PROBABILISTIC AND
DIFFERENTIABLE PROGRAMMING

V2: Gradient Descent

Ozgur L. Ozcep
Universitat zu Libeck
Institut flir Informationssysteme

RSI
GERSIZ,

Agenda for today’s lecture

Gradient descent (GD)

1. Differentiation k 2. Basic GD and variants
N |
: . \ LOCAL .
3. Backpropagation N]

The big idea: follow the gradient

- Fundamentally, we're interested in machines that we
train by

— optimising parameters
- How do we select those parameters?

. In deep learning/differentiable programming we
typically define an objective function to optimize

— minimise (in case of error or loss say) or
— maximise with respect to those parameters

- We're looking for points at which the gradient of the
objective function is zero w.r.t. the parameters

The big idea: follow the gradient

. Gradient based optimisation is a BIG field!

— First order methods, second order methods, subgradient
methods...

— With deep learning we're primarily interested in first-
order methods?.

- Primarily using variants of gradient descent:

— function F(x) has a (not necessarily unique or global)
minimum at a point x = a where a is given by applying
a1 = a, — aVF(a,)

until convergence

1) Second order gradient optimisers are potentially better, but for systems with many variables are currently
impractical as they equire computing the Hessian.

UM,

o

RSI
sqi S T4

DIFFERENTIATION

UNIVERSITAT ZU LUBECK
INSTITUT FUR INFORMATIONSSYSTEME

! secant line

Gradient in one dimension /

Tangent line

. Gradient of a straight lineis Ay /Ax ~ Slope ()

- For arbitrary real-valued function 1 (x)

approximate the derivative, Z—i (a) using the gradient of
the secant line trough (a, f(a)) and (a + h, f(a + h)) for

small h
f,(a) = (a) ~ H ~ (a+hf)l—f(a) (Newton'’s difference quotient)
(a) = lim f(a+h) f(a) (Derivate of at a)

h—0

Example: Derivative of a quadratic function

y =x°

dy y (x + h)? — x?
dx_hlino h

dy x%+42hx+ h?—x*
— = |lim

dx h-0 h
dy_ " 2hx + h?
dx_hlino h

day

— = lim 2x + h

dx h-0

d

= 2X

Derivatives of ,deeper” functions

- Deep learning is all about optimising deeper functions:
functions that are compositions of other functions, e.qg.

h = ~g)x)=fgXx))
- Derivative can be calculated by chain rule

Chain rule (1-dim)

dh _ df dg for h(x) = f(g(x))
dx dg dx

UUUUUUUUUUUUUUUUUUUUUUUU
3RSs2~» INSTITUT FUR INFORMATIONSSYSTEME
—

Example for chain rule

h(x) = x* = (x2)? = f(g(x))

dh
— =2 -x%.2x = 4x3
dx

You may verify this also directly

dh (et h)t =t

dx _ h=o h

dh h*+4h3x + 6h*x? + 4hx3 + x* —x*
— = |lim

dx h—0 h

dh

— = lim h3 + 4h?%x + 6hx? + 4x3 = 4x3
dx h-0

Generalization: Vector functions y(t)

 Splitinto its constituent coordinate functions:

y(&) = (1(t), ..., yn(t))
- Derivative is a vector (the tangent vector),
y(©) = 1'@®), -, ¥’ (D)
which consists of the derivatives of the coordinate
functions.

- Equivalently

() = lim Y{E+h)—-y(t)
y'(t) = lim =—

(if the limit exists)

10

Differentiation with multiple variables

flx,y) =x*+xy+ y? Partial derivative of f(xq, ...x,,): R™ - R
af w.rt.x; ata = (aq, ..., a,)

a = 2x + y af

0 e — Tlim fQaq,..aith,...an) —f(a)
% =X + Zy axi (a)]’lll—rg) h

Gradient of f(xq, ...x,): R" > Rata = (ay, ..., ay)

_ 9
Vf(a) = (ax1 (a), ..., ax. ()
Jacobian of f(xq,...x,): R® > R™ ata = (ay, ..., a,) 2_37:11 (@) - %(a)
(Vfl(a)> <afl()) : n;
5 = |5 = 0fm 0fm
V fm(a) 9% O/m (@) - O (a)

