistic Differential Programming ->
Probabilistic and Differential Programming -> Probabilistic and Differentiable Programming ->Differentiable and Probabilistic Programming

UNIVERSITAT ZU LUBECK
INSTITUT FUR INFORMATIONSSYSTEME




What this lecture V1 is about

Agenda

2. Differentiable Programming and
3. Probabilistic Programming for
1. Machine Learning"

Pointers to lectures in IR ERSALI11EL.

1) Yes, this is a footnote on a slide, believe it or not. The three lines summarizing the topic of the course is the optimal outcome w.r.t my subjective
measure - using a non-gradient optimziation procedure starting from the original course name: Probabilistic Differential Programming ->
Probabilistic and Differential Programming -> Probabilistic and Differentiable Programming ->Differentiable and Probabilistic Programming
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What We Mean by “Learning”

Machine learning (ML) is programming algorithms for
e optimizing a performance criterion
* using example (training) data
* by constructing general(izable) models
* that are good approximations of the data

Role of Mathematics Role of CS: Efficient algorithms
« Building mathematical  * solve the optimization
model problem

* represent and evaluate the

e core taskis inference )
model for inference

from a sample
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Differentiable Programming

Machine learning (ML) is programming algorithms for
e optimizing a performance criterion
* using example (training) data
* by constructing general(izable) models
* that are good approximations of the data

-

Role of Mathematics

* Programming
differentiable model

e core taskis inference
from a sample

Role of CS: Efficient algorithms

solve the optimization
problem

represent and evaluate the
model for inference

/

EEEEEEEEEEEEE
e 2  INSTITUT FUR INFORMATIONSSYSTEME
o, 6S

6



Probabilistic Programming

Machine learning (ML) is programming algorithms for
e optimizing a performance criterion
* using example (training) data
* by constructing general(izable) models
* that are good approximations of the data

-

Role of Mathematics Role of CS: Efficient algorithms

° Programming ¢ SOIVe the Optimization
probabilistic model problem

S ane ek i e e * represent and evaluate the

model for inference

from a sample

/
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Types of learning (classically)

. Supervised Learning
learn to predict an output
for input vector after
training with labelled data

. Unsupervised Learning
discover a good internal
representation of the input

. Reinforcement Learning
learn to select an action to
maximize the expectation of
future rewards (payoff)




Subtypes of unsupervised I. (in Deep Learning context)

» Self-supervised (Self-taught) Bl = T
Learning - learn with targets
induced by a prior on the ﬁ‘ Mﬂﬁﬁ e
unlabelled training data ol u@ -

- Semi-supervised Learning e R
learn with few labelled
examples and many
unlabelled ones
(same distribution for
labelled & non-labelled data)
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Generative vs. Discriminative/descriptive

e Many unsupervised and self-supervised models can
be classed as ‘generative models’.

— Given unlabelled data X, a unsupervised generative
model learns full joint probability distribution P(X,Y).

— These are characterised by an ability to ‘sample’ the
model to ‘create’ new data

e |n contrast: Discriminative models learn P(Y | X)
(which can be calculated in a generative model, too,
using Bayes’s rule but not vice versa)

(X: observations, data, Y: categories, classes, non-observed)
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Example Supervised Learning: Classification

« Class C of a “family car”
— Prediction: Is car x a family car?

— Knowledge extraction: What do people expect from a
family car?

« Qutput:
Positive (+) and negative (-) examples
- Input representation by two features:
X;: price, x;: engine power
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Training set X

& Labelled X = { (xt,rt) }ItVzl
e r Data
0
e o o
. © o . 1, x is positive
b S apels = . .
® N 0, x is negative
o -
X, - S
o © Feat
. eature X = (x1»x2)
vector
1 1 1 1 >

b g Price
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Class C

5 A (p1< price < p,) AND (e; < engine power < e,)
2
2T
2
S8
o s o
Re2 C
I 5
S
el
u =
S B
P
S
1 1 1 1 >
i : X, Price
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power

: Engine

X
2

m
N
1}

Hypothesis class H

hp’l,pIZ,ell,elz(X)

False positive
h
S o Af////, . .
C _ False negative

= & -

o & S
& e

S

1 1 1 1 »

P P, )
> % Price

|

1, h classifies x as positive
0, h classifies x as negative

Error of h on X

N
E(hIX) = (1/N) ) (h(x%) # )
t=1

Optimization

argminp, o E(R]X)

1P2€1€;

But how to find optimum?



