
PROBABILISTIC AND
DIFFERENTIABLE PROGRAMMING

V4: Deep Learning II
(RNNs and Reservoir)

Özgür L. Özçep

Universität zu Lübeck

Institut für Informationssysteme

Today‘s Agenda

2

1. Follow me:
Recurrent networks

2. Some things to
remember, some
things to forget:
Long short term
memory

Deep++ Networks

3. Forget to learn the hiddens:
Reservoir Computing

Example Named Entity recognition

x1 x2 x3 x4 x5 x6 x7

• x: Jon and Ethan gave deep learning lectures

• y: 1 0 1 0 0 0 0

y1 y2 y3 y4 y5 y6 y7

• In this case input and output vector of length 7

• But naturally longer sequences are possible

3

4

Image classification
In: image
Out: Classifier

Image captioning
In: image
Out: sentence

Sentimental analysis
In: sentence
Out: sentiment

Machine translation
In: sentence
Out: sentence

Synced video
In: video
Out: real-time labels

Why Not a Standard Feed Forward Network?

• For a task such as “Named Entity Recognition” a MLP
would have several disadvantages
– The inputs and outputs may have varying lengths

– The features wouldn’t be shared across different
temporal positions in the network

• Note that 1-D convolutions can be (and are) used to
address this, in addition to RNNs

• To interpret a sentence or to predict tomorrows
weather it is necessary to remember what happened in
the past

• To facilitate this we would like to add a feedback loop
delayed in time

5

RNN Architecture

Output

DelayHidden Units

Inputs

𝑥(𝑡)

𝒉(𝑡)

𝒉(𝑡 − 1)

o 𝑡 =)𝑦(𝑡)

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑼
𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑾

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑽

6

• RNNs are NNs for processing
sequential data

• Contain directed cycles in their
computational graph
• Another form of „more

structure“ in DL
• Another form of parameter

sharing in DL

𝑎𝑙𝑙 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑨𝑾 = 𝑼 ∪ 𝑽 ∪𝑾

RNN Architecture

Left: feed forward neural network
Middle: a simple recurrent neural network
Right: Fully connected recurrent neural network

7

An RNN is just a recursive function invocation

• Output update
!𝒚 𝑡 = 𝒇𝒐 𝒙 𝑡 , 𝒉 𝑡 − 1 𝑨𝑾

• State update

𝒉(𝑡) = 𝒇𝒉(𝒙 (𝑡), 𝒉(𝑡 − 1)|𝑨𝑾)
• If !𝒚(𝑡) depends on the input 𝒙(𝑡 − 2), then prediction

will be
𝒇𝒐 (𝒙 (𝑡), 𝒇𝒉(𝒙 (𝑡 − 1), 𝒇𝒉(𝑥 (𝑡 − 2), 𝒇𝒉(𝑥 (𝑡 − 3)|𝑨𝑾)|𝑨𝑾)|𝑨𝑾)|𝑨𝑾)

• Gradients of this with respect to the weights can be
found with the chain rule

8

Variants of RNNs

• Depending on the instantiation of 𝒇𝒉()
– Elman (Vanilla/Simple Networks)

– Jordan (not discussed here)

– LSTM (discussed here)

– GRU (Gated recurrent unit; not discussed here) bka

– Elman
• 𝒉3 = 𝒇𝒉 𝑼𝒙3 + 𝒃𝑼 +𝑾𝒉378 + 𝒃𝑾 = 𝒇𝒉(𝒂𝒉(𝑡))
• !𝒚3 = 𝒐 𝑡 = 𝑓; 𝑽ℎ3 + 𝒃𝒐 = 𝒇𝒐(𝒂𝒐(𝑡))
• 𝒇𝒉 is usally 𝑡𝑎𝑛ℎ
• 𝒇𝒐 identity or logit

9

RNNs combine two properties which make them very
powerful.

1. Distributed hidden state that allows them to store a lot
of information about the past efficiently. This is
because several different units can be active at once,
allowing them to remember several things at once.

