
PROBABILISTIC AND
DIFFERENTIABLE PROGRAMMING

V6: Deep Learning III
(Autoencoders, GANs)

Özgür L. Özçep

Universität zu Lübeck

Institut für Informationssysteme

Today‘s Agenda

2

1. Same-Same but different:
Autoencoders

2. Imagine me GAN:
Generative
adverserial networks

Deep++ Networks

AUTOENCODERS

3

Adapted from https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png

Classical Machine Learning

Deep Learning

Example family car:
we presumed features
price and mileage

Autoencoders for Feature Extraction

An autoencoder is a network that is
trained to copy its input to its output
• Internally there is some hidden vector 𝒉

that describes a code that represents the
input.

• Conceptually it consists of two parts
– Encoder 𝒉 = 𝑓(𝒙)
– Decoder 𝒓 = 𝑔(𝒉)

• and has loss that tries to minimise the
reconstruction error (typically MSE)

5

f

g

Autoencoder constraints (Same-same but different)

• A linear autoencoder with a sufficient number of
weights (e.g. if the dimension of ℎ was greater than or
equal to that of 𝒙) could learn 𝑔(𝑓(𝒙)) = 𝒙, but this
wouldn’t be useful!

• In practice we apply restrictions (inductive biases) to
stop this happening.

• The objective is to use these restrictions to force the
autoencoder to learn useful properties of the data.

6

Undercomplete Autoencoders - linear

• Undercomplete autoencoders have
dim(𝒉) << dim(𝒙)

This forces the encoder to learn a compressed
representation of the input.

• The representation will capture the most salient
features of the input data.

7

Undercomplete Autoencoders - linear

• Consider the single-hidden layer linear autoencoder
network given by:
– 𝒉 = 𝑾!𝒙 + 𝒃!
– 𝒓 = 𝑾"𝒉 + 𝒃"

where 𝒙 ∈ ℝ! , 𝒉 ∈ ℝ" and 𝑚 < 𝑛.

• With the MSE loss, this autoencoder will learn to span
the same subspace as PCA for a given set of training
data.

• Note that the autoencoder weights are not however
constrained to be orthogonal (like they would be in
PCA)

8

Reminder: PCA, SVD, LSI

• PCA= Principal Component Analysis
– Find principal components of a linear mapping given by

a matrix A

• SVD: Singular Value Decomposition
– Other name with emphasis on the singular values of 𝐴

• Based on these: LSI: Latent Semantic Indexing

9

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 13.1 11.4 0.0 0.0 0.0 0.0
Brutus 3.0 8.3 0.0 1.0 0.0 0.0
Caesar 2.3 2.3 0.0 0.5 0.3 0.3

Calpurnia 0.0 11.2 0.0 0.0 0.0 0.0
Cleopatra 17.7 0.0 0.0 0.0 0.0 0.0

mercy 0.5 0.0 0.7 0.9 0.9 0.3

worser 1.2 0.0 0.6 0.6 0.6 0.0

Document matrix 𝐴

Terms

Documents

Reminder: Decomposition

10[Wikipedia]

𝑨

𝑨

• SVD can be used to compute optimal low-rank
approximations for a matrix 𝐴 of rank 𝑟

• Approximation problem: Find 𝐴𝑘 of rank 𝑘 such that

𝐴𝑘 and 𝑋 are both 𝑚´𝑛 matrices

Typically, want 𝑘 << 𝑟

Reminder: Low-rank Approximation

Frobenius norm
Ak =

X:rank (X)=k
argmin A− X

F

11

• Solution via SVD

Reminder: Low-rank Approximation

set smallest r-k
singular values to zero

T
kk VUA)0,...,0,,...,(diag 1 ss=

12
C. Eckart, G. Young, The approximation of a matrix by another of
lower rank. Psychometrika, 1, 211-218, 1936

Undercomplete Autoencoders — deeper and nonlinear

• A linear autoencoder with one or more hidden layery learns to
map into the same subspace as PCA.

• What happens if you introduce non-linearity?
– Single hidden layer network with non-linear activations on the

encoder (keeping the decoder linear) and MSE loss also just learns to
span the PCA subspace (Bourlard/Kamp 88)!

– But, if you add more hidden layers with non-linear activations (to
either the encoder, decoder or both) you can effectively perform a
powerful non-linear generalisation of PCA

13

Deep Autoencoders - caveat

• There is a slight catch: if you give the deep autoencoder
network too much capacity (too many weights) it will
learn to perform the copying task without extracting
anything useful about the data.

• Of course this means that will likely not generalise to
unseen data.

Extreme example:

• Consider a powerful encoder that maps 𝒙 to ℎ ∈ ℝ#
Each training example 𝒙(𝑖) could e.g. be mapped to 𝑖.

• The decoder just needs to memorise the training
examples so that it can map back from 𝑖.

