PROBABILISTIC AND DIFFERENTIABLE PROGRAMMING

V4: Deep Learning II (RNNs and Reservoir)

Özgür L. Özçep Universität zu Lübeck Institut für Informationssysteme

Today's Agenda

1. Follow me: Recurrent networks

2. Some things to remember, some things to forget: Long short term memory

3. Forget to learn the hiddens:Reservoir Computing

Example Named Entity recognition

x₁ x₂ x₃ x₄ x₅ x₆ x₇ **x**: Jon and Ethan gave deep learning lectures

• y: 1 0 1 0 0 0 0
$$y_1$$
 y_2 y_3 y_4 y_5 y_6 y_7

- In this case input and output vector of length 7
- But naturally longer sequences are possible

Why Not a Standard Feed Forward Network?

- For a task such as "Named Entity Recognition" a MLP would have several disadvantages
 - The inputs and outputs may have varying lengths
 - The features wouldn't be shared across different temporal positions in the network
 - Note that 1-D convolutions can be (and are) used to address this, in addition to RNNs
- To interpret a sentence or to predict tomorrows weather it is necessary to remember what happened in the past
- To facilitate this we would like to add a feedback loop delayed in time

RNN Architecture

x(t)

NIVERSITÄT ZU LÜBECK

all weights $AW = U \cup V \cup W$

- RNNs are NNs for processing sequential data
- Contain directed cycles in their computational graph
 - Another form of "more structure" in DL
 - Another form of parameter sharing in DL

6

RNN Architecture

Left: feed forward neural network Middle: a simple recurrent neural network Right: Fully connected recurrent neural network

An RNN is just a recursive function invocation

Output update

$$\widehat{\boldsymbol{y}}(t) = \boldsymbol{f}_{\boldsymbol{o}}(\boldsymbol{x}(t), \boldsymbol{h}(t-1)|\boldsymbol{A}\boldsymbol{W})$$

• State update

$$h(t) = f_h(x(t), h(t - 1)|AW)$$

- If $\hat{y}(t)$ depends on the input x(t 2), then prediction will be $f_o(x(t), f_h(x(t - 1), f_h(x(t - 2), f_h(x(t - 3)|AW)|AW)|AW)|AW)$
- Gradients of this with respect to the weights can be found with the chain rule

Variants of RNNs

- Depending on the instantiation of $f_h()$
 - Elman (Vanilla/Simple Networks)
 - Jordan (not discussed here)
 - LSTM (discussed here)
 - GRU (Gated recurrent unit; not discussed here) bka
 - Elman
 - $h_t = f_h(Ux_t + b_U + Wh_{t-1} + b_W) = f_h(a_h(t))$
 - $\widehat{\boldsymbol{y}}_t = \boldsymbol{o}(t) = f_o(\boldsymbol{V}h_t + \boldsymbol{b}_o) = \boldsymbol{f}_o(\boldsymbol{a}_o(t))$
 - **f**_h is usally tanh
 - *f*_o identity or logit

RNNs combine two properties which make them very powerful.

- Distributed hidden state that allows them to store a lot of information about the past efficiently. This is because several different units can be active at once, allowing them to remember several things at once.
- 2. Non-linear dynamics that allows them to update their hidden state in complicated ways.
- In particular: RNNs are universal approximators

Going Deep with RNNs

- You can go deep w.r.t. time unfolding (some do not consider this as going deep)
- As RNNs calculate functions, you can compose them (stack the RNNs)

 $\widehat{y}(t) = f_o^2 (f_o^1(x(t), h^1(t-1)|AW_1), h^2(t-1)|AW_2)$

- The output of the inner RNN at time t is fed into the input of the outer RNN which produces the prediction \hat{y}
- You could of course also add feedfoward parts into the input block or the output block or the hidden block

Example: Character-level language modelling

- An RNN that learns to 'generate' English text by learning to predict the next character in a sequence
- This is "Character-level Language Modelling"

Image from http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Training and sampling the Language Model

- The training data is just text data (e.g. sequences of characters)
- The task is unsupervised (or rather self-supervised): given the previous characters predict the next one
- All you need to do is train on a reasonable sized corpus of text
- Overfitting could be a problem: dropout is very useful here
- Once the model is trained can generate text
 - See examples at

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Recurrent Neural Neworks unfolded

- Can unravel/unfold network into feed forward
 - can apply gradient descent/timed backpropagation (BPTT: Backpropagation through time)
 - Minimize error $\sum_t ||y(t) \hat{y}(t)||^2$ over all time steps

Back Propagation Through Time (BPTT)

- BPTT learning algorithm is an extension of standard backpropagation that performs gradients descent on an unfolded network.
- The gradient descent weight updates have contributions from each time step.
- The errors have to be back-propagated through time as well as through the network

RNN Backward Pass

 Loss function depends on the activation of the hidden layer through its influence on the output layer and through its influence on the hidden layer at the next step.