2. Non-linear dynamics that allows them to update their
hidden state in complicated ways.

• In particular: RNNs are universal approximators

10

Going Deep with RNNs

• You can go deep w.r.t. time unfolding (some do not
consider this as going deep)

• As RNNs calculate functions, you can compose them
(stack the RNNs)

!𝒚 (𝑡) = 𝒇𝒐𝟐 (𝒇𝒐𝟏 (𝒙 (𝑡), 𝒉𝟏(𝑡 − 1)|𝑨𝑾𝟏), 𝒉𝟐(𝑡 − 1)|𝑨𝑾𝟐)

– The output of the inner RNN at time 𝑡 is fed into the input
of the outer RNN which produces the prediction!𝒚

• You could of course also add feedfoward parts into the
input block or the output block or the hidden block

11

Example: Character-level language modelling

• An RNN that learns to ‘generate’ English text by learning
to predict the next character in a sequence

• This is “Character-level Language Modelling”

12

Image from http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Training and sampling the Language Model

• The training data is just text data (e.g. sequences of
characters)

• The task is unsupervised (or rather self-supervised):
given the previous characters predict the next one

• All you need to do is train on a reasonable sized corpus
of text

• Overfitting could be a problem: dropout is very useful
here

• Once the model is trained can generate text
– See examples at

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
13

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Recurrent Neural Neworks unfolded

• Can unravel/unfold network into feed forward
– can apply gradient descent/timed backpropagation

(BPTT: Backpropagation through time)

– Minimize error ∑# 𝑦 𝑡 − &𝑦(𝑡)
)

over all time steps

14

xt

ot

h

x1

o1

h

x2

o2

h

x3

o3

h

xt

ot

h=

Back Propagation Through Time (BPTT)

• BPTT learning algorithm is an extension of standard
backpropagation that performs gradients descent on an
unfolded network.

• The gradient descent weight updates have contributions
from each time step.

• The errors have to be back-propagated through time as
well as through the network

15

RNN Backward Pass

• Loss function depends on the activation of the hidden layer
through its influence on the output layer and through its
influence on the hidden layer at the next step.
– ℎ$ = 𝑓% 𝑥, ℎ$&' ,𝑊
– 𝑜$ = 𝑓(ℎ$, 𝑉

• The interesting part is the calculation of the gradient w.r.t.
the hidden parameters W
– 𝐸 = ∑#-./ 𝐸# (error in RNN)

– 01
02

= ∑#-./ 013
02

= ∑#-./ 013
043

043
053

053
02

– 053
02

= 067 (83,53:;,2)
02

+ 067(83,53:; ,2)
053:;

053:;
02

(by chain rule)

– 053
02

= 067 (83,53:;,2)
02

+ ∑=-.#>.(∏@-=A.
05B

05B:;
) 067 (8C,5C:;,2)

02
(by solving the recursion)

16

Here they come again: Vanishing and exploding Gradients

=>Solution: Long short
term memory networks
(LSTMs)

17

LONG SHORT TERM MEMORY

18

LSTM - introduction

• LSTM was invented to solve the vanishing gradients
problem.

• LSTM maintain a more constant error flow in
backpropogation.
– Long term memory by specific hidden state c(t) = c(t-1)

– Sometimes one has to forget and sometimes have to
change the memory

– To do this use gates saturating at 0 (read/write denied)
and 1 (read/write allowed) => Sigmoid

• LSTM can handle global dependencies (1000 time steps)

19

LSTM Architecture

20

LSTM Architecture

21

LSTM Architecture - overview

22

LSTM Architecture – long term memory cell

23

• Each memory cell contains a node with a
self-connected recurrent edge of fixed
weight one

• Ensures that the gradient can pass across
many time steps without vanishing

• CEC (constant error carousel)

• => Long term memory
• In contrast: Previous outputs from

hidden: short term memory

𝑐 𝑡 = 𝑧 𝑡 ⊙ 𝑖 𝑡 + 𝑐(𝑡 − 1)

LSTM Architecture – input

𝒂; 𝑡 = 𝑾;𝒙 𝑡 + 𝑹;𝒚(𝑡 − 1)
𝑧 𝑡 = 𝑔 𝒂𝒛 𝑡

24

(control forwarding of input
and previous step information)

LSTM Architecture – input gate

𝒂𝒊𝒏 𝑡 = 𝑾𝒊𝒏𝒙 𝑡 + 𝑹𝒊𝒏𝒚 𝑡 − 1
𝑖 𝑡 = 𝜎 𝒂𝒊𝒏 𝑡

25

(control write access to memory cells)

LSTM Architecture – Output gate

𝒂𝒐𝒖𝒕 𝑡 = 𝑾𝒐𝒖𝒕𝒙 𝑡 + 𝑹𝒐𝒖𝒕𝒚 𝑡 − 1
𝑜 𝑡 = 𝜎 𝒂𝒐𝒖𝒕 𝑡

26

(control read access to memory cell)

LSTM Architecture – Output gate

𝒚 𝑡 = 𝒉 𝒄 𝑡 ⊙ 𝒐 𝑡

27

(control outputting of memory cell
content via o(t))

