PROBABILISTIC AND

DIFFERENTIABLE PROGRAMMING

V4. Deep Learning
(RNNs and Reservoir)

Ozgur L. Ozcep
Universitat zu Libeck
Institut flir Informationssysteme

Today’s Agenda

1. Follow me:
Recurrent networks

2. Some things to
remember, some
things to forget:
Long short term
memory

UNIVERSITAT ZU LUBECK
INSTITUT FUR INFORMATIONSSYSTEME

- Deep** Networks ..

© Backfed Input Cell

@ nNoisy Input Cell

Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)
@ riddencell
@ Probablistic Hidden Cell : -
i »
P Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)
® cepsuecel 5 6 0—0 A—A
TN TN
@ outoutcel :(;:(;:(")x():(
%Y QEPEA
@ Match input Output Cell *°e *"e
Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)
@ coted Memory Cell
Kernel
© Convolution or Pool
Markov Chain (MC) Hopfield Network (HN) - Boltzmann Machine (8M) Restricted BM (RBM) Deep Belief Network (DBN)

Ve tone
o sie loniels
Nv/a\v/Ze\

3

Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

%
a
"
Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)
o}
o o
W s
WAV

Deep Residual Network (DRN)

e eevee

Differentiable Neural Computer (DNC) Neural Turing Machine (NTM)

R

S,
<\
Attention Network (AN)

\‘) 9, \.(Kohonen Network (KN)
KX
W2 = QW W

Capsule Network (CN)

15X

3. Forget to learn the hiddens:

Reservoir Computing

IM FOCUS DAS LEBEN

2

Example Named Entity recognition

X7 Xy X3 X4 X5 Xg X7

x: Jon and Ethan gave deep learning lectures

ey 1 0 1 0 0 0 0
Yi. Yo Y3 Ya Y5 Ye Y7

In this case input and output vector of length 7

But naturally longer sequences are possible

one to one one to many many to one many to many many to many

Image classification Image captioning Sentimental analysis Machine translation Synced video
In:image In: image In: sentence In: sentence In: video
Out: Classifier Out: sentence Out: sentiment Out: sentence Out: real-time labels

& UNIVERSITAT ZU LUBECK
INSTITUT FUR INFORMATIONSSYSTEME

Why Not a Standard Feed Forward Network?

- For atask such as “Named Entity Recognition” a MLP
would have several disadvantages

— The inputs and outputs may have varying lengths

— The features wouldn’t be shared across different
temporal positions in the network

« Note that 1-D convolutions can be (and are) used to
address this, in addition to RNNs

- Tointerpret a sentence or to predict tomorrows
weather it is necessary to remember what happened in
the past

- To facilitate this we would like to add a feedback loop
delayed in time

RNN Architecture

o(t) = y(t) |
* RNNs are NNs for processing
OUtPUt sequential data
* Contain directed cycles in their

computational graph
weights V P orap

* Another form of ,more
/—\ h(t) structure” in DL
* Another form of parameter

Hidden Units Delay sharing in DL
K / h(t — 1)
weights U
l weights W

all weights AW = UUVUW

RNN Architecture

Left: feed forward neural network
Middle: a simple recurrent neural network
--Right: Fully connected recurrent neural network

- N i
= N <
:’;; U NETITUT FOR INFORMATIONSSYSTEME IM FOCUS DAS LEBEN
rs s1sn”

An RNN is just a recursive function invocation

Output update
y () = folx(t) h(t — DIAW)
State update
h(t) = fa(x (t) h(t — 1AW)

If ¥(t) depends on the input x(t — 2), then prediction

will be
fo(x (@), frnx(t — 1), fp(x (t — 2),fp(x (t — 3)|AW)|AW)|AW)|AW)

Gradients of this with respect to the weights can be
found with the chain rule

UUUUUUUUUUUUUUUUUUUUUUUU
3RSs2~» INSTITUT FUR INFORMATIONSSYSTEME
—

Variants of RNNs

- Depending on the instantiation of f()
— Elman (Vanilla/Simple Networks)
— Jordan (not discussed here)
— LSTM (discussed here)
— GRU (Gated recurrent unit; not discussed here) bka

— Elman
 hy = fpr(Ux; + by + Why_y + by) = fr(an(t))
e ye =0(t) = fo(Vhe +by) = fo(ae(t))
e fnisusally tanh
e f,identity orlogit

RNNs combine two properties which make them very
powerful.