Example Supervised Learning: Regression

Price of a used car

X : car attribute

y: price

y= g(x| &): hypothesis

g(): linear model
g(x) = wix + wy

0: parameters

(here w,, w,)
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Example Supervised Learning: Regression

Price of a used car
X : car attribute
y: price
Y=g (x| 6 ): hypothesis
g (): quadratic model
gx) = wox?+wix + w
R o: parameters
(here wo, wq, w,)
16



Example Supervised Learning: Regression

X={(HLrH¥I., r"f =fxHeR

Mean squared error
for general and linear hypothesis g

E(glX) = (1/N) Zi=1(g(x") —7°)?

E(wy, wolX) = (1/N) Xthi(wixt + wp) — rt)?

Optimization:

1 ; ; . . ( OF aE) (00
B aWO,awl B ( ’ )
Calculgtlng the gradlgnt VE Y. xtrt — XFN
analytically NOT feasible for Wy = 0NZ — N 2
thousands of parameters 2o(x) - Nx

- > Differentiable programming Wo=F —w; ¥ 17
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What is Differentiable Programming (DP)?

» Yeah, Differentiable Programming is little more than a rebranding of the modern
collection Deep Learning techniques, the same way Deep Learning was a
rebranding of the modern incarnations of neural nets with more than two layers.
The important point is that people are now building a new kind of software by
assembling networks of parameterized functional blocks and by training them
from examples using some form of gradient-based optimization....It’s really very
much like a reqular program, except it’s parameterized, automatically
differentiated, and trainable/optimizable. ...

(Part of a post of Yann Lecun, somewhere in Facebook, found at
https.//qgist.github.com/halhenke/872708ccea42ee8cald950c6c2069814)
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DP is a significant generalization of DL!

{ Yeah, Differentiable Programming is little more than a rebranding of the modern ]
collection Deep Learning techniques, the same way Deep Learning was a
rebranding of the modern incarnations of neural nets with more than two layers.
The important point is that people are now building a new kind of software by
assembling networks of parameterized functional blocks and by training them

from examples using some form of gradient-based optimization....It’s really very

much like a reqular program, except it’s parameterized, automatically
differentiated, and trainable/optimizable. ...

(Part of a post of Yann Lecun, somewhere in Facebook, found at
https.//qgist.github.com/halhenke/872708ccea42ee8cald950c6c2069814)
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What is Deep Learning (DL)?

s
o s
]’3

Deep learning is based on function composition

— Feedforward networks: y = (g (x,0,), 6¢)
Often with relatively simple functions
(e.g.f(x,0¢) =0o(x"6;))

— Recurrent networks:
yt - f(Yt—1lthe) — f(f(yt_z,Xt_1,e),Xt,e) — oo

In early days focus of DL on functions for classification

Nowadays the functions are much more general in
their inputs and outputs.

IIIIIIIIIIIIIIIII
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Network view of composed functions

Input layer Hidden layer(s) Output layer
(2) .
Wmij » hys W i
X » b
'R 7= ha <\ , Wi:
& 4 : ¥ O Y .
X2 € Aot .7 : p " h3 - § .
; N v O ;
P P 53 O /
X3 & K ‘ » h4 . - 2 Yo
x & >
5
X h y’
g f

layer i

Biasin i
weight matrix
ini

activation
functionin i

L,States”

Functions

22



Deep networks

Input layer Hidden layer(s) Output layer

(n)
w Y |1 W(z)
1)
|5 5
1
E
-0,
|4 fm—
15
X h k I
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DP follows the gradient!

» Yeah, Differentiable Programming is little more than a rebranding of the modern
collection Deep Learning techniques, the same way Deep Learning was a
rebranding of the modern incarnations of neural nets with more than two layers.
The important point is that people are now building a new kind of software by

|

assembling networks of parameterized functional blocks and by trajning them
from examples using some form of gradient-based optimization....It’s really very

47
¥

much Tike a regular program, except It’s parameterized, automatically
differentiated, and trainable/optimizable. ...

