
PROBABILISTIC AND
DIFFERENTIABLE PROGRAMMING

V3: Deep Learning I

Özgür L. Özçep

Universität zu Lübeck

Institut für Informationssysteme

Today‘s Agenda

2

1. Need for Deep

2. Tackling Deep Problems
2.1 Instable Gradient
2.2 Overfitting

3. Convolutional
networks

What is Deep Learning (DL)?

• Deep learning is based on function composition
– Feedforward networks: 𝒚 = 𝑓 (𝑔 (𝒙 , 𝜽𝑔), 𝜽𝒇)

Often with relatively simple functions
(e.g. 𝑓 (𝒙, 𝜽𝑓) = 𝜎(𝒙⊤𝜽𝑓))

– Recurrent networks:
𝒚𝑡 = 𝑓(𝒚𝑡 − 1, 𝒙𝑡, 𝜽) = 𝑓(𝑓(𝒚𝑡 − 2, 𝒙𝑡 − 1, 𝜽), 𝒙𝑡, 𝜽) = ...

• In early days focus of DL on functions for classification

• Nowadays the functions are much more general in
their inputs and outputs.

3

Network view of composed functions

4

x h y‘

w(2)
ij

x1

x2

x3

x4

w(1)
ij

Input layer Hidden layer(s) Output layer

y‘1

y‘2

y‘ = f (g (x ; W (1) ,b1); W (2) ,b2) = 𝛔2 (W(2) 𝛔 1(W(1) x +b1) + b2)

o1

o2

h1

h2

h3

h4

h5

i: layer i
bi: Bias in i
W(i): weight matrix

in i
𝛔 i: activation

function in i

fg

„States“

Functions

DL is based on Deep networks

5

x h

wij

x1

x2

x3

x4

wij

Input layer Hidden layer(s) Output layer

h1

h2

h3

h4

h5

k1

k2

k3

k4

k5

...

l

w(n)
ij

o1

o2

l1

l2

l3

l4

l5

w(n-1)
ij

k6

k

Do we need to go deep?

Universal Approximation Theorem

• Given
– 𝜎: ℝ → ℝ , nonconstant, bounded, continuous function

– 𝐼7 : m-dimensional hypercube 0,1 7

– 𝐶(𝐼7) : real-valued continuous functions on 𝐼7
• Any function f ∈ 𝐶(𝐼7) can be approximated by a

function of the form 𝐹 𝑥 = ∑?@AB 𝑣? 𝜎 𝑤?E𝑥 + 𝑏?
(constants vI, bI ,vectors 𝑤?)

i.e. |𝐹(𝑥) − 𝑓(𝑥)| < 𝜀 for all 𝑥 ∈ 𝐼7.

6

Hence : single-layer networks can represent a wide
variety of interesting functions

138
��� A visual proof that neural nets can compute any function

functions. You should find it fairly easy to get a good match to the goal function. How
well you’re doing is measured by the average deviation between the goal function and the
function the network is actually computing. Your challenge is to drive the average deviation
as low as possible. You complete the challenge when you drive the average deviation to 0.40
or below7

1

�2

�1

1

2
Weighted output
� = 0.38

You’ve now figured out all the elements necessary for the network to approximately compute
the function f (x)! It’s only a coarse approximation, but we could easily do much better,
merely by increasing the number of pairs of hidden neurons, allowing more bumps.

In particular, it’s easy to convert all the data we have found back into the standard
parametrization used for neural networks. Let me just recap quickly how that works.

The first layer of weights all have some large, constant value, say w= 1000.
The biases on the hidden neurons are just b = �ws. So, for instance, for the second

hidden neuron s = 0.2 becomes b = �1000⇥ 0.2= �200.
The final layer of weights are determined by the h values. So, for instance, the value

you’ve chosen above for the first h, h= �0.6, means that the output weights from the top
two hidden neurons are �0.6 and 0.6, respectively. And so on, for the entire layer of output
weights.

Finally, the bias on the output neuron is 0.
That’s everything: we now have a complete description of a neural network which does

a pretty good job computing our original goal function. And we understand how to improve
the quality of the approximation by improving the number of hidden neurons.