1. Distributed hidden state that allows them to store a lot
of information about the past efficiently. This is
because several different units can be active at once,
allowing them to remember several things at once.

2. Non-linear dynamics that allows them to update their
hidden state in complicated ways.

In particular: RNNs are universal approximators

10

UUUUUUUUUUUUUUUUUUUUUUUU
3RSs2~» INSTITUT FUR INFORMATIONSSYSTEME
—

Going Deep with RNNs

- You can go deep w.r.t. time unfolding (some do not
consider this as going deep)

« As RNNs calculate functions, you can compose them
(stack the RNNs)
y(@©) = f5 (fo (x(t),h'(t — DIAW,),h*(t — 1)|AW;)
— The output of the inner RNN at time t is fed into the input
of the outer RNN which produces the predictiony

« You could of course also add feedfoward parts into the
input block or the output block or the hidden block

1

Example: Character-level language modelling

- An RNN that learns to ‘generate’ English text by learning
to predict the next character in a sequence

 This is “Character-level Language Modelling”

target chars: ‘e’ 1 @ “o"
1.0 0.5 0.1 0.2
2.2 0.3 0.5 =15
output layer . i 2 #e
4.1 1.2 -1.1 2.2
T T T TW_hy
0.3 1.0 0.1 |Ww hh!-0.3
hidden layer | -0.1 > 0.3 o 05 1-=% 09
0.9 0.1 -0.3 0.7
T T T TW_xh
t
input layer 0 5 ; 1
input chars: “h” “g” | @

s Image from http://karpathy.github.io/2015/05/21/rnn-effectiveness/

aifibes © ’

EA*Q% 77 © UNIVERSITA 12
3RSs2~» INSTITUT FUR INFORMATIONSSYSTEME

Rt

Training and sampling the Language Model

- The training data is just text data (e.g. sequences of
characters)

- The task is unsupervised (or rather self-supervised):
given the previous characters predict the next one

. Allyou need to do is train on a reasonable sized corpus
of text

. Overfitting could be a problem: dropout is very useful
here

- Once the model is trained can generate text

— See examples at

' http://karpathy.qithub.io/2015/05/21/rnn-effectiveness/
@’f“ G — 13

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Recurrent Neural Neworks unfolded

« Can unravel/unfold network into feed forward

— can apply gradient descent/timed backpropagation
(BPTT: Backpropagation through time)

— Minimize error Zt| ly(t) — y(t)l|zover all time steps

Oy 0, 0, O3 Oy

14

Back Propagation Through Time (BPTT)

- BPTT learning algorithm is an extension of standard
backpropagation that performs gradients descent on an

unfolded network.

- The gradient descent weight updates have contributions
from each time step.

- The errors have to be back-propagated through time as
well as through the network

RNN Backward Pass

. Loss function depends on the activation of the hidden layer

through its influence on the output layer and through its
influence on the hidden layer at the next step.

- hy = frl, he_q , W)
- O =f0(ht,V)

- Theinteresting part is the calculation of the gradient w.r.t.
the hidden parameters W

- E=Y!_E (error in RNN)
a_E _ T % _ T aEt aOt aht
ow “t=layw — “t=1g4,. 9n, 0w
dh) X¢,he—1, W d Xt he—1 W) Ohy_ .
- am; _ 9fn(C;Wt 1)_I_ fh(ath t—1.,W) 6;/1 (by chain rule)
t—1
Ohy _ Ofp (xt,he_1,W) t—1 77t oh; | Ofp (x3,hi—1, W)
ow ow + 2iz1 (=i dhj_, ow

(by solving the recursion)

Here they come again: Vanishing and exploding Gradients

=>Solution: Long short
term memory networks

(LSTMs)
0.8}
0.6 |
0.4}
single sigmoid
e2r — double sigmoids
triple sigmoids
quadruple sigmoids
0.0 . n
-10 -5 0 5 10