$$- h_t = f_h(x, h_{t-1}, W)$$

$$- o_t = f_o(h_t, V)$$

• The interesting part is the calculation of the gradient w.r.t. the hidden parameters W

$$- E = \sum_{t=1}^{T} E_{t} \qquad (error in RNN)$$

$$- \frac{\partial E}{\partial W} = \sum_{t=1}^{T} \frac{\partial E_{t}}{\partial W} = \sum_{t=1}^{T} \frac{\partial E_{t}}{\partial o_{t}} \frac{\partial o_{t}}{\partial h_{t}} \frac{\partial h_{t}}{\partial W}$$

$$- \frac{\partial h_{t}}{\partial W} = \frac{\partial f_{h}(x_{t}, h_{t-1}, W)}{\partial W} + \frac{\partial f_{h}(x_{t}, h_{t-1}, W)}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial W} \qquad (by chain rule)$$

$$- \frac{\partial h_{t}}{\partial W} = \frac{\partial f_{h}(x_{t}, h_{t-1}, W)}{\partial W} + \sum_{i=1}^{t-1} (\prod_{j=i+1}^{t} \frac{\partial h_{j}}{\partial h_{i-1}}) \frac{\partial f_{h}(x_{i}, h_{i-1}, W)}{\partial W}$$

(by solving the recursion)

Here they come again: Vanishing and exploding Gradients

=>Solution: Long short term memory networks (LSTMs)

LONG SHORT TERM MEMORY

LSTM - introduction

- LSTM was invented to solve the vanishing gradients problem.
- LSTM maintain a more constant error flow in backpropogation.
 - Long term memory by specific hidden state c(t) = c(t-1)
 - Sometimes one has to forget and sometimes have to change the memory
 - To do this use gates saturating at 0 (read/write denied) and 1 (read/write allowed) => Sigmoid
- LSTM can handle global dependencies (1000 time steps)

LSTM Architecture

Figure 2.1: Left: RNN with one fully recurrent hidden layer. Right: LSTM network with memory blocks in the hidden layer (only one is shown).

LSTM Architecture

LSTM Architecture - overview

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEI

LSTM Architecture – long term memory cell

- Each memory cell contains a node with a self-connected recurrent edge of fixed weight one
- Ensures that the gradient can pass across many time steps without vanishing
- CEC (constant error carousel)
- => Long term memory
- In contrast: Previous outputs from hidden: short term memory

$$c(t) = z(t) \odot i(t) + c(t-1)$$

LSTM Architecture – input

LSTM Architecture – input gate

LSTM Architecture – Output gate

LSTM Architecture – Output gate

$$\mathbf{y}(t) = \mathbf{h}(\mathbf{c}(t)) \odot \mathbf{o}(t)$$

(control outputting of memory cell content via o(t))

LSTM Forward Pass

• The cell state c is updated based on its current state and 3 inputs: a_z , a_{in} , a_{out}

$$a_{z}(t) = W_{z}x(t) + R_{z}(y(t-1)), z(t) = g(a_{z}(t))$$

$$a_{in}(t) = W_{in}x(t) + R_{in}(y(t-1)), i(t) = \sigma(a_{in}(t))$$

$$c(t) = z(t) \odot i(t) + c(t-1)$$

$$a_{out}(t) = W_{out}x(t) + R_{out}(y(t-1)), o(t) = \sigma(a_{out}(t))$$

$$y(t) = h(c(t)) \odot o(t)$$

LSTM Backward Pass

- Errors arriving at cell outputs are propogated to the CEC
- Errors can stay for a long time inside the CEC
- This ensures non-decaying error
- Can bridge time lags between input events and target signals

• (details left out here)

 $c(t) = z(t) \odot i(t) + c(t-1) \rightarrow \text{grows linearly}$

For a continuous input stream $\rightarrow c(t)$ may grow in an unbounded fashion \rightarrow can cause a saturation in h(t)

$$\delta_{c}(t) = \delta_{y}(t) \circ o(t)$$

Small gradients

LSTM possible remedy by forget gate

Success Story of LSTMs

- LSTMs have been used to win many competitions in speech and handwriting recognition.
- Major technology companies (Google, Apple, and Microsoft) are using LSTMs
 - Google used LSTM for speech recognition on the smartphone, for Google Translate.
 - Apple uses LSTM for the "Quicktype" function on the iPhone and for Siri.
 - Amazon uses LSTM for Amazon Alexa.
 - In 2017, Facebook performed some 4.5 billion automatic translations every day using long short-term memory networks1.