What’s more, there was nothing special about our original goal function, f (x) = 0.2+
0.4x

2 + 0.3 sin(15x) + 0.05 cos(50x). We could have used this procedure for any continuous
function from [0,1] to [0,1]. In essence, we’re using our single-layer neural networks to

7This paragraph refers to interactive element, available online. The graph shows the final result of
manual minimization of average deviation.

4

You need to go deep!

1. High precision (small ε) leads to large number of
components in single layer (very large N).
– worst-case: exponential blow up

– E.g., parity function better implemented in a deep
structure

2. All to good approximation not always good:
Overfitting and missing generalizability (still holds for DL)

3. We should care about the data generating distribution
– Real-world data has significant structure

– Model this structure with hierarchy of increasingly more
abstract latent (hidden) factors

4. Experience shows: Deeper networks better to handle
7

Slide reminder: What is Deep Learning?

• Deep learning systems are neural network models
similar to those popular in the ’80s and ’90s, with:
1. some architectural and algorithmic innovations (e.g.

many layers, ReLUs, dropout, LSTMs)

2. vastly larger data sets (web-scale)

3. vastly larger-scale compute resources (GPU, cloud)

4. much better software tools (Theano, Torch, TensorFlow)

5. vastly increased industry investment and media hype

8

Let‘s have a look into some of the innovations
mentioned above in 1.

No problem - no innovation

• We already saw some problems in DL

• We look again into them and others

– Gradient descent is hard
• Slow learning with MSE

• vanishing/exploding gradient

– Overfitting

– (Horrible symmetries in the data)

9

INSTABLE GRADIENT

10

Lets talk about loss

• The choice of loss function depends on the task (e.g.
classification/regression/something else)

• Depends also on the activation function of the last layer
– For numerical reasons many times the activation is

computed directly within the loss rather than being part
of the model

– Some classification losses require raw outputs (e.g. a
linear layer) of the network as their input (logits)

– There are are different loss functions for different tasks
(MSE, Cross-Entropy, ...)

11

Loss functions and output
Multilabel (overlapping)/
Multiclass (disjoint) Classification

Regression

Training
examples ℝ𝑛 x {class_1, ..., class_n}

ℝ𝑛 𝑥ℝ𝑚

Output
Layer Soft-max [map ℝ𝑛 to a probability distribution]

Linear (Identity)
or Sigmoid

Cost (loss)
function

Cross-entropy Mean Squared Error

f(x)=x

L 𝜃 = − A
Q
∑?@AQ ∑R@AS 𝑦R

(?) log X𝑦R
(?) + 1 − 𝑦R

(?) log 1 − X𝑦R
?

L 𝜃 = A
Q
∑?@AQ 𝑦(?) − X𝑦(?) Y

𝐿 𝜃 =
1
𝑛[
?@A

Q

𝑦(?) − X𝑦(?)

Mean Absolute Error

𝑃 𝑦 = 𝑗 𝒙) =
𝑒𝒙

_𝒘a

∑R@AS 𝑒𝒙_bc

𝑓 𝑥 =
1

1 + 𝑒deSigmoid

Slow learning with MSE

13

Mean squared error on one single training example

(X𝑦, 𝑦) ↦ X𝑦 − 𝑦
Y

𝑙hij : ℝQ ×ℝQ →
𝒍

ℝ

• 𝑙hij is the predominant choice for regression
problems with linear activation in the last layer

• MSE can cause slow learning (small ∇n,o𝑙hij),
especially if the predictions are very far off the
targets : ∇n,o𝑙hij ∼ X𝑦 − 𝑦 ⋅ 𝜎r (𝑧)

• Counter intuitive: Big mistakes should lead to big
learning steps

If you are curious: the argument in detail

• ∇n,o𝑙hij ∼ X𝑦 − 𝑦 ⋅ 𝜎r 𝑧
= 𝜎(𝑧) − 𝑦 ⋅ 𝜎 𝑧 1 − 𝜎 𝑧

• and 𝜎 𝑧 ∈ [0,1].
• Extreme difference e.g., when 𝑦 = 1 and 𝜎 𝑧 = 0
• Then 𝑧 must be negatively large, so ∇n,o𝑙hij = 0