Paramter in 1st layer

IM FOCUS DAS LEBEN

LONG SHORT TERM MEMORY

UNIVERSITAT ZU LUBECK
INSTITUT FUR INFORMATIONSSYSTEME

18

LSTM - introduction

- LSTM was invented to solve the vanishing gradients
problem.
« LSTM maintain a more constant error flow in
backpropogation.
— Long term memory by specific hidden state c(t) = c(t-1)
— Sometimes one has to forget and sometimes have to
change the memory
— To do this use gates saturating at O (read/write denied)
and 1 (read/write allowed) => Sigmoid

- LSTM can handle global dependencies (1000 time steps)

LSTM Architecture

Output
Hidden
Memory
E—— Block
Cell
Input

Figure 2.1: Left: RNN with one fully recurrent hidden layer. Right: LSTM network with
memory blocks in the hidden layer (only one is shown).

- vaec
U’;‘l!l\ggl"TTllJT'I{\.lF-UZ;JIIF\IUFE)ERI\;I(ATIONSSYSTEME IM FOCUS DAS LEBEN

LSTM Architecture

Q O O O output

block | block h block | block hidden

LSTM Architecture - overview

cell output

output -~ o - recurrent
/,f recurrent

LSTM cell

~

: NS
input . §- recurrent

cell input

LSTM Architecture — long term memory cell

cell output
output - & - recurrent
/,f recurrent

LSTM cell

output gate

input

recurrent

i input gate

~
4 recu rrent

input

input .
cell input
20%?@; " INSTITUT FOR INFORMATIONSSYSTEME

Each memory cell contains a node with a
self-connected recurrent edge of fixed
weight one

Ensures that the gradient can pass across
many time steps without vanishing

CEC (constant error carousel)

=> Long term memory
In contrast: Previous outputs from
hidden: short term memory

c(t) =z(t) Qi(t)+c(t—1)

LSTM Architecture — input

cell output

output o - recurrent
/, recurrent
/.
LSTM cell a,(t) =W, x(t) +R,y(t—1)
inBut Z(t) — g(a’Z(t))

(control forwarding of input
pourrent and previous step information)
7.7
i b’

Z

Z .« put gate

N]
. NN
inut - \ recurrent

cell input

input

3885 ¢ T INSTITUT FOR INFORMATIONSSYSTEME

g
N
215 srsn”

LSTM Architecture — input gate

cell output

output & - recurrent _
il, ,r;ef;ment
’
LSTM cell Y Ain(t) = Wipx(t) + Ry (t — 1)
i(t) = o(am(®)

output gate \
input

recu ent (control write access to memory cells)

e

inpu:

input . 4 recu rrent
cell input
2RS¥ Y INSTITUT FUR INFORMATIONSSYSTEME

% ~
T
75 515

LSTM Architecture — Output gate

cell output

output i,’/’ e r,e‘cur'ent
7.7
LSTM cell Y 2 5 4 aout(t) — Woutx(t) T RoutY(t — 1)
o(t) = O-(aout(t))

output gate)
@ input
(control read access to memory cell)
recurrent
g

input

- recurrent
cell input

LSTM Architecture — Output gate

cell output

outHut - # - recurrent
/,f recurrent

LSTM cell

y(t) = h(c(®)) © o(t)

(control outputting of memory cell
content via o(t))

LSTM Forward Pass

- The cell state c is updated based on its current
state and 3 inputs: a, , a;, , Aoyt

a,(t) = Wyx(t) + R,(y(t — 1)), z(t) = g(a,(t))
ain () = Wipx(®) + Rpn(y(t = 1), i(t) = o(ap (1))

c(t) =z(t) OQi(t) +c(t—1)
Aoyt (£) = Woyex(t) + Rout()’(t — 1)) ,0(t) = U(aout(t))

y(t) = h(c(®)) © o(t)

LSTM Backward Pass

- Errors arriving at cell outputs are propogated to the CEC
- Errors can stay for along time inside the CEC
- This ensures non-decaying error

- Can bridge time lags between input events and target
signals

« (details left out here)

An addition: Handling unbouded memory

c(t) =z(t) ©i(t) + c(t —1) —» grows linearly

For a continuous input stream -
c(t) may grow in an unbounded fashion =
can cause a saturation in h(t)

5.(t) = cSy(t o(t)

Small gradients

LSTM possible remedy by forget gate

cell output
output - o - recurrent

recurrent

/

LSTM cell

inbut
recurrent
f
recurrent
[&
forget gate =
input

F©) = o (Wex(® + Re(y(t — 1)) =7 8
c(t) = z(t) @ i(t) + () O c(t — 1)

Success Story of LSTMs

« LSTMs have been used to win many competitions in
speech and handwriting recognition.