14

Undercomplete Autoencoders - Convolutional

• Thus far, we only considered autoencoders with vector
inputs/outputs and fully-connected layers.

• There is nothing stopping us using any other kinds of layers
though...

• If we’re working with image data, where we know that much
of the structure is ‘local’, then using convolutions in both the
decoder makes sense

15

https://towardsdatascience.com/convolutional-autoencoders-for-image-noise-reduction-32fce9fc1763

Encoder Decoder

https://towardsdatascience.com/convolutional-autoencoders-for-image-noise-reduction-32fce9fc1763

Regularised Autoencoders

• Rather than (necessarily) forcing the hidden vector to
have a lower dimensionality than the input, we could
instead utilise some form of regularisation to force the
network to learn interesting representations...

• Many ways to do this; let’s look at two of them:
1. Denoising Autoencoders

2. Sparse Autoencoders

16

Denoising autoencoders

• Denoising autoencoders (DAEs) take a partially
corrupted input and train to recover the original
undistorted input.

• To train an autoencoder to denoise data, it is necessary
to perform a preliminary stochastic mapping to corrupt
the data (𝒙 → 4𝒙).
– E.g. by adding Gaussian noise.

• The loss is computed between the reconstruction
(computed from the noisy input) against the original
noise-free data.

17

Sparse Autoencoders

• In a sparse autoencoder, there can be more hidden
units than inputs, but only a small number of the
hidden units are allowed to be active at the same time.

• This is simply achieved with a regularised loss function:
𝑙 = 𝑙$%& + Ω(𝒉)

• A popular choice would be to use an l1 penalty

Ω(𝒉) = 𝜆 ∑' |ℎ'|
– This choice can be justified by considering autoencoders

as a means to approximatting maximum likelihood
training of generative models

18

Autoencoder Applications

• Any basic AE (or its variant) can be used to learn a
compact representation of data.
– You can learn useful features from data without the

need for labelled data.

– Denoising can help generalise over the test set since the
data is distorted by adding noise.

• Pretraining networks

• Anomaly Detection

• Machine translation

• Semantic segmentation

19

Stochastic Encoders and Decoders

• Consider encoders and
decoders as distributions
(general strategy useful for,
e.g., determining cost
functions and more
generative models)

• In particular decoder learn
𝑝"!#$"!%(𝑥′|ℎ) by
minimising negative log-
likelihood − log(𝑝(𝑥′|ℎ).

20

𝑃(ℎ|𝑥)

𝑃(𝑥‘|ℎ)

GENERATIVE MODELS

21

Sub-Agenda

• What is generative modelling and why do we do it?

• Differentiable Generator Networks

• Variational Autoencoders

• Generative Adversarial Networks

22

Generative Models (GMs)

• Learn (conditional) models of the data: 𝑝(𝑥) (resp.
𝑝(𝑥|𝑦 = 𝑦))

• Some GMs allow calculation of propabilities 𝑝(𝑋 = 𝑥)
• Some GMs allow sampling of probability distributions
𝑥 ∼ 𝑝(𝑋)

• Some GMS can do both of the above

– e.g. a Gaussian Mixture Model is an explicit model of the
data using 𝑘 Gaussians

– The likelihood of data 𝒙 is the weighted sum of the
likelihood from each of the 𝑘 Gaussians

– Sampling can be achieved by sampling the categorical
distribution of 𝑘 weights followed by sampling a data
point from the corresponding Gaussian

23

(for the relevant basics of probability
theory appendix)

Why generative modelling?

• Try to understand the processes through which the data
was itself generated
– Probabilistic latent variable models like VAEs or topic

models (PLSA, LDA, ...) for text

– Models that try to disentangle latent factors (like β-VAE)

• Understand how likely a new or previously unseen
piece of data is
– outlier prediction, anomaly detection, . . .

• Make ‘new’ data
– Make ‘fake’ data to use to train large supervised models?

– ‘Imagine’ new, but plausible, things?

24

Differentiable Generator Networks

• GMs not new (-> probabilistic graphical models)

– ...But difficult to train and scale to real data

• Recent advances along four loose strands:
1. Invertible density estimation - A way to specify complex

generative models by transforming a simple latent
distribution with a series of invertible functions.

2. Autoregressive models - Another way to model 𝑝(𝑥) is to
break the model into a series of conditional distributions:
𝑝(𝑥) = 𝑝(𝑥")𝑝(𝑥#|𝑥")𝑝(𝑥$|𝑥#, 𝑥") .

3. Variational autoencoders – see following slides

4. Generative adversarial networks – see following slides

• Common thread in recent advances is that the loss functions
are end-to-end differentiable.

25

Diffentiable Generator Networks

• We’re interested in models that transform samples of
latent variables 𝑧 to
– samples 𝒙, or