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Today’s Agenda

1. Need for Deep

Machine Learning
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Input Feature extraction + Classification Output

2. Tackling Deep Problems
2.1 Instable Gradient
2.2 Overfitting
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What is Deep Learning (DL)?

Deep learning is based on function composition

- Feedforward networks: y = f (g (x,0,),0)
Often with relatively simple functions

(egf (x, Of) — O_(XTB]C ))
— Recurrent networks:
Y. = fQ: 1 Xt 0) = f(fQ: _ 2 Xt _1 0)x,0) =..

In early days focus of DL on functions for classification

Nowadays the functions are much more general in
their inputs and outputs.
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Network view of composed functions
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DL is based on Deep networks

Input layer Hidden layer(s) Output layer

W(n)ij
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Do we need to go deep? .
| S

« Given
- 0: R - R, nonconstant, bounded, continuous function
- I,: m-dimensional hypercube [0,1]™

- C(I,,) : real-valued continuous functionson I,

- Any function f € C(/,;,) can be approximated by a
function oftheform F(x) = X\, v;o(w; x + b;)

(constants v;, b; ,vectors w;)

ie. IF(x) — f(x)| < eforallx €1I,,.

Universal Approximation Theorem

Hence : single-layer networks can represent a wide
_variety of interesting functions
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You need to go deep!

1. High precision (small €) leads to large number of
components in single layer (very large N).
— worst-case: exponential blow up
- E.g., parity function better implemented in a deep
structure
2. Allto good approximation not always good:
Overfitting and missing generalizability (still holds for DL)
3. We should care about the data generating distribution

— Real-world data has significant structure

— Model this structure with hierarchy of increasingly more
abstract latent (hidden) factors
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Slide reminder: What is Deep Learning?

- Deep learning systems are neural network models
similar to those popular in the ‘80s and '90s, with:

1.

ok W

some architectural and algorithmic innovations (e.qg.
many layers, ReLUs, dropout, LSTMs)

vastly larger data sets (web-scale)

vastly larger-scale compute resources (GPU, cloud)
much better software tools (Theano, Torch, TensorFlow)
vastly increased industry investment and media hype

Let’s have a look into some of the innovations
mentioned above in 1.




No problem - no innovation

- We already saw some problems in DL
- We look again into them and others

— Gradient descent is hard
. Slow learning with MSE
- vanishing/exploding gradient

— Overfitting
— (Horrible symmetries in the data)
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Lets talk about loss

- The choice of loss function depends on the task (e.g.
classification/regression/something else)

- Depends also on the activation function of the last layer

— For numerical reasons many times the activation is
computed directly within the loss rather than being part
of the model

— Some classification losses require raw outputs (e.g. a
linear layer) of the network as their input (logits)

— There are are different loss functions for different tasks
(MSE, Cross-Entropy, ...)

1
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Loss functions and output

Multilabel (overlapping)/
Multiclass (disjoint) Classification

Training my il |
examples R"™ x {class_1, ..., class_n}
Sigmoid f(x) = =
Output 1t+e”
Layer Soft-max [map R" to a probability distribution]
exij
P(y=j|x) =
v =Jlx) K orw,
Cost (loss) Cross-entropy
function
L(6) = - 2, 2K [y log 9 + (1 - 3?) log (1 - 57)]

Regression

R" x[R™

Linear (Identity)
or Sigmoid

/f(X)=x

Mean Squared Error

, 2
L(O) = -3, (y® —9®)

Mean Absolute Error

n

1 o
L() = EZb,a) — 50

i=1



Slow learning with MSE

Mean squared error on one single training example
l
lMSE . Rn XRn — R
" . 2
3,y) - |l9 -yl

* lysg is the predominant choice for regression
problems with linear activation in the last layer

* MSE can cause slow learning (small Vi, , {55 ),
especially if the predictions are very far off the
targets : Vi plyse ~ |19 —yl| - o' (2)

* Counter intuitive: Big mistakes should lead to big
learning steps
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If you are curious: the argument in detail

° vW,blMSE ~ “}A’—YH‘U' (z)
= |lo(2) —yl| - 0(2)(1 — 0(2))

and o(z) € [0,1].
Extreme difference e.g.,, wheny = landa(z) =0
Then z must be negatively large, so Vi, ,lyysg = 0
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Better Choice: Binary Cross-Entropy

Binary Cross entropy for case of binary classification
lpce = —ylogy — (1 —y)log(1—y)