LSTM Forward Pass

• The cell state 𝑐 is updated based on its current
state and 3 inputs: 𝑎D , 𝑎=E , 𝑎4F#

𝑎; 𝑡 = 𝑊;𝑥 𝑡 + 𝑅; 𝑦 𝑡 − 1 , 𝑧 𝑡 = 𝑔 𝑎; 𝑡

𝑎?@ 𝑡 = 𝑊?@𝑥 𝑡 + 𝑅?@ 𝑦 𝑡 − 1 , 𝑖 𝑡 = 𝜎 𝑎?@ 𝑡

𝑎ABC 𝑡 = 𝑊ABC𝑥 𝑡 + 𝑅ABC 𝑦 𝑡 − 1 , 𝑜 𝑡 = 𝜎 𝑎ABC 𝑡
𝑐 𝑡 = 𝑧 𝑡 ⊙ 𝑖 𝑡 + 𝑐(𝑡 − 1)

𝑦 𝑡 = ℎ 𝑐 𝑡 ⊙ 𝑜 𝑡
28

LSTM Backward Pass

• Errors arriving at cell outputs are propogated to the CEC

• Errors can stay for a long time inside the CEC

• This ensures non-decaying error

• Can bridge time lags between input events and target
signals

• (details left out here)

29

An addition: Handling unbouded memory

𝑐 𝑡 = 𝑧 𝑡 ⊙ 𝑖 𝑡 + 𝑐 𝑡 − 1 → grows linearly

For a continuous input stream à
𝑐(𝑡) may grow in an unbounded fashion à
can cause a saturation in ℎ(𝑡)

𝛿H 𝑡 = 𝛿I 𝑡 ℎK 𝑐 𝑡 ⊙ 𝑜 𝑡

Small gradients 30

LSTM possible remedy by forget gate

𝑐 𝑡 = 𝑧 𝑡 ⊙ 𝑖 𝑡 + 𝑓(𝑡) ⊙ 𝑐(𝑡 − 1)
𝑓 𝑡 = 𝜎 WDx t + RD y t − 1 31

Success Story of LSTMs

• LSTMs have been used to win many competitions in
speech and handwriting recognition.

• Major technology companies (Google, Apple, and
Microsoft) are using LSTMs
– Google used LSTM for speech recognition on the

smartphone, for Google Translate.

– Apple uses LSTM for the ”Quicktype” function on the
iPhone and for Siri.

– Amazon uses LSTM for Amazon Alexa.

– In 2017, Facebook performed some 4.5 billion automatic
translations every day using long short-term memory
networks1.

32

RESERVOIR COMPUTING

33

Reservoir Computing (RC): Idea

• Idea: Separate state space calculation from output calculation (as
they serve different purposes)

• state space represents input (history) in high-dimensional
(kernel trick)

• Output spaces: Merger of states for desired output

• Uses recurrent structures without the training

• Fixed (random) topology

• Linear “readout” function is trained

z'

*
* * *

*

*

*

●●

● ●
●

●

x

y
*

*
* * * **

x'

y'

Kernel

●●
● ●

●
●

Reservoir Computing: History

• Buonomano (1995), Laurenco (1994): early related
work

• Boyd/Chua (95): Mathematical Foundation (without
input feedback)

• Jaeger (2001): Echo State Networks (engineering)

• Maass (2002): Liquid State Machines (neuroscience)

• …

• And now: various physical reservoir computing
approaches (morphological computing, cellular
automata, etc.) (see Tanaka et al. 19))

Reservoir Computing

• (De-facto & required) Properties of reservoir:
– Exact topology, connectivity, weights: not important

– Has to have fading memory/echo state property: when
not chaotic (as k → ∞) effect of ℎ(𝑡) and 𝑥(𝑡) on
ℎ(𝑡 + 𝑘) vanishes

– Can be ensured by choosing spectral radius of weight
matrix (larges absolute eigenvalue) smaller than 1

– Reservoir size can be large: no over-fitting

• Training with linear regression (or similar):
– No local minima, no problems with recurrent structure,

one shot learning

– Can do regression, classification, prediction

Reservoir Computing

• RC does on-line computing: prediction at every time-step

• Theoretically:
– Any time-invariant filter (F(x(t)) = F(x(t),t)) with fading

memory can be learned

– But: unable to implement generic FSMs

• Hence add output feedback, Maass (2006)
– Also non-fading memory filters: generic FSMs

– Ability to simulate any n-th order dynamical system

– Turing universal

Usual setup and training

• Create random weight matrices

• Rescale reservoir weights so that max absolute
eigenvalue close to one (edge of stability)

• Excite reservoir with input and record all states

• Train readouts by minimizing (AV-B)2

A

space

tim
e

V B

Link to FSMs

FSM RC RC
with output feedback

RC: Applications

• Chaotic time series prediction

• Speech recognition on small
vocabulary: outperform HMM-
based recognizer (Sphinx)

• Digits recognition

• Robot control

• System identification

• Noise removal/modelling

• …

Larger example: speech

ReadoutReservoir

Pre-processingSpeech

Post-processing

Σ

Σ

...