14

Better Choice: Binary Cross-Entropy

Binary Cross entropy for case of binary classification
𝑙wxj = −𝑦 log X𝑦 − 1 − 𝑦 log(1 − X𝑦)

• Properties we expect from a cost function hold
– 𝑙wxj > 0
– 𝑙wxj ≈ 0 iff y = 1 ≈ X𝑦 or y = 0 ≈ X𝑦

• The nice property of BCE in contrast to MSE for
sigmoidal layer
|}~��
|b�

∼ �𝑦 − 𝑦 (The larger the error, the more you learn)

15

If you are curious
|}~��
|b�

∼ (�𝑦 − 𝑦)

• Assume single layer ̂𝑦 = 𝜎 𝑧 = 𝜎(𝑤𝑥 + 𝑏) with
sigmoidal activation

• |}~��
|b�

=
|
|b�

−𝑦 log X𝑦 − 1 − 𝑦 log 1 − X𝑦

=
𝜕
𝜕𝑤?

−𝑦 log 𝜎(𝑧) − 1 − 𝑦 log 1 − 𝜎(𝑧)

= −𝑦
1

𝜎(𝑧)
𝜕
𝜕𝑤?

𝜎 𝑧)− 1 − 𝑦
1

1 − 𝜎(𝑧)
𝜕
𝜕𝑤?

(1 − 𝜎(𝑧)

= −𝑦
1

𝜎(𝑧)
𝜎r(𝑧)𝑥? − 1 − 𝑦

1
1 − 𝜎(𝑧)

−𝜎r(𝑧)𝑥?

= −𝑦
1

𝜎(𝑧)
𝜎 𝑧 1 − 𝜎 𝑧 𝑥? − 1 − 𝑦

1
1 − 𝜎(𝑧)

−𝜎 𝑧 (1 − 𝜎(𝑧)) 𝑥?

= −𝑦 1 − 𝜎 𝑧 𝑥? + 1 − 𝑦 𝜎 𝑧 𝑥? = 𝑥? 𝜎 𝑧 − 𝑦 = 𝑥?(X𝑦 − 𝑦)

16

BCE: Intuition

The cross-entropy can be thought of as a measure of
surprise.

– �𝑦?: probability that some input 𝑥? is of class 1

– 1 − �𝑦? : probability that 𝑥? is of class 0

– Extreme case 𝑙wxj = ∞
• Model believes prob = 0 for some class, yet this class

appears

17

BCE for multiple labels

• In the case of multi-label classification with a network
with multiple sigmoidal outputs you just sum the BCE
over the outputs:

Binary Cross entropy for case of binary classification

𝑙wxj = [
R@A

S

−𝑦 log X𝑦R − 1 − 𝑦 log(1 − X𝑦R)

where 𝐾 is the number of classes of the classification
problem, X𝑦 ∈ 𝑅S .

18

Vanishing and exploding (unstable) gradients

• In training, the gradient may become vanishingly small
(or large), effectively preventing the weight from
changing its value (or exploding in value).

• This leads to the neural network not being able to train.

• This issue affects many-layered networks (feed-
forward), as well as recurrent networks.

• In principle, optimisers that rescale the gradients of
each weight should be able to deal with this issue

19

Reminder: Vanishing gradient for sigmoid 𝜎

• Gradient of sigmoid:
𝜎′(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥))

20

5.2. What’s causing the vanishing gradient problem? Unstable gradients in deep neural nets
��� 161

along the network to affect z2:

�z2 ⇡ �0(z1)w2�b1. (5.4)

Again, that should look familiar: we’ve now got the first two terms in our claimed expression
for the gradient @ C/@ b1.