- Properties we expect from a cost function hold

—lgep = 0iff y=1=3yory=0=19y

- The nice property of BCE in contrast to MSE for
sigmoidal layer

dlpcE
aWi

~ (}/7\ — y) (The larger the error, the more you learn)

15
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dlpcE
aWi

If you are curious ~H —y)

« Assume single layery = 0(z) = o(wx + b) with
sigmoidal activation

"’;f”cf = aaw -(—ylogy — (1 - y)log(1—9))
= 5w y)log(1 —0(2)))
_ 1 1 — 1 1
oz )a 7N=1=y) 1 -0 (awl( o)
1
= — O'(Z) o (Z)xi _(1 T Y) O'(Z)( o (Z)xl)
= —yﬁa(z)(l —0(@)x—(1-y)7 ( (0@ —a(@))x;

=—y (1-0@)x+1 —y)a(2)x; = xl(a(z) y)=x(F-y)

16



BCE: Intuition

The cross-entropy can be thought of as a measure of
surprise.

- y;: probability that some input x; is of class 1
— 1 — y;: probability that x; is of class 0

— Extreme case lgp = ©

- Model believes prob = 0 for some class, yet this class
appears

UUUUUUUUUUUUUUUUUUUUU
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BCE for multiple labels

. In the case of multi-label classification with a network
with multiple sigmoidal outputs you just sum the BCE
over the outputs:

Binary Cross entropy for case of binary classification
K

lsce = ) —ylogFi — (1= ) log(1 - 9,
k=1
where K is the number of classes of the classification
problem, y € RX,
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Vanishing and exploding (unstable) gradients

- Intraining, the gradient may become vanishingly small
(or large), effectively preventing the weight from

C
- T

nanging its value (or exploding in value).
nis leads to the neural network not being able to train.

e T

nis issue affects many-layered networks (feed-

forward), as well as recurrent networks.

- In principle, optimisers that rescale the gradients of
each weight should be able to deal with this issue
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Reminder: Vanishing gradient for sigmoid o

Derivative of sigmoid function

Gradient of sigmoid: Max{s" (x)}
o' (x) = o(x)(1 — o(x)) o =02

0

—4 -2 0 2 4

Gradients in linear network of depth 4
- < 0,25 < 0,25 < 0,25 '
‘.‘;)),f; = 0'(z1) X W2 X0 (22) X W3 X 0'(23) X Wa X 0'(24) X 5=

 Assume |w;| < 1(eg.w; ~N(0,1))
* Then:||w;o'(z;)| < 0,25
* Exponential decrease from later derivatives to earlier ones due to chain rule

Gradient vanishes moving backwards

ST,
2 -

DY, |
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Problem: Exploding gradient for sigmoid o

Derivative of sigmoid function

. Gradient of sigmoid: Max{o’ (x)}
/ _ = 0.25
o(x) =o0x)(1 —o(x)) ..
Gradients in linear network of depth 4
» =25 = 25 = 25 -
" = = 0'(2z1) X W2 X0 (22) X W3 X 0'(23) X Wa X 0'(24) X :)):4

m u'-z m wea m 41'4

But the main point is instabiliy!
* Assumew; = 100 In large networks no

* Choose b; such that z; = 0, hence 6'(z;) =0.25| easily balanceing out learning
 Sow;o'(z;) = 25 Rates due to multiplicaiton

« Exponential increase from later derivatives to earlier ones due to chain rule

Gradient explodes moving backwards

ST,
2 -
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S MUAETT = UNIVERSITAT ZU LUBECK 21
N :7,;" TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
O s1en”




Tackling vanishing gradients |l

http.//adilmoujahid.com/images/activation.png

0 gy 1 S Sigmoid R™ — [0,1]

08 T « Takes a real-valued number and “squashes” it

Zj / into range between 0 and 1.

02 - * Earliest used activation function (neuron)
IR « Leads to vanishing gradient problem

12 ) Tanh: R" - [-1,1]

1+e% * Takes a real-valued number and
ZZ // “squashes” it into range between -1 and 1
05 / * Same problem of vanishing gradient
10 — « tanh(x) = 2sigm(2x) — 1
Rectified Linear Unit ReLu: R™ — R}

10 « Takes a real-valued number and thresholds it at 0
° f(r>={2 T Used in Deep Learning

j S * Like linear function Because no saturation
, /// *_No vanishing gradient | (for positive x)

0 * But: Dying RelLU

X6 4 2 0 2 4 6 But: it is not differentiable (need relaxation)




10

0 for 2<0
z for z>0

f(z) = {

Problem: Dying ReLUs

 Gradientis 1 for x > 0 and 0 otherwise

. Consider ReLU (wx)
— What happens if w is initialised badly?

|
| N o N B ()] o]

— What happens if w receives an update that means that
wTix < 0V x?