Dow
nsam

pling

...

t

t

t

Reservoir state

Mean

Mean

...

WTA

'6'

RC: novel computing paradigm

• RC presents a novel way of looking at computation

• “Random” dynamic systems can be used by only
training a linear readout layer

• RC already used to show general computing
capabilities of:

– Microcolumn structure in the cortex

– Gene regulatory network

– The visual cortex of a real cat

• Implementations:
– “Bucket of water”, aVLSI, digital hardware

– Photonics

44

Different Flavors of RC

. .
 .

X

. .
 .

nonlinear
combination

temporal
integration +

Fernando and Sojakka, 2003

bucket of water

• Water is mechanically perturbed (with motors)
• Complex response of the surface
• Readout is digitized picture frame + processing (vision)

APPENDIX
Uhhh, a lecture with a hopefully useful

45

Color Convention in this course

• Formulae, when occurring inline

• Newly introduced terminology and definitions

• Important results (observations, theorems) as well as
emphasizing some aspects

• Examples are given with standard orange with possibly light
orange frame

• Comments and notes

• Algorithms

46

Today‘s lecture is based on the following

• Jonathon Hare: Lectures 12, 13 of course „COMP6248 Differentiable
Programming (and some Deep Learning)“
http://comp6248.ecs.soton.ac.uk/

• Michael Green & Shaked Perek: Recurrent networks And Long Short
Term Memory link

• Karpathy: The unreasonable effectiveness of recurrent Neural Networks
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

• Benjamin Schrauven et al: An overview of reservoir computing, ESANN
2007 (paper and slides, link)

• Helmut Hauser, 2013: Introduction to Reservoir Computing
https://www.ifi.uzh.ch/dam/jcr:00000000-2826-155d-0000-
0000225e9316/Formale_Methoden_UZH_Nov_2013.pdf

• Deep Dive into deep learning, chapter 8

https://d2l.ai/chapter_recurrent-neural-networks/bptt.html

47

http://comp6248.ecs.soton.ac.uk/
https://slideplayer.com/slide/13047419/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjsxZ6j6vzsAhWNmKQKHWC_B4MQFjABegQIBBAC&url=http%3A%2F%2Ftomcat.elis.ugent.be%2Fstatic%2Felisall%2Fpubl%2FPPT%2FP107_045.ppt&usg=AOvVaw3W3T0w_CGDqdfGUV2BcgH4
https://www.ifi.uzh.ch/dam/jcr:00000000-2826-155d-0000-0000225e9316/Formale_Methoden_UZH_Nov_2013.pdf
https://d2l.ai/chapter_recurrent-neural-networks/bptt.html

References

• D. Buonomano and M. Merzenich. Temporal information transformed into a spatial code by a neural network with realistic
properties. Science, 267(5200):1028–1030, 1995.

• S. Boyd and L. Chua. Fading memory and the problem of approximating nonlinear operators with volterra series. IEEE
Transactions on Circuits and Systems, 32(11):1150–1161, 1985.

• G. Tanaka, T. Yamane, J. B. Heroux, R. Nakane, N. Kanazawa, S. Takeda, H. Numata, D. Nakano, and A. Hirose. Recent
advances in physical reservoir computing: A review. Neural Networks, 115:100 –123, 2019.

• W. Maass, P. Joshi, and E. Sontag. Computational aspects of feedback in neural circuits. PLoS computational biology,
3(1):1–20, 2007.

• H. Jaeger. The”echo state”approach to analysing and training recurrent neural networks - gmd report. Technical Report
148, German National Research Center for Information Technology, Bonn, 2001.

• W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable states: A new framework for neural
computation based on perturbations. Neural Computation, 14(11):2531–2560, 2002.

• C. Fernando and S. Sojakka. Pattern recognition in a bucket. In W. Banzhaf, J. Ziegler, T. Christaller, P. Dittrich, and J. T. Kim,
editors, Advances in Artificial Life, pages 588–597, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

48