(Part of a post of Yann Lecun, somewhere in Facebook, found at
https.//qgist.github.com/halhenke/872708ccea42ee8cald950c6c2069814)
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Gradient Descent

Total loss

L==) (g6,
(x,y)eD

for some loss function |, dataset D e

tangent line

and model g with parameters 0

- Define how many passes (epochs) over
the data to make k

. learning rate n

- Gradient Descent: update 6 by gradient \ | |
in each epoch 6«6 —nVyL N




Backprop: efficient implementation of gradient descent

Forward it

Sample Back- Update the
through the
labeled data > —» propagate —» network
network, get :
(batch) - the errors weights
predictions
t |

Backpropagation idea

* Generate error signal that measures difference between predictions and
target values

* Use error signal to change the weights and get more

(a) Forward pass

v

accurate predictions backwards
* Underlying mathematics: chain rule

Chain rule (1-dim)
dh B df dg
dx dg dx

(for h(x) = f(g(x)))

3
Y ;; TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
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Deep networks

Input layer Hidden layer(s) Output layer

Problem: Many, many parameters, no structure

IM FOCUS DAS LEBEN 27



What is Deep Learning?

- Deep learning systems are neural network models
similar to those popular in the ‘80s and '90s, with:

1.

2.
3.
4.
5.

some architectural and algorithmic innovations (e.qg.
many layers, ReLUs, dropout, LSTMs)

vastly larger data sets (web-scale)

vastly larger-scale compute resources (GPU, cloud)
much better software tools (Theano, Torch, TensorFlow)
vastly increased industry investment and media hype

28



Deep Learning (ad 1.)

Example family car:
we presumed features
price and mileage

Classical Machine Learning

oo iy 3

Input Feature extraction Classification Output

Deep Learning

Gip — SEGETEY —

Input Feature extraction + Classification Output

USRI el Adapted from https.//www.xenonstack.comy/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png FOCUS DAS LEBEN



Deep Learning (also ad 1.)

Example: Convolutional Neural Networks (CNN)

* More structure: local receptive fields
* Less parameters: weight tying, pooling

1[1/1]0]o0 1) 141/010
ol11/1]o0 101 10/ L) 1110 |4
0/o0/1 11 0|10 :I> R EAETE

IR AOE olo[1]1]0

0o/1/1 00 Convolutional SRR e
Input matrix 3x3 filter meee Feature

http.//deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution
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A mostly complete chart of

Input Cell N eura l N e tWO r kS Deep Feed Forward (DFF)

O Backfed Input Cell ©2019 Fjodor van Veen &Stefan Leijnen  asimovinstitute.org

/\ Noisy Input Cell

@ Hidden Cell

. Probablistic Hidden Cell

Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)

Recurrent Neural Network (RNN) Long /Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)
o Qo Q Qo o o

. Spiking Hidden Cell
. Capsule Cell

. Output Cell o
. Match Input Output Cell

Y
G

Y

Wue/S

W@

. Recurrent Cell Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)
. Memory Cell :
. Gated Memory Cell

~ Kernel

O Convolution or Pool

Markov Chain (MC) Hopfield Network (HN) ~ Boltzmann Machine (BM)  Restricted BM (RBM) Deep Belief Network (DBN)

O, =/ N
oo %Y e %
% 0% N,
9 0 B 9y, 9
O .
O
Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
W P U NE P
>_< > O/o\ . >_< /o\o O/o\»
2\ DoGD RANGD o oD
e ~oC - 8 06 o7 >
2o ~ N ~
Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

.V
AVAWAWAWAWE

5 o

Neural Turing Machine (NTM)

i

Attention Network (AN)

Deep Residual Network (DRN)

Capsule Network (CN)

Differentiable Neural Computer (DNC)
Y~~~

X

<\

Kohonen Network (KN)

N ay
W - QWA

BT

https://www.asimovinstitute.org/neural-network-zoo/

Why care about DL and
study those structures?