— These are dead RelLUs - ones that never fire for all training
data

« How to tackle?

— If you get those from the beginning: weight initialisation
and data normalisation

— During training: Maybe 71 is too big?
— Leaky ReLU: For x < 0 define with small gradient, e.g. 0.01

22222
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Tackling vanishing gradients |l

jump over layers.

Residual Networks (ResNets ) use skip connections to

The vanishing gradient problem is mitigated in ResNets

by reusing activations from a previous layer.

s this the full story though? Skip connections also break

symmetries, which could be much more important...

X

weight layer

Fx) Jrelu

weight layer

X
identity

24
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Overfitting

inadequate good compromise over-fitting
e rxor http.//wiki.bethanycrane.com/overfitting-of-data
Learned hypothesis may fit the
tost training data very well, even
outliers (noise) but fail to
training generalize to new examples (test
> data)
underfiting 7 Parameters overfitting
(high bias) (high variance)
e o o IM FOCUS DAS LEBEN
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Against Overfitting: Regularization

Dropout

« Randomly drop units (along with their
connections) during training

« Each unit retained with fixed probability p,
independent of other units

* Hyper-parameter p to be chosen (tuned)

Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural
networks from overfitting." Journal of machine learning research (2014)

L2 weight decay

* Regularization term that penalizes big weights, Lyeg(0) = L(6) + ,12 62
added to the objective -

* Weight decay value A determines how dominant regularization is during
gradient computation

* Big weight decay coefficient = big penalty for big weights

Early-stopping Smooting landscape
* Use validation error to decide when to stop training * E.g. batch normalisation
* Stop when monitored quantity has not improved

% INSTITUT FUR INFORMATIONSSYSTEME


https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

How and why Dropout works

- HOW

— In the learning phase, we set a dropout probability for
each layer in the network.

— For each batch we then randomly decide whether or not
a given neuron in a given layer is removed.

- WHY

— Neurons cannot co-adapt to other units (they cannot
assume that all of the other units will be present)

— By breaking co-adaptation, each unit will ultimately
find more general features

e\ £ ";;
Y >
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Dropout = Backprop with random masking

1. Input: random binary mask m': input vectorx = a’

2. Feedforward: For layers i=1,2, ..., M-1
z'= wWa"1 +b; and a' = g;(z") Om!

For | =M (Remember: ©
or layer | = Hadamard product)

M = wWa"1 4+ p; and aM = o;(z") OmM!

1. Compute error on last layer

6" =V;C Qo' (2") (BP1)
2. Backpropagate error: Fori=M-1, M-2, ...,
si= WtHT§H @ ¢/ (zH) @ m! (BP2)
3. Compute gradients
ac ac

. i-1gi 9C _ i
i, ap 9; and ! 0; (BP3/4)

RSI
<<<<<
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CONVOLUTIONAL NETWORKS
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Deep Learning (ad 1.)

Example family car:
we presumed features
price and mileage

Classical Machine Learning

o -3 IR

Input Feature extraction Classification Output

Deep Learning

o — it - Il

Input Feature extraction + Classification Output

USRI el Adapted from https.//www.xenonstack.comy/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png FOCUS DAS LEBEN



Convolutional networks

* More structure: structure of input, local receptive fields (the 1. “rf”)
* Less parameters:
* weight tying (replication features 2. “rf"),

* pooling
1({1|1/0{0 1/1]1]ofo0
0/1/1 10 o1 (o1[1]1]0] [4
o(0|1)|1|1 oj1]0 0/0/1|1|1
0 0/1 1 0 0|1 0(o|1|1]|0
: o[1|1]o]0
0 1/1/0 0 Convolutional | comvolved
Input matrix 3x3 filter mage Feature

http.//deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution
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Realization in network: structure of input

- Work with tensors of any number of dimensions

— (Audio-mono (1D, 1 Channel); audio stereo (1D, 2
channels) colour-video data (3D, color-dim)
— inputis,say, Nx P xQ
« Nisthe “channels” dimension
- P,Qare the spatial dimensions,

— Define convolutional kernel of size Nx K x L

« Usually more than single feature -> many kernels ->
many feature maps

- We can just add another dimension to the kernel tensor
to incorporate convolution with all kernels in one

qqqqqqqq Operat|0n. Zi,j,k = z Vl,j+m—1,k+n—1 Ki,l,m,n

SMOREN
Y
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Realization in network: RF and weight tying