RESERVOIR COMPUTING

Reservoir Computing (RC): Idea

- Idea: Separate state space calculation from output calculation (as they serve different purposes)
 - state space represents input (history) in high-dimensional (kernel trick)
 - Output spaces: Merger of states for desired output
- Uses recurrent structures without the training
 - Fixed (random) topology
 - Linear "readout" function is trained

Reservoir Computing: History

- Buonomano (1995), Laurenco (1994): early related work
- Boyd/Chua (95): Mathematical Foundation (without input feedback)
- Jaeger (2001): Echo State Networks (engineering)
- Maass (2002): Liquid State Machines (neuroscience)
- • •
- And now: various physical reservoir computing approaches (morphological computing, cellular automata, etc.) (see Tanaka et al. 19))

Reservoir Computing

- (De-facto & required) Properties of reservoir:
 - Exact topology, connectivity, weights: not important
 - Has to have fading memory/echo state property: when not chaotic (as $k \rightarrow \infty$) effect of h(t) and x(t) on h(t + k) vanishes
 - Can be ensured by choosing spectral radius of weight matrix (larges absolute eigenvalue) smaller than 1
 - Reservoir size can be large: no over-fitting
- Training with linear regression (or similar):
 - No local minima, no problems with recurrent structure, one shot learning
 - Can do regression, classification, prediction

Reservoir Computing

- RC does on-line computing: prediction at every time-step
- Theoretically:
 - Any time-invariant filter (F(x(t)) = F(x(t),t)) with fading memory can be learned
 - But: unable to implement generic FSMs
- Hence add output feedback, Maass (2006)
 - Also non-fading memory filters: generic FSMs
 - Ability to simulate any n-th order dynamical system
 - Turing universal

Usual setup and training

- Create random weight matrices
- Rescale reservoir weights so that max absolute eigenvalue close to one (edge of stability)
- Excite reservoir with input and record all states
- Train readouts by minimizing (AV-B)²

Link to FSMs

RC: Applications

- Chaotic time series prediction
- Speech recognition on small vocabulary: outperform HMMbased recognizer (Sphinx)
- Digits recognition
- Robot control
- System identification
- Noise removal/modelling

1 3 2 3 4 5 5 7 8 9

012345679

Larger example: speech

RC: novel computing paradigm

- RC presents a novel way of looking at computation
- "Random" dynamic systems can be used by only training a linear readout layer
- RC already used to show general computing capabilities of:
 - Microcolumn structure in the cortex
 - Gene regulatory network
 - The visual cortex of a real cat
- Implementations:
 - "Bucket of water", aVLSI, digital hardware
 - Photonics

DIFFERENT FLAVORS OF RC

- Water is mechanically perturbed (with motors)
- Complex response of the surface
- Readout is digitized picture frame + processing (vision)

Fernando and Sojakka, 2003

Uhhh, a lecture with a hopefully useful

APPENDIX

Color Convention in this course

- Formulae, when occurring inline
- Newly introduced terminology and definitions
- Important results (observations, theorems) as well as emphasizing some aspects
- Examples are given with standard orange with possibly light orange frame
- Comments and notes
- Algorithms

Today's lecture is based on the following

- Jonathon Hare: Lectures 12, 13 of course "COMP6248 Differentiable Programming (and some Deep Learning)" <u>http://comp6248.ecs.soton.ac.uk/</u>
- Michael Green & Shaked Perek: Recurrent networks And Long Short Term Memory <u>link</u>
- Karpathy: The unreasonable effectiveness of recurrent Neural Networks
 <u>http://karpathy.github.io/2015/05/21/rnn-effectiveness/</u>
- Benjamin Schrauven et al: An overview of reservoir computing, ESANN 2007 (paper and slides, <u>link</u>)
- Helmut Hauser, 2013: Introduction to Reservoir Computing <u>https://www.ifi.uzh.ch/dam/jcr:0000000-2826-155d-0000-</u> 0000225e9316/Formale_Methoden_UZH_Nov_2013.pdf
- Deep Dive into deep learning, chapter 8
 <u>https://d2l.ai/chapter_recurrent-neural-networks/bptt.html</u>

References

- D. Buonomano and M. Merzenich. Temporal information transformed into a spatial code by a neural network with realistic properties. Science, 267(5200):1028–1030, 1995.
- S. Boyd and L. Chua. Fading memory and the problem of approximating nonlinear operators with volterra series. IEEE Transactions on Circuits and Systems, 32(11):1150–1161, 1985.
- G. Tanaka, T. Yamane, J. B. Heroux, R. Nakane, N. Kanazawa, S. Takeda, H. Numata, D. Nakano, and A. Hirose. Recent advances in physical reservoir computing: A review. Neural Networks, 115:100–123, 2019.
- W. Maass, P. Joshi, and E. Sontag. Computational aspects of feedback in neural circuits. PLoS computational biology, 3(1):1–20, 2007.
- H. Jaeger. The "echo state" approach to analysing and training recurrent neural networks gmd report. Technical Report 148, German National Research Center for Information Technology, Bonn, 2001.
- W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation, 14(11):2531–2560, 2002.
- C. Fernando and S. Sojakka. Pattern recognition in a bucket. In W. Banzhaf, J. Ziegler, T. Christaller, P. Dittrich, and J. T. Kim, editors, Advances in Artificial Life, pages 588–597, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