We can keep going in this fashion, tracking the way changes propagate through the rest
of the network. At each neuron we pick up a �0(z

j
) term, and through each weight we pick

up a w
j

term. The end result is an expression relating the final change �C in cost to the
initial change �b1 in the bias:

�C ⇡ �0(z1)w2�
0(z2) . . .�0(z4)

@ C

@ a4
�b1. (5.5)

Dividing by �b1 we do indeed get the desired expression for the gradient:

@ C

@ b1
= �0(z1)w2�

0(z2) . . .�0(z4)
@ C

@ a4
. (5.6)

Why the vanishing gradient problem occurs: To understand why the vanishing gradi-
ent problem occurs, let’s explicitly write out the entire expression for the gradient:

@ C

@ b1
= �0(z1)w2�

0(z2)w3�
0(z3)w4�

0(z4)
@ C

@ a4
. (5.7)

Excepting the very last term, this expression is a product of terms of the form w
j
�0(z

j
). To

understand how each of those terms behave, let’s look at a plot of the function �0:

�4 �2 0 2 4
0

0.1

0.2

Derivative of sigmoid function

The derivative reaches a maximum at �0(0) = 1/4. Now, if we use our standard approach to
initializing the weights in the network, then we’ll choose the weights using a Gaussian with
mean 0 and standard deviation 1. So the weights will usually satisfy |w

j
|< 1. Putting these

observations together, we see that the terms w
j
�0(z

j
) will usually satisfy |w

j
�0(z

j
)|< 1/4.

And when we take a product of many such terms, the product will tend to exponentially
decrease: the more terms, the smaller the product will be. This is starting to smell like a
possible explanation for the vanishing gradient problem.

To make this all a bit more explicit, let’s compare the expression for @ C/@ b1 to an
expression for the gradient with respect to a later bias, say @ C/@ b3. Of course, we haven’t

5
160
��� Why are deep neural networks hard to train?

We’re going to study the gradient @ C/@ b1 associated to the first hidden neuron. We’ll
figure out an expression for @ C/@ b1, and by studying that expression we’ll understand why
the vanishing gradient problem occurs.

I’ll start by simply showing you the expression for @ C/@ b1. It looks forbidding, but
it’s actually got a simple structure, which I’ll describe in a moment. Here’s the expression
(ignore the network, for now, and note that �0 is just the derivative of the � function):

The structure in the expression is as follows: there is a �0(z
j
) term in the product for each

neuron in the network; a weight w
j
term for each weight in the network; and a final @ C/@ a4

term, corresponding to the cost function at the end. Notice that I’ve placed each term in the
expression above the corresponding part of the network. So the network itself is a mnemonic
for the expression.

You’re welcome to take this expression for granted, and skip to the discussion of how it
relates to the vanishing gradient problem. There’s no harm in doing this, since the expression
is a special case of our earlier discussion of backpropagation. But there’s also a simple
explanation of why the expression is true, and so it’s fun (and perhaps enlightening) to take
a look at that explanation.

Imagine we make a small change �b1 in the bias b1. That will set off a cascading series
of changes in the rest of the network. First, it causes a change �a1 in the output from the
first hidden neuron. That, in turn, will cause a change �z2 in the weighted input to the
second hidden neuron. Then a change �a2 in the output from the second hidden neuron.
And so on, all the way through to a change �C in the cost at the output. We have

@ C

@ b1
⇡ �C

�b1
. (5.1)

This suggests that we can figure out an expression for the gradient @ C/@ b1 by carefully
tracking the effect of each step in this cascade.

To do this, let’s think about how �b1 causes the output a1 from the first hidden neuron
to change. We have a1 = �(z1) = �(w1a0 + b1), so

�a1 ⇡
@ �(w1a0 + b1)

@ b1
�b1 = �0(z1)�b1. (5.2)

That �0(z1) term should look familiar: it’s the first term in our claimed expression for the
gradient @ C/@ b1. Intuitively, this term converts a change �b1 in the bias into a change �a1

in the output activation. That change �a1 in turn causes a change in the weighted input
z2 = w2a1 + b2 to the second hidden neuron:

�z2 ⇡
@ z2

@ a1
�a1 = w2�a1. (5.3)

Combining our expressions for�z2 and�a1, we see how the change in the bias b1 propagates