- Receptive field: no full meshing inbetween layers

— In case of example at each step of sliding:
- consider only 3 x 3 submatrix of input matrix with (formally
other weights are set to zero)
— The weights for all the 3x3 submatrices of the input

matrix get the same (!) weight (given by the
convolutional filter/kernel)

— Considering all timesteps instantaneously gives you a
single layer (restructured as matrix ,Convoluted Feature”

with smaller dimension)
- Considering many kernels gives you stacked layers

1

1
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Terminology stems from signal processing

Convolution Cross-correlation Autocorrelation

But: ,Convolution” in neural networks corresponds to cross-correlation

fro = | F@Oguc+vax
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The replicated feature approach
(currently the dominant approach for neural networks)

. Use many different copies of the same
feature detector with different
positions.

— Could also replicate across scale and
orientation (tricky and expensive)

The red connections all
have the same weight.

— Replication greatly reduces the number
of free parameters to be learned.

. Use several different feature types,
each with its own map of replicated
detectors.

— Allows each patch of image to be

IM FOCUS DAS LEBEN




Why replicating the feature detectors?

« Equivariant activities: The activities are translation

equivariant.
representation .'_. _ g _'_ . translated_
by active = = — = = representation
neurons T c T f
: g translated
mse |od |7 od | imane

 Invariant knowledge: If a feature is useful in some
locations during training, detectors for that feature
will be available in all locations during testing.

« Mathematically: f is equivariant w.r.t. g iff
.. f(9(x)) = g(f(x)) (diagram above commutes)




Pooling and Striding

« Get a small amount of translational invariance at
each level by averaging four neighboring replicated
detectors to give a single output to the next level.

— This reduces the number of inputs to the next layer of

feature extraction, thus allowing us to have many
more different feature maps.

— Taking the maximum of the four works slightly better.

 Modern deep networks also use striding as
dimension reduction: sliding kernel window with
slide/step larger than 1

12 {20 [ 30 | O

8 |12 | 2 0 2x2 Max—Pool\ 20 | 30 MaXpOO| W|th

34 |70 | 37| 4 112] 37 Stride 2
112|100 25 | 12
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Le Net

- Yann LeCun and his collaborators developed a really
good recognizer for handwritten digits by using
backpropagation in a feedforward net with:

— Many hidden layers
— Many maps of replicated units in each layer.
— Pooling of the outputs of nearby replicated units.

— A wide net that can cope with several characters at once
even if they overlap.

— A clever way of training a complete system, not just a
recognizer.

. This net was used for reading ~10% of the checks in
North America.

- Look the impressive demos of LENET at
htt,@//ya nn. I ecun.com




The architecture of LeNet5

C3: f. maps 16@10x10
S4: 1. maps 16@5x5

C5. layer Fg: layer OUTPUT
120 YRRt

C1: feature maps
INPUT 6@28x28

S2: f. maps |
6@14x14 | |

 Full connection Gaussian (

Convolution | Subsampling Convolutions  Subsampling Full connection

- vaec
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3 < 4 The 82 errors

2

made by LeNet5
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There has been many further improvements

with this application in mind
Ranzato 2008: use tricks to lower to 40

Ciresan et al. 2010: Enlarge dataset



CNN for text classification

sentence convolutional pooled

matrix feature map representation softmax
S e Raxls| C € RrXlsl-m+1 Cpool € R1xn
—
\\

/7
//
=)

F ¢

]Rde 7— L

N\

embedding dimension

Severyn, Aliaksei, and Alessandro Moschitti. "UNITN: Training Deep Convolutional Neural Network for Twitter Sentiment

: lassification." -HLT. .
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Uhhh, a lecture with a hoepfully useful

APPENDIX
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Color Convention in this course

- Formulae, when occurring inline
- Newly introduced terminology and definitions

- Important results (observations, theorems) as well as
emphasizing some aspects

- Examples are given with standard orange with possibly light
orange frame

« Comments and notes
. Algorithms
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Todays lecture is based on the following

Jonathon Hare: Lectures 2,7,10 of course ,COMP6248 Differentiable
Programming (and some Deep Learning)”
http://comp6248.ecs.soton.ac.uk/

Nielsen: Neural Networks and Deep Learning.
http://neuralnetworksanddeeplearning.com/, chapter 6

Geoofrey Hinton: Lecture 6a,
Convolutional neural networks for hand-written digit recognition
CSC2535: Advanced Machine Learning
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http://neuralnetworksanddeeplearning.com/