1<ism;l<j<n 0x 0x
1 n 11

Linear algebra reminder

* Givenvectors x = (xq,..,%;) andy = (1, ..., V)

Scalar product:x -y =Y | x;y;

Jacobian is given as an m X n matrix
A= (aif)1sism,1sjsn (m rows, n columns)

An m X n matrix A defines a linear mapping
A: R"™ - R™ via

n

n
—_ X _— . Aoy iXj
X =72 o Ax = Ji= o
Xn i=1 Am,iXi

(Linearity: A(AX + uy) = AAx + uAy where x,y vectors and A, u scalars

12

Linear algebra reminder

Matrix multiplication C = A B for

m X nmatrix A and n X p matrix B B
b,..ib, 5
b,.|b,,

— n i il

Cij = Xk=1%ikbk,; _ TI-
oo MO

A a,,|a,, —o

RSI
GERSIZ,

13

Gradients in Machine Learning

The kinds of functions (and programs) that are usually
optimized in ML have following properties:

« They are scalar-valued

- There are multiple losses, but ultimately we can just

consider optimising with respect to the sum of the
losses.

- They involve multiple variables, which are often
wrapped up in the form of vectors or matrices, and
more generally tensors.

How will we find the gradients of these?

14

The chain rule for vectors

Given functions f, g with

_rRm 5 Rn LR

-x b y=g@®e z= [
the chain rule gives the partial derivatives

0z - 0z ay]

a B _ ay] 0xi
J

-
(inshort form: V,z = (%) Vyz

where (g_y) is the n x m Jacobian matrixofg)

X

.
: WA = universiTAT ZU LoBECK

15

Chain rule for Tensors (Informal)

- Tensors (as understood in the ML literature) generalize
vectors (1D-tensors) and matrices (2D-tensors)

— 3D-tensor: Layer of matrices
- nD-tensor 4, ; isindexed by n-tuples (i; ...i,,)

- Needed e.g. to model layers of convolution matrices etc.
- Gradients of tensors by
— flattening them into vectors
— computing the vector-valued gradient
— then reshaping the gradient back into a tensor.
. This is just multiplying Jacobians by gradients again

16

The chain rule flr tensors (formally)

- Aim: Calculate: Vyz forscalar z and tensor X

— Indices into X have multiple coordinates, but we can
generalise by using a single variable i to represent the
complete tuple of indices.

0z

— For all index tuples i: (Vxz)i = -,

For Y =g(X) andz = f(Y)

5
Vxz = 2;(VxY}) a_j-

J

17

Example for tensor chain rule

Let D = XW where the rows of X€ R *™ contains
some fixed features, and We R™*" is a matrix of

weights.
Alsolet L = f (D) be some scalar function of D that
we wish to minimise.

What are the derivatives of L with respect to the
weights W?

18

. Start by considering a specific weight W,
oL dL O0Djj

. = D, by chain rule
oWy, ZU dD;j OWyy (by)
oD, e . .

. OWU = 0 iffj # v because D;; is the scalar product of

uv
row i of X and column j of W.
dL 0Djj dL 0D;
. Therefore: Y. . L= =
cretore z:l»J dD;j OWyy Zlé‘Div oWy
. dD;
- Whatis =7
Wy
- Dy, = lekSm Xire Wiy
D, 9 G
,,,,,, B GWZ, = aWuvzlsRSq Xikav — lekSm AWy, Xikav — Xiu

RSI
GERSIZ,

: oL
Putting every together, we have: =)
OWyy

Doing this for arbitrary W;,, leads to

oL oL
— — XT il
ow oD

U7 © UNIVERSITAT ZU LUBECK

oL
Xiu

aDij

20

VANILLA GRADIENT DESCENT,
VARIANTS AND BEYOND

RSI
GERSIZ,

EEEEEEEEEEEEEEEEEEEEEE
3 == > INSTITUT FUR INFORMATIONSSYSTEME
—

Vanilla Gradient Descent (VGD)

. Given:loss function |, dataset D, and model g,

parameters 0; number of passes (epochs) over the data,
learning rate n

. Total loss: L = —Xxyep l(g(x,0),y)

VGD: 0,0 « 6, — nV,L

+ Good statistical properties (very low variance) ~ Problems of *GD

- Very data inefficient (particularly when data "
has many similarities)

- Doesn’t scale to infinite data (online learning)

EEEEEEEEE
EY ==~ INSTITUT FUR INFORMATIONSSYSTEME
o>

22

Why the hell follow the gradient?