Amazing performance

on many benchmark tasks

IM FOCUS DAS LEBEN
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DP uses automatic differentation (AD) V5/6

» Yeah, Differentiable Programming is little more than a rebranding of the modern
collection Deep Learning techniques, the same way Deep Learning was a
rebranding of the modern incarnations of neural nets with more than two layers.
The important point is that people are now building a new kind of software by
assembling networks of parameterized functional blocks and by training them

' ent- mizati s really very
much like a reqular program, except it’s parameterized, automatically

differentiated, and trainable/optimizable. ...

(Part of a post of Yann Lecun, somewhere in Facebook, found at
https.//qgist.github.com/halhenke/872708ccea42ee8cald950c6c2069814)

32



Automatic Differentiation (AD)

« ADis a mix of

— symbolic differentiation (SD) (rules s.a. chain rule,
product rule)

. R . . d A
— numerical differentiation (ND): use d_i/ ~ A_i:

a(f(x)g(x)) _ Lf:c)g(x) + dg(x)f(x) (Product rule)

dx d dx
- h(x):= gx) - f(x)
dh(x) .
- — and h have two components in common

— This may also be the case fur f.
— Symbollicaly calculating f won't profit from common

df(x
parts of f and (%)
?);:q%"\”v‘j UNIVERSITAT ZU LUBECK dx

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
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11 =X
lpsr =4l (1= 1)

f(x) =14 = 64x(1 —2)(1—22)2(1 — 8z +822)?2

Coding

Manual
Differentiation

f(x):
V=X
fori=1to3
v =4xvx(1 - v)
return v

or, in closed-form,
f(x)

X):
return 64*xx (1-x)* ((1-2%x) "2)
* (1-8*x+8*x*x) "2

\J4

(@) = 128z(1 — z)(—8 + 162)(1 — 22)2(1 —

8z +8x2) +64(1 —z)(1—2z)2(1 — 8z +822)% —
642 (1 — 22)%(1 — 8z +82%)% — 2562 (1 — ) (1 —

22)(1 — 8z + 8x2)2

Coding

A4

Symbolic
Differentiation
of the Closed-form

Automatic
Differentiation

v

Numerical
Differentiation

£2(x):
(v,dv) = (x,1)
fori=1to3
(v,dv) = (4*xvx(1-v), 4*dv-8*v*dv)
return (v,dv)

£7(x0) = 4/'/(,1‘(])
Exact

£2(x):

return 128*x* (1 — x)* (-8 + 16%*x)
*((1 - 2%x)"2)* (1 — 8*x + 8*x*x)
+64x(1 - x)*x((1 - 2xx)"2)*((1
- 8%x + 8xx*x)"2) - (64*x*(1 -
2%x) "2)* (1 - 8%x + 8*x*x) "2 -
256*%x* (1 - x)*(1 - 2*%x)* (1 - 8*x
+ 8xx*x) "2

£ (x0) = f'(x0)
Exact

£2(x):
h =0.000001
return (f(x+h) - f(x)) /h

£ (x0) ~ f'(x0)

Approximate

UNIVERSITAT ZU LUBECK
INSTITUT FUR INFORMATIONSSYSTEME
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;7 The third wave of
differentiable programming

Getting deep systems that
know when they do not know
and, hence, recognise new
situations and adapt to them

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming n

1) Yes, a slide, quoting a slide

INSTIRUT TR INFoRMATIONSSYSTEME IM FOCUS DAS LEBEN 36




Problems with deep (neural) networks (Ghahramani)

- Very data hungry (e.g. often millions of examples)

« Very compute-intensive to train and deploy (cloud GPU
resources)

- Poor at representing uncertainty
- Easily fooled by adversarial examples

- Finicky to optimise: non-convex + choice of
architecture, learning procedure, initialisation, etc,
require expert knowledge and experimentation

- Uninterpretable black-boxes, lacking in trasparency,
difficult to trust

37



Bayes rule to rule it all ...

. If we use the mathematics of probability theory to
express all forms of uncertainty and noise associated
with our model...

- ..theninverse probability (i.e. Bayes rule) allows us to
infer unknown gquantities, adapt our models, make
predictions and learn from data.