- Major technology companies (Google, Apple, and
Microsoft) are using LSTMs

— Google used LSTM for speech recognition on the
smartphone, for Google Translate.

— Apple uses LSTM for the “Quicktype” function on the
iPhone and for Siri.

— Amazon uses LSTM for Amazon Alexa.

— In 2017, Facebook performed some 4.5 billion automatic
translations every day using long short-term memory
networks1.

32

RESERVOIR COMPUTING

ERSIp
NEL
ST,

| S UNIVERSITAT ZU LUBECK
= INSTITUT FUR INFORMATIONSSYSTEME

~

33

Reservoir Computing (RC): Idea

« ldea: Separate state space calculation from output calculation (as
they serve different purposes)

« state space represents input (history) in high-dimensional
(kernel trick)

« Output spaces: Merger of states for desired output
« Uses recurrent structures without the training
« Fixed (random) topology

e Linear “readout” function is trained

Reservoir Computing: History

Buonomano (1995), Laurenco (1994): early related
work

Boyd/Chua (95): Mathematical Foundation (without
input feedback)

Jaeger (2001): Echo State Networks (engineering)

Maass (2002): Liquid State Machines (neuroscience)

And now: various physical reservoir computing
approaches (morphological computing, cellular
automata, etc.) (see Tanaka et al. 19))

Inputs outputs
reservoir

random, fixed linear, trained

& UNIVERSITAT ZU LUBECK
= INSTITUT FUR INFORMATIONSSYSTEME

Reservoir Computing

- (De-facto & required) Properties of reservoir:
— Exact topology, connectivity, weights: not important

— Has to have fading memory/echo state property: when
not chaotic (as k — o0) effect of h(t) and x(t) on
h(t + k) vanishes

— Can be ensured by choosing spectral radius of weight
matrix (larges absolute eigenvalue) smaller than 1

— Reservoir size can be large: no over-fitting
. Training with linear regression (or similar):

— No local minima, no problems with recurrent structure,
one shot learning

— Can do regression, classification, prediction

5 RULAT o UNIVERSITAT ZU LUBECK
EN 2~ INSTITUT FUR INFORMATIONSSYSTEME
=y

Reservoir Computing

- RC does on-line computing: prediction at every time-step

« Theoretically:

— Any time-invariant filter (F(x(t)) = F(x(t),t)) with fading
memory can be learned

— But: unable to implement generic FSMs
- Hence add output feedback, Maass (2006)
— Also non-fading memory filters: generic FSMs
— Ability to simulate any n-th order dynamical system
— Turing universal

UUUUUUUUUUUUUUUUUUUUUUUU
3RSs2~» INSTITUT FUR INFORMATIONSSYSTEME
—

Usual setup and training

Create random weight matrices

Rescale reservoir weights so that max absolute
eigenvalue close to one (edge of stability)

Excite reservoir with input and record all states

Train readouts by minimizing (AV-B)?

space

:

time

IM FOCUS DAS LEBEN

Link to FSMs

-
==
I

FSM RC RC

with output feedback

IM FOCUS DAS LEBEN

RC: Applications

- Chaotic time series prediction

- Speech recognition on small
vocabulary: outperform HMM-
pased recognizer (Sphinx)

Digits recognition

Robot control

- System identification 0925456289
. P D82345L789
- Noise removal/modelling OQAZ23LSETIRS

RSI
GERSIZ,

uuuuuuuuuuuuuuu
3 =~ INSTITUT FUR INFORMATIONSSYSTEME

Larger example: speech

Speech

Pre-processing

Reservoir Readout Post-processing

91E1S JIONISSTY
Suidwesumoqg

IM FOCUS DAS LEBEN

RC: novel computing paradigm

- RC presents a novel way of looking at computation

- “Random” dynamic systems can be used by only
training a linear readout layer

- RC already used to show general computing
capabilities of:

— Microcolumn structure in the cortex
— Gene regulatory network
— The visual cortex of a real cat
- Implementations:
— “Bucket of water”, aVLSI, digital hardware
— Photonics

DIFFERENT FLAVORS OF RC

temporal nonlinear
integration = combination

~ 2 S .
=
-~
~ -

bucket of water

e Water is mechanically perturbed (with motors)
e Complex response of the surface
e Readout is digitized picture frame + processing (vision)

Fernando and Sojakka, 2003

RSI
ERSIT,

UM,

Uhhh, a lecture with a hopefully useful

APPENDIX

UNIVERSITAT ZU LUBECK
INSTITUT FUR INFORMATIONSSYSTEME

45

Color Convention in this course

- Formulae, when occurring inline
- Newly introduced terminology and definitions

- Important results (observations, theorems) as well as
emphasizing some aspects

- Examples are given with standard orange with possibly light
orange frame

« Comments and notes
. Algorithms

IM FOCUS DAS LEBEN 46

Today’s lecture is based on the following

Jonathon Hare: Lectures 12, 13 of course ,COMP6248 Differentiable
Programming (and some Deep Learning)”
http://comp6248.ecs.soton.ac.uk/

Michael Green & Shaked Perek: Recurrent networks And Long Short
Term Memory link

Karpathy: The unreasonable effectiveness of recurrent Neural Networks
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Benjamin Schrauven et al: An overview of reservoir computing, ESANN
2007 (paper and slides, link)

Helmut Hauser, 2013: Introduction to Reservoir Computing
https://www.ifi.uzh.ch/dam/jcr:00000000-2826-155d-0000-
0000225e9316/Formale _Methoden UZH Nov_ 2013.pdf

Deep Dive into deep learning, chapter 8

https://d2l.ai/chapter recurrent-neural-networks/bptt.html

http://comp6248.ecs.soton.ac.uk/
https://slideplayer.com/slide/13047419/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjsxZ6j6vzsAhWNmKQKHWC_B4MQFjABegQIBBAC&url=http%3A%2F%2Ftomcat.elis.ugent.be%2Fstatic%2Felisall%2Fpubl%2FPPT%2FP107_045.ppt&usg=AOvVaw3W3T0w_CGDqdfGUV2BcgH4
https://www.ifi.uzh.ch/dam/jcr:00000000-2826-155d-0000-0000225e9316/Formale_Methoden_UZH_Nov_2013.pdf
https://d2l.ai/chapter_recurrent-neural-networks/bptt.html

References

. D. Buonomano and M. Merzenich. Temporal information transformed into a spatial code by a neural network with realistic
properties. Science, 267(5200):1028-1030, 1995.

. S. Boyd and L. Chua. Fading memory and the problem of approximating nonlinear operators with volterra series. IEEE
Transactions on Circuits and Systems, 32(11):1150-1161, 1985.

. G. Tanaka, T. Yamane, J. B. Heroux, R. Nakane, N. Kanazawa, S. Takeda, H. Numata, D. Nakano, and A. Hirose. Recent
advances in physical reservoir computing: A review. Neural Networks, 115:100 -123, 2019.

. W. Maass, P. Joshi, and E. Sontag. Computational aspects of feedback in neural circuits. PLoS computational biology,
3(1):1-20, 2007.

. H. Jaeger. The”echo state”approach to analysing and training recurrent neural networks - gmd report. Technical Report
148, German National Research Center for Information Technology, Bonn, 2001.

. W. Maass, T. Natschlager, and H. Markram. Real-time computing without stable states: A new framework for neural
computation based on perturbations. Neural Computation, 14(11):2531-2560, 2002.

. C. Fernando and S. Sojakka. Pattern recognition in a bucket. In W. Banzhaf, J. Ziegler, T. Christaller, P. Dittrich, and J. T. Kim,
editors, Advances in Artificial Life, pages 588-597, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

& UNIVERSITAT ZU LUBECK
& INSTITUT FUR INFORMATIONSSYSTEME