- Make shift in parameter space

oL
Calculus says: AL = 30,
- Loss should decrease:
« Try:
- Helps, because AL =~ —n VL -
and

Linear algebra reminder:

« Normofv: |[|v||= v- v (forscalar product -)

AH — (A@l, Aez)

MG, + 22 A0, = VLAG
20,

AL < 0
AO = —nVL

VL = —n|vL]|”

IVLI|® = 0

23

Let’s talk abut loss — only roughly for now

. Gradient descent algorithms depend on loss function [
- For now think of loss function | as mean squared error

lMSE

- We will see other ones and their interplay with
activation functions in the next lecture

Mean squared error on one singel training example

l ~

lMSE: [RTL XR” R
~ ~ 2
@) - Iy =yl

EEEEEEEEEEEEEEEEEEEEEEEEE
3RSs2~» INSTITUT FUR INFORMATIONSSYSTEME
o, —

24

Stochastic Gradient Descent (SGD)

Given: loss function |, dataset D, model g, parameters 6,
number of epochs, learning rate n

SGD: Orv1 < 0 — NV l(g(x,0:),y)
+ Faster than VGD Problems of *GD
+ Online learning - .

17
=~ IN

Poor statistical properties (high fluctuation)
computational inefficiency

IIIIIIIIIIIIIIII
TTTTTTTTTTTTTTTTTTTTTTTTTTTT

25

Mini-Batch SGD (MGD)

. Given: mini-batch size m (common: 50-256), loss
function |, dataset D, model g, parameters 6, number of
epochs, learning rate n

- Batchloss: Lywy = Xeyyene) Lg(x,0),y)
where d(t), a subset of D of cardinality m.

MSGD . 9t+1 — Ht T TIVQt Ld(t)
+ reduces the parameter-updates’ variance Problems of *GD
+ stable convergencevery 1. How to choose rate

2. No learning rate schedules
3. Trapping in local minima
4. Inefficient for sparse data set

+ computational efficiency

26

Problem 1: Choosing the learning raten

« Choice of learning rate is extremely important

- But we have to reason about the ‘loss landscape’
— Types of cost functions (see next lecture)

— Most convergence analysis of optimisation algorithms
assumes a convex loss landscape

- Easy to reason about

« (S)GD converges to optimal solution for a variety of 7ns

- Insights into potential problems in the non-convex case
— Deep Learning is highly non-convex

- Many local minima; Plateaus; Saddle points; Symmetries
(permutation, etc)

%& ». 1) One form of hyper-parameter magic

3333333333333333
3RSs2~» INSTITUT FUR INFORMATIONSSYSTEME
—

27

,Beyond”: Accelerated Gradient Methods

. Accelerated gradient methods use a /eaky average of
the gradient, rather than the instantaneous gradient
estimate at each time step

. A physical analogy would be one of the momentum a
ball picks up rolling down a hill...

- Helps addressing the *GD problems

28

Mini-Batch SGD with Momentum (MSGDM)

- Given: momentum parameter (0,9 is good choice),
batch size m, batch loss L, number of epochs, learning
rate n

MSGDM : update 6 by accumulated velocity
Viy1 < Bve + Vg Lao
Orr1 < 0 —NUeiyq

+ The momentum method allows to accumulate velocity in directions
of low curvature that persist across multiple iterations

+ This leads to accelerated progress in low curvature directions
compared to gradient descent

O
B Y W)

B S UNIVERSITAT ZU LUBECK 29
3 27 INSTITUT FUR INFORMATIONSSYSTEME

25 s1en”

Problem 2: Scheduling learning rates

- |n practice you want to decay your learning rate over
time

- Smaller steps will help you get closer to the minima

- Butdon'tdoitto early, else you might get stuck
Something of an art form!

. 'Grad Student Descent’ or GDGS (‘Gradient Descent by
Grad Student’)

. Tackling Plateaus (Common Heuristic approach)

— if the loss hasn’t improved (within some tolerance) for &
epochs then drop the Ir by a factor of 10

30

Problem 3: Stucking into local minima

« Cycle the learning rate up and down (possibly
annealed), with a different Ir on each batch

« See L. N. Smith. Cyclical Learning Rates for Training
Neural Networks. arXiv e-prints, page
https://arxiv.org/abs/1506.01186, June 2015.