P(D|H)-P(H)  P(D|H) - P(H)

PUHID) = =y =5 pImP()

H = hypothesis, model
D = data, observation Bayes Rule

38



Probabilistic graphical models

PE)
.002

Encode efficiently full joint T
probabilities

F F 20
. Directed graphs FoTo
T F 0.1
(Bayesian networks, T T o0/ N
Hidden Markov models ...) 15 o T

- undirected graphs

(Ma rkov networks... ) Requires Normalization
- Mixed models : P(B=bE=eA=aqjm)=
« Factor graphs E(P]A(awj)quA(a: m)pap(a,b), dac(a, e)ppb)

Z = z ‘ ‘qu Partition function
X .
J

B )

B |

H %; UNIVERSITAT ZU LUBECK 39
Y 2~ INSTITUT FUR INFORMATIONSSYSTEME



PROBABILISTIC PROGRAMMING
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Why then not stick to probabilities E

- Problem 1: Probabilistic model development and the
derivation of inference algorithms is time-consuming
and error-prone.

- Problem 2: Exact (and approximate inference) hard due
to normalization: partition function Z)

« Solutionto 1

— Develop Probabilistic Programming Languages for
expressing probabilistic models as computer programs
that generate data (i.e. simulators).

— Derive Universal Inference Engines for these languages
that do inference over program traces given observed

data (Bayes rule on computer programs).

4



Comparison

INntuition

Inference

Parameters] A[ p(xly) ]

( (

Parameters ]

\ \

Program Program p(y|x)p(x)

A 4

Output Observations y

CS Probabilistic Programming  Statistics

... EX:F.Wood: Probabilistic Programming, PPAML Summer School, Portland 2016

BEN 42




Probabilistic Programming Example

statesmean =
initial =
trans =

data =

[-1, 1, @] # Emission parameters.
Categorical([1.0/3, 1.0/3, 1.9/3]) # Prob distr of state[1].
[Categorical([e.1, 0.5, 0.4]), Categorical([©.2, 0.2, 0.6]),

Categorical([©.15, 0.15, ©.7])] # Trans distr for each state.

[Nil, ©.9, 0.8, 0.7, @, -0.025, -5, -2, -0.1, 0, 0.13]

@model hmm begin # Define a model hmm.
states = Array(Int, length(data))
@assume(states[1] ~ initial)
for i = 2:length(data)
@assume(states[i] ~ trans[states[i-1]])
@observe(data[i] ~ Normal(statesmean[states[i]], ©.4))

end

@predict states

end

Hidden markov model in Julia

UNIVERSITAT ZU LUBECK
INSTITUT FUR INFORMATIONSSYSTEME

initial
states[1]
statesmean
data[1]

—

trans

states[2]

data[2]

—

states[3]

data[3]

_) nen
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Problem 2 of probabilistic graphical models

- Exact (and even approxiate) inference not tractable for
general probabilistic models (problem: normalization
function Z).

- Restricting the models in expressivity is possible (thin
junction trees and so on) - but not desirable

- Find a better compromise of expressivity and feasibility:
sum-product networks/probabilisitc boolean circuits

e\ £ ";;
Y >
= s{GNag, = . "
%\ AT & UNIVERSITAT ZU LUBECK 45
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Why Is Inference Hard?

1
P(X,..Xn) = El_[ ¢; (Xy,...Xn)
J

e Bottleneck: Summing out variables

e E.g.: Partition function

Sum of exponentially many products

2= 1]

J

46
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Alternative Representation

X1 | Xz | PX) PX)=04-X,- X,
1| 1| 04 F02- XX,
1| 0| 02 _
0| 1| o +0.1 °)_(1 {2
0o 0| 03 +0.3- X - X,

Network Polynomial [Darwiche, 2003]

S )

fdihg )

2 AT © UNIVERSITAT ZU L 47
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Sum QOut Variables

e. Xl =]
X1 | X2 | PX) Pe)=0.4-X, - X,
1| 1| 04 £02-X, - X,
1] 0| 02 ~
0 | 1| o1 +0.1 °)_(1°)£2
0| 0| 03 +0.3- X - X,

Set XIZI,E:O,Xzz 1,)?2:1

Easy: Partition function: Set all

Easy: Set both indicators to 1 } [indicators to 1

EEEEEEEEEEEEEEEEEEE
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
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Graphical Representation