5

Max{𝜎r 𝑥 }
= 0.25

Gradients in linear network of depth 4

Gradient vanishes moving backwards

≤ 0,25 ≤ 0,25≤ 0,25

• Assume |𝑤𝑖 | ≤ 1 (e.g. 𝑤? ~ 𝑁(0,1))
• Then: | 𝑤𝑖𝜎r(𝑧?) ≤ 0,25
• Exponential decrease from later derivatives to earlier ones due to chain rule

Problem: Exploding gradient for sigmoid 𝜎

• Gradient of sigmoid:
𝜎′(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥))

21

5.2. What’s causing the vanishing gradient problem? Unstable gradients in deep neural nets
��� 161

along the network to affect z2:

�z2 ⇡ �0(z1)w2�b1. (5.4)

Again, that should look familiar: we’ve now got the first two terms in our claimed expression
for the gradient @ C/@ b1.

We can keep going in this fashion, tracking the way changes propagate through the rest
of the network. At each neuron we pick up a �0(z

j
) term, and through each weight we pick

up a w
j

term. The end result is an expression relating the final change �C in cost to the
initial change �b1 in the bias:

�C ⇡ �0(z1)w2�
0(z2) . . .�0(z4)

@ C

@ a4
�b1. (5.5)

Dividing by �b1 we do indeed get the desired expression for the gradient:

@ C

@ b1
= �0(z1)w2�

0(z2) . . .�0(z4)
@ C

@ a4
. (5.6)

Why the vanishing gradient problem occurs: To understand why the vanishing gradi-
ent problem occurs, let’s explicitly write out the entire expression for the gradient:

@ C

@ b1
= �0(z1)w2�

0(z2)w3�
0(z3)w4�

0(z4)
@ C

@ a4
. (5.7)

Excepting the very last term, this expression is a product of terms of the form w
j
�0(z

j
). To

understand how each of those terms behave, let’s look at a plot of the function �0:

�4 �2 0 2 4
0

0.1

0.2

Derivative of sigmoid function

The derivative reaches a maximum at �0(0) = 1/4. Now, if we use our standard approach to
initializing the weights in the network, then we’ll choose the weights using a Gaussian with
mean 0 and standard deviation 1. So the weights will usually satisfy |w

j
|< 1. Putting these

observations together, we see that the terms w
j
�0(z

j
) will usually satisfy |w

j
�0(z

j
)|< 1/4.

And when we take a product of many such terms, the product will tend to exponentially
decrease: the more terms, the smaller the product will be. This is starting to smell like a
possible explanation for the vanishing gradient problem.

To make this all a bit more explicit, let’s compare the expression for @ C/@ b1 to an
expression for the gradient with respect to a later bias, say @ C/@ b3. Of course, we haven’t

5
160
��� Why are deep neural networks hard to train?

We’re going to study the gradient @ C/@ b1 associated to the first hidden neuron. We’ll
figure out an expression for @ C/@ b1, and by studying that expression we’ll understand why
the vanishing gradient problem occurs.

I’ll start by simply showing you the expression for @ C/@ b1. It looks forbidding, but
it’s actually got a simple structure, which I’ll describe in a moment. Here’s the expression
(ignore the network, for now, and note that �0 is just the derivative of the � function):

The structure in the expression is as follows: there is a �0(z
j
) term in the product for each

neuron in the network; a weight w
j
term for each weight in the network; and a final @ C/@ a4

term, corresponding to the cost function at the end. Notice that I’ve placed each term in the
expression above the corresponding part of the network. So the network itself is a mnemonic
for the expression.

You’re welcome to take this expression for granted, and skip to the discussion of how it
relates to the vanishing gradient problem. There’s no harm in doing this, since the expression
is a special case of our earlier discussion of backpropagation. But there’s also a simple
explanation of why the expression is true, and so it’s fun (and perhaps enlightening) to take
a look at that explanation.