31

https://arxiv.org/abs/1506.01186

SOTA: More advanced optimisers

- Here only name dropping and some fancy gif from here

— Adag rad (dynamic decrease, second moment used) = 56D

- Momentum
- NAG
— Adagrad

— RMSProp (decouple learning rate from gradient)

Adadelta
— Rmsprop

— Adam (BestOf(RMSProp,MSDGM))

FE

- J.Hare says:

-0.5

—0.5 0.0

0.5 -1.0

1.0

— If you're in a hurry to get results use Adam

— If you have time (or a Grad Student at hand), then use
SGD (with momentum) and work on tuning the learning
rate

— If you're implementing something from a paper, then
follow what they did!

St
EA*Q‘% / & UNIVERSITAT ZU LUBECK 32
3 =~ INSTITUT FUR INFORMATIONSSYSTEME

https://medium.com/@ramrajchandradevan/the-evolution-of-gradient-descend-optimization-algorithm-4106a6702d39

BACKPROPAGATION

ERSIp
NEL
ST,

| S UNIVERSITAT ZU LUBECK
= INSTITUT FUR INFORMATIONSSYSTEME

~

33

Network view of single function”

Input w Output Network model
X-I N)
"1z b : Bias vector (bq, by)
X ¢ N N W = weight matrix
2 1
. 71 (W)lsisz;lsjs4 :
X3 z: Wx+b
R @ 2 linear output
. W g ’ c: activation function
4 24
R4 9 R2 Vector-valued function in
R four arguments
X = Y= g=(91(x),9:2(x))

R Decomposition into
y= gx;W,b) =c(Wx +b)=0(2) linear and

GERSIZ,

3 =~ INSTITUT FUR INFORMATIONSSYST

G

Network view of single function

Input W Output Example linear output
X1 1 2 -1 =2 :
w. _ — (2 — (5
d w_(3 4 -3 4)"_(2)"_(6)
X2 N L4 O‘|)’]\1
< - __(1-il+-2-2-+-—1-3——2-11>
5 <3L YT 3.144-24-3-3+4-4
W s 0,)’/\2 _ <—6)
-6 5 -1
Wx+b = (3)+Q)=0G,
R* 3 R? o
Vector-valued function in
X b Y= g=(91(),g2(x)) four arguments
R Decomposition into
y= gx;W,b) =oc(Wx +b)=0(2)

linear and

RSI
GERSIZ,

35

Network view of single function

Sometimes just write

Input W Output
X1 N _
1 I/V11 ‘
X5 \ » by 73
X3
A%~ R
D * b, Y2
Xy * W24
]R4 f)]RZ
X > y=g=(91(x),g2(x))

y=gx;W,b) =c(Wx +b) =0(z)

biases into state

Vector-valued function in
four arguments

Decomposition into
linear and

36

Network view of composed functions1)

Input layer Hidden layer(s) Output layer : layer |
o e b' : Bias in i
W » hys U w; weight matrix
ini
X < .
A . / » h; - - v ~ (o 2% activation
o €)) 1 Y1 functionin i
g NI —> hs -
’AS '
&7\ y $# O V- . N
S hs G o (Wha'"* + b))
B activationin i
x, €
5,
zt: w®qi-1 4 p,
g f linear ouptut
4 5 2
R - R - R in layer i
X - h - y
y=f(g(x; w b)), w2 p2) = o, WP 1(WWVx +bl) + b?)
e 1) You may find this also under the term multilayer perceptron in the literature
STUAYT & UNIVERSITAT ZU LUBECK 37

3 == > INSTITUT FUR INFORMATIONSSYSTEME
—

Activation functions

Non-linearities needed to learn complex (non-linear) representations of data,
otherwise the network would be just a linear function W;W,x = Wx

= hidd neurons 6 hiden neurons - 20 hidde neurons

|

http.//cs231n.github.io/assets/nn1/layer_sizes.jpeg

More layers and neurons can approximate more complex functions

Full list; https://en.wikipedia.org/wiki/Activation function

c UNIVERSITAT ZU LUBECK
,; INSTITUT FUR INFORMATIONSSYSTEME IM FOCUS DAS LEBEN

https://en.wikipedia.org/wiki/Activation_function

Activation functions

http.//adilmoujahid.com/images/activation.png

- 1 IS Sigmoid R™ — [0,1]

s T8 " THem // * Takes a real-valued number and “squashes” it
y into range between 0 and 1.

02 / « Earliest used activation function (neuron)

" T * Leads to vanishing gradient problem

15) Tanh: R" - [—1,1]

R Takes a real-valued number and

N / “squashes” it into range between -1 and 1

o / « Same probem of vanishing gradient

10 N e tanh(x) = 2sigm(2x) — 1

Rectified Linear Unit ReLu: R® — R}
e * Takes a real-valued number and thresholds it
2 for 220 at zero
* Used in Deep Learning
No vanishing gradient
* But:itis not differentiable (need relaxation)
240 * Dying RelLU

10

s
|
e o N N o (e}
[]

Backprop: efficient implementation of gradient descent

Forward it

Sample Back- Update the
through the
labeled data > —» propagate —» network
network, get :
(batch) - the errors weights
predictions
t |

Backpropagation idea

* Generate error signal that measures difference between predictions and
target values

* Use error signal to change the weights and get more

(a) Forward pass

v

accurate predictions backwards
* Underlying mathematics: chain rule

Chain rule (1-dim)
dh B df dg
dx dg dx

(for h(x) = f(g(x)))

3
Y ;; TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
9,

Computational graph perspective

Function f Partial Derivatives Chain rule applied
f(x,y,Z)=(x+y)'Z af g:z afZafanZ
= qz EPa dq Ox 0dq0x
forq =x+y aq_l a_q_l df 9dfadq _
ox dy dy dqay
Gradient
Veyzf =(2,2,9) (In particular: (Y, ,,,f)(—2,5 —4) = (-4, -4, 3))
-2 (q’a_q,c')_q Forward pass:
X 4 of 0x "0y function values and
Ep (3,1,1) local gradients
X :
Backward: chain rule
5 B (2L, %)
y ’0q’ 0z
-4 g (_121_413)
0y
4 1 9f
y4 0
3 Of f

| U‘LUBERC'\;(/ _— 4']

What this example tells us about backprop

Every operation in the computational graph given its
inputs can immediately compute two things:

1. its output value and
2. local gradients of its inputs

The chain rule tells us literally that each operation
should take its local gradients and multiply them by the
gradient that flows backwards into it

Backprop is an instance of ‘Reverse Mode Automatic
Differentiation’

42

Backpropagation: requirements on cost (loss)

1. Cost C (we named it L before) on whole data is sum of
costs on training instances

2. Costis afunction of the output y

- Backpropagation in the following described for cost on
single training example

- With 1. assumption backpropagation can be combined
with gradiend descent.

- In the following going to use Hadamard product ©®

(o)~

5 RUEEYT © UNIVERSITAT ZU LUBECK
3 == > INSTITUT FUR INFORMATIONSSYSTEME
b

43

Propagation of errors

Backpropagation works on errors
(from these in the end one gets Vi, 4, C')

St == error in jt" component in layer |

Demon changes z{ to zj+ Az;

Resulting cost C changes by %Az}
j

44

Backpropagation algorithm (on single instance)

1. Input: Initialize input vector x = a’

2. Feedforward:Fori=1,2, ..., M
zi= wWa"1 +b; and a' = o,(7")

3. Compute error on last layer

M = V30 © o' (zM) (BP1)
4. Backpropagate error: Fori=M-1, M-2, ...,
Sl= (Wi+1)T6l+1) O"(Zi) (BP2)

5. Compute gradients

oc _ i—1 i oC _ i
Wl ay ~9; and ab]i._5f (BP3/4)

45

Proof of (BP1)in backprop

M b d o e e
e §;" = efinition
5] aZ}VI (y)
M
M oC aak .
e §; = chain rule;
J Lk day! 9z} (
k over all components in output)
M M
M aC aaj oay . .
e §; = vanishes wenn k
5] aaﬁyl 62}-\/1 (GZ;-VI .])
. 5M =50 (2M) (@ = a(z")
J T ggM j j = j