X; | Xz | P(X)
1| 1] 04
1| 0] 02
0 | 1 | o1
0| 0| 03

But in general may lead to exponentially large networks (e.g. parity).
Solution: Make a deep dive (reuse computations)
~with Sum-Product networks

S

s

2 Jiha °

;i,\n ‘fs UNIVERSITAT ZU LUBECK 49
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Sum-Product Networks (SPNs)

« Rooted DAG

- Nodes: Sum, product,
input indicator

- Weights on edges from
sum to children

- More general class:
Probabilistic Boolean
Circuits

50




UM,

o

RSI
sqi S T4

NEARLY THE END

UNIVERSITAT ZU LUBECK
INSTITUT FUR INFORMATIONSSYSTEME

51



Topic progress of course in short

It from discriminative to generative models

. It's from pure functions to algorithms to algorithms over
semi-declarative structures (and some logic)

. It's from non-probabilities to probabilities (and some
logic)

52



Uhhh, a lecture with a hoepfully useful

APPENDIX

> QQ,{\ @
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Todays lecture is based on the following slides

Jonathon Hare: Lecture 1,2 of course ,COMP6248 Differentiable
Programming (and some Deep Learning”)
http://comp6248.ecs.soton.ac.uk/

Zoubin Ghahramani: Probabilistic Machine Learning and Al, Microsoft Al
Summer School Cambridge 2017
http://mlss.tuebingen.mpg.de/2017/speaker_slides/Zoubin1.pdf

Hoifung Poon: Sum-Product Networks: A New Deep Architecture
https://www.microsoft.com/en-us/research/wp-
content/uploads/2017/05/spn11.pdf

E. Alpaydin: Course on machine learning, introductory slides,
https://www.cmpe.boun.edu.tr/~ethem/i2ml2e/2e v1-0/i2ml2e-chap1-
v1-0.pptx

l. Lorentzou: Introduction to Deep Learnin, link

F. Wood: Probabilistic Programming, PPAML Summer School, Portland
2016, link



http://comp6248.ecs.soton.ac.uk/
http://mlss.tuebingen.mpg.de/2017/speaker_slides/Zoubin1.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/spn11.pdf
https://www.cmpe.boun.edu.tr/~ethem/i2ml2e/2e_v1-0/i2ml2e-chap1-v1-0.pptx
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj5wNC8_77sAhUj8uAKHXeABggQFjAAegQIAhAC&url=http%3A%2F%2Fwww2.cs.uh.edu%2F~ordonez%2Fppt%2Fdeepnet-lourentzou.ppt&usg=AOvVaw1PmZYVQDHrUsM6V85GRQXf
https://media.nips.cc/Conferences/2015/tutorialslides/wood-nips-probabilistic-programming-tutorial-2015.pdf

Color Convention in this course

- Formulae, when occurring inline
- Newly introduced terminology and definitions

- Important results (observations, theorems) as well as
emphasizing some aspects

- Examples are given with standard orange with possibly light
orange frame

« Comments and notes
. Algorithms
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Books for topics covered in this lecture (1)

 Nielsen: Neural Networks and Deep Learning.
http://neuralnetworksanddeeplearning.com/

- Zhang et al.: Dive into Deep Learning
https://d2l.ai/

- |. Goodfellow, Y. Bengio, and A. Courville. Deep
Learning. MIT Press, 2016.

- D. Koller and N. Friedman. Probabilistic Graphical
Models: Principles and Techniques - Adaptive Com-
putation and Machine Learning. The MIT Press, 2009.

- L.D. Raedt, K. Kersting, and S. Natarajan. Statistical
Relational Artificial Intelligence: Logic, Probability, and
Computation. Morgan & Claypool Publishers, 2016.
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Books for topics covered in this lecture (2)

- J.-W.van de Meent, B. Paige, H. Yang, and F. Wood. An
Introduction to Probabilistic Programming. arXiv e-
prints, arXiv:1809.10756, Sept. 2018.

- U.Naumann. The Art of Differentiating Computer
Programmes. Siam, 201 2.

« K. Murphy. Machine Learning: A Probabilistic

Perspective. Adaptive Computation and Machine Learn-
Ing series. MIT Press, 2012.

. S.J.Russell and P. Norvig. Artificial Intelligence - A
Modern Approach. Prentice Hall, 1995.
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