Imagine we make a small change �b1 in the bias b1. That will set off a cascading series
of changes in the rest of the network. First, it causes a change �a1 in the output from the
first hidden neuron. That, in turn, will cause a change �z2 in the weighted input to the
second hidden neuron. Then a change �a2 in the output from the second hidden neuron.
And so on, all the way through to a change �C in the cost at the output. We have

@ C

@ b1
⇡ �C

�b1
. (5.1)

This suggests that we can figure out an expression for the gradient @ C/@ b1 by carefully
tracking the effect of each step in this cascade.

To do this, let’s think about how �b1 causes the output a1 from the first hidden neuron
to change. We have a1 = �(z1) = �(w1a0 + b1), so

�a1 ⇡
@ �(w1a0 + b1)

@ b1
�b1 = �0(z1)�b1. (5.2)

That �0(z1) term should look familiar: it’s the first term in our claimed expression for the
gradient @ C/@ b1. Intuitively, this term converts a change �b1 in the bias into a change �a1

in the output activation. That change �a1 in turn causes a change in the weighted input
z2 = w2a1 + b2 to the second hidden neuron:

�z2 ⇡
@ z2

@ a1
�a1 = w2�a1. (5.3)

Combining our expressions for�z2 and�a1, we see how the change in the bias b1 propagates

5

Max{𝜎r 𝑥 }
= 0.25

Gradients in linear network of depth 4

Gradient explodes moving backwards

=25 = 25= 25

• Assume 𝑤𝑖 = 100
• Choose 𝑏? such that 𝑧? = 0, hence 𝜎r(𝑧?) = 0.25 |
• So 𝑤𝑖𝜎r(𝑧?) = 25
• Exponential increase from later derivatives to earlier ones due to chain rule

But the main point is instabiliy!
In large networks no
easily balanceing out learning
Rates due to multiplicaiton

• Takes a real-valued number and “squashes” it
into range between 0 and 1.

• Earliest used activation function (neuron)
• Leads to vanishing gradient problem

ℝQ → 0,1

http://adilmoujahid.com/images/activation.png

Sigmoid

Tanh: ℝQ → −1,1
• Takes a real-valued number and

“squashes” it into range between -1 and 1
• Same problem of vanishing gradient
• tanh 𝑥 = 2𝑠𝑖𝑔𝑚 2𝑥 − 1

Rectified Linear Unit ReLu: ℝQ → ℝ�Q
• Takes a real-valued number and thresholds it at 0

Used in Deep Learning
• Like linear function
• No vanishing gradient

• But: Dying ReLU
• But: it is not differentiable (need relaxation)

Because no saturation
(for positive x)

Tackling vanishing gradients II

Problem: Dying ReLUs

• Gradient is 1 𝑓𝑜𝑟 𝑥 > 0 and 0 otherwise

• Consider 𝑅𝑒𝐿𝑈(𝒘E𝒙)
– What happens if 𝒘 is initialised badly?

– What happens if 𝒘 receives an update that means that
𝒘⊤𝒙 < 0 ∀ 𝒙?

– These are dead ReLUs - ones that never fire for all training
data

• How to tackle?
– If you get those from the beginning: weight initialisation

and data normalisation

– During training: Maybe 𝜂 is too big?

– Leaky ReLU: For x < 0 define with small gradient, e.g. 0.01
x 23

Tackling vanishing gradients II

• Residual Networks (ResNets) use skip connections to
jump over layers.

• The vanishing gradient problem is mitigated in ResNets
by reusing activations from a previous layer.

• Is this the full story though? Skip connections also break
symmetries, which could be much more important...

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition.
arXiv e-prints, page arXiv:1512.03385, Dec. 2015.

24

Residual Connections

One of the most e↵ective ways to resolve diminishing gradients is
with residual neural networks (ResNets)3.

ResNets are artificial neural networks that use skip connections to
jump over layers.

The vanishing gradient problem is mitigated in ResNets by reusing
activations from a previous layer.

Is this the full story though? Skip connections also break symmetries,
which could be much more important...

3
K. He, X. Zhang, S. Ren and J. Sun, ”Deep Residual Learning for Image Recognition,”

CVPR, Las Vegas, NV, 2016, pp. 770-778.

Jonathon Hare Deep Learning 11 / 20

Residual Connections

identity

weight layer

weight layer

relu

relu

F(x)�+�x

x

F(x) x

Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

.

K. He, X. Zhang, S. Ren and J. Sun, ”Deep Residual Learning for Image Recognition,”

CVPR, Las Vegas, NV, 2016, pp. 770-778.

Jonathon Hare Deep Learning 12 / 20

OVERFITTING

25

Overfitting

Learned hypothesis may fit the
training data very well, even
outliers (noise) but fail to
generalize to new examples (test
data)

http://wiki.bethanycrane.com/overfitting-of-data

https://www.neuraldesigner.com/images/learning/selection_error.svg

L2 weight decay
• Regularization term that penalizes big weights,

added to the objective
• Weight decay value 𝜆 determines how dominant regularization is during

gradient computation
• Big weight decay coefficient à big penalty for big weights

Against Overfitting: Regularization

Dropout
• Randomly drop units (along with their

connections) during training
• Each unit retained with fixed probability p,

independent of other units
• Hyper-parameter p to be chosen (tuned)

𝐿�� 𝜃 = 𝐿 𝜃 + 𝜆[
R

𝜃RY

Early-stopping
• Use validation error to decide when to stop training
• Stop when monitored quantity has not improved

after n (patience) subsequent epochs

Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural
networks from overfitting." Journal of machine learning research (2014)

Smooting landscape
• E.g. batch normalisation

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

How and why Dropout works

• HOW
– In the learning phase, we set a dropout probability for

each layer in the network.

– For each batch we then randomly decide whether or not
a given neuron in a given layer is removed.

• WHY

– Neurons cannot co-adapt to other units (they cannot
assume that all of the other units will be present)

– By breaking co-adaptation, each unit will ultimately
find more general features

28

Dropout = Backprop with random masking

1. Input: random binary mask 𝒎? ; input vector 𝒙 = 𝒂¤

2. Feedforward: For layers i = 1,2, ... , M-1
𝒛𝒊 = 𝑾 𝒊 𝒂𝒊d𝟏 + 𝒃𝒊 and 𝒂𝒊 = 𝝈𝒊 𝒛𝒊 ⨀𝒎?

For layer i = M
𝒛𝑴 = 𝑾 𝒊 𝒂𝒊d𝟏 + 𝒃𝒊 and 𝒂𝑴 = 𝝈𝒊 𝒛𝑴 ⨀𝒎?

1. Compute error on last layer
𝜹h = ∇�𝒚𝐶 ⨀𝜎r(𝒛h) (BP1)

2. Backpropagate error: For i = M-1, M-2, ...,
𝜹?= (𝒘𝒊�𝟏)E𝜹?�A ⨀𝜎r(𝒛?)⨀𝒎? (BP2)

3. Compute gradients
|x
|bac

� = 𝑎R?dA𝛿𝒋? and
|x
|oa

� = 𝛿±? (BP3/4)
29

(Remember: ⨀
Hadamard product)

CONVOLUTIONAL NETWORKS

30

Adapted from https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png

Classical Machine Learning

Deep Learning

Example family car:
we presumed features
price and mileage

Deep Learning (ad 1.)

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

• More structure: structure of input, local receptive fields (the 1. “rf”)
• Less parameters:

• weight tying (replication features 2. “rf”),
• pooling

Input matrix

Convolutional
3x3 filter

Convolutional networks

Realization in network: structure of input

• Work with tensors of any number of dimensions
– (Audio-mono (1D, 1 Channel); audio stereo (1D, 2

channels) colour-video data (3D, color-dim)

– input is,say, N x P x Q
• N is the “channels” dimension

• P , Q are the spatial dimensions,

– Define convolutional kernel of size N x K x L

• Usually more than single feature -> many kernels ->
many feature maps

• We can just add another dimension to the kernel tensor
to incorporate convolution with all kernels in one
operation:

33

𝑍?,±,R = [
},7,Q

𝑉},±�7dA,R�QdA 𝐾?,},7,Q

Realization in network: RF and weight tying

• Receptive field: no full meshing inbetween layers
– In case of example at each step of sliding:

• consider only 3 x 3 submatrix of input matrix with (formally
other weights are set to zero)

– The weights for all the 3x3 submatrices of the input
matrix get the same (!) weight (given by the
convolutional filter/kernel)

– Considering all timesteps instantaneously gives you a
single layer (restructured as matrix „Convoluted Feature“
with smaller dimension)

• Considering many kernels gives you stacked layers

34

Terminology stems from signal processing

35

But: „Convolution“ in neural networks corresponds to cross-correlation

𝑓 ⋆ 𝑔(𝑥) = µ
d¶

¶
𝑓 𝑡 𝑔 𝑥 + 𝑡 𝑑𝑥

The replicated feature approach
(currently the dominant approach for neural networks)

• Use many different copies of the same
feature detector with different
positions.
– Could also replicate across scale and

orientation (tricky and expensive)

– Replication greatly reduces the number
of free parameters to be learned.

• Use several different feature types,
each with its own map of replicated
detectors.
– Allows each patch of image to be

represented in several ways.

The red connections all
have the same weight.

Why replicating the feature detectors?

• Equivariant activities: The activities are translation
equivariant.

• Invariant knowledge: If a feature is useful in some
locations during training, detectors for that feature
will be available in all locations during testing.

• Mathematically: f is equivariant w.r.t. g iff
f(g(x)) = g(f(x)) (diagram above commutes)

representation
by active
neurons

image

translated
representation

translated
image

g

ff

g

Pooling and Striding

• Get a small amount of translational invariance at
each level by averaging four neighboring replicated
detectors to give a single output to the next level.
– This reduces the number of inputs to the next layer of

feature extraction, thus allowing us to have many
more different feature maps.

– Taking the maximum of the four works slightly better.
• Modern deep networks also use striding as

dimension reduction: sliding kernel window with
slide/step larger than 1

Max Pooling, 2x2, stride=2

Max Pooling Gradients

• The gradient of the max pooling operation is 1
everywhere a max value was selected, and zero
elsewhere

• This means that implementations not only need
to record the max values in the forward-pass, but
also keep track of the positions of those
maximums for the backward pass

Maxpool with
Stride 2

Le Net

• Yann LeCun and his collaborators developed a really
good recognizer for handwritten digits by using
backpropagation in a feedforward net with:
– Many hidden layers
– Many maps of replicated units in each layer.
– Pooling of the outputs of nearby replicated units.
– A wide net that can cope with several characters at once

even if they overlap.
– A clever way of training a complete system, not just a

recognizer.

• This net was used for reading ~10% of the checks in
North America.

• Look the impressive demos of LENET at
http://yann.lecun.com

The architecture of LeNet5

The 82 errors
made by LeNet5

Notice that most of the
errors are cases that
people find quite easy.

The human error rate is
probably 20 to 30 errors
but nobody has had the
patience to measure it.

There has been many further improvements
with this application in mind
Ranzato 2008: use tricks to lower to 40
Ciresan et al. 2010: Enlarge dataset

Severyn, Aliaksei, and Alessandro Moschitti. "UNITN: Training Deep Convolutional Neural Network for Twitter Sentiment
Classification." SemEval@ NAACL-HLT. 2015.

CNN for text classification

APPENDIX
Uhhh, a lecture with a hoepfully useful

43

Color Convention in this course

• Formulae, when occurring inline

• Newly introduced terminology and definitions

• Important results (observations, theorems) as well as
emphasizing some aspects

• Examples are given with standard orange with possibly light
orange frame

• Comments and notes

• Algorithms

44

Todays lecture is based on the following

• Jonathon Hare: Lectures 2,7,10 of course „COMP6248 Differentiable
Programming (and some Deep Learning)“
http://comp6248.ecs.soton.ac.uk/

• Nielsen: Neural Networks and Deep Learning.
http://neuralnetworksanddeeplearning.com/, chapter 6

• Geoofrey Hinton: Lecture 6a,
Convolutional neural networks for hand-written digit recognition
CSC2535: Advanced Machine Learning

45

http://comp6248.ecs.soton.ac.uk/
http://neuralnetworksanddeeplearning.com/