UUUUUUUUUUUUUUUUUUUUUUU
3RSs2~» INSTITUT FUR INFORMATIONSSYSTEME
—

46

Backpropagation algorithm (within MSGD)

1. Input: mini-batch of m training examples x

2. Foreach training example set corresponding
activation a®*! and do the following

1) Feedforward:Fori=1,2, .., M
z%t = wWa*-1 + p; and a*' = g;(z"")
2) Compute error on last layer
M = V5C, © o' (z*M)
3) Backpropagate error: Fori=M-1, M-2, ...,
6i: (Wi+1)T6x,i+1 @ O.I(Zx,i)
3. Gradient descent:

= oWl — %Zxax,i (ax,i—l)T and bt = bt _%Zxax,i

47

Problem: Vanishing gradient for sigmoid o

Derivative of sigmoid function

Gradient of sigmoid: Max{s" (x)}
o' (x) = o(x)(1 — o(x)) o =02

0

—4 -2 0 2 4

Gradients in linear network of depth 4
- < 0,25 < 0,25 < 0,25 '
‘.‘;)),f; = 0'(z1) X W2 X0 (22) X W3 X 0'(23) X Wa X 0'(24) X 5=

 Assume |w;| < 1(eg.w; ~N(0,1))
* Then:||w;o'(z;)| < 0,25
* Exponential decrease from later derivatives to earlier ones due to chain rule

Gradient vanishes moving backwards

USSR
2 -
DY, |
E WML © UNIVERSITAT ZU LUBECK
5 5
N :7,;" TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
25 s1en”

Problem: Vanishing gradient with large input

Derivative of sigmoid function

Gradient of sigmoid: Max{c’ (x)}
o' (x) = ()1 — 0(x)) . NZS

0
—4 -2 0 2 4

Gradients in linear network of depth 4

aC
day

m 11'2 m -u'3 m 4(1'4
N\, 2/ 2/ - -

 If |x| verylarge, then a(x) or (1-- a(x)) becomes zero | Gradien[ofgigmoid;
* Sod’'(x) becomes zero 1) -
o) = L - i)

(‘)’,fl = 0'(z1) X W2 X0’ (22) X W3 X 0'(23) X Wa X 0'(24) X

+i: Gradient vanishes for large inputs to activation functions

UM,

o

RSI
sqi S T4

NEARLY THE END

UNIVERSITAT ZU LUBECK
INSTITUT FUR INFORMATIONSSYSTEME

50

Take Home Message

Follow the gradient — with care

51

Uhhh, a lecture with a hoepfully useful

APPENDIX

> QQ,{\ @

EA* y?ﬁéﬁ?; UNIVERSITAT ZU LUBECK

3 2~ INSTITUT FUR INFORMATIONSSYSTEME
e

o,
75 515

52

Color Convention in this Course

- Formulae, when occurring inline
- Newly introduced terminology and definitions

- Important results (observations, theorems) as well as
emphasizing some aspects

- Examples are given with standard orange with possibly
light orange frame

- Comments and notes in nearly opaque post-it
. Algorithms
- Reminders (in the grey fog of your memory)

53

Todays lecture is based on the following

« Jonathon Hare: Lectures 2,3,4,6 of course ,COMP6248 Differentiable
Programming (and some Deep Learning”)
http://comp6248.ecs.soton.ac.uk/

 Nielsen: Neural Networks and Deep Learning.
http://neuralnetworksanddeeplearning.com/, chapters 1,2

« https://medium.com/@ramrajchandradevan/the-evolution-of-gradient-
descend-optimization-algorithm-4106a6702d39

l. Lorentzou: Introduction to Deep Learning, link

S)
P . i
SRULT S UNIVERSITAT 2U LUBECK 54
1@@; TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
75 srss

http://comp6248.ecs.soton.ac.uk/
http://neuralnetworksanddeeplearning.com/
https://medium.com/@ramrajchandradevan/the-evolution-of-gradient-descend-optimization-algorithm-4106a6702d39
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj5wNC8_77sAhUj8uAKHXeABggQFjAAegQIAhAC&url=http%3A%2F%2Fwww2.cs.uh.edu%2F~ordonez%2Fppt%2Fdeepnet-lourentzou.ppt&usg=AOvVaw1PmZYVQDHrUsM6V85GRQXf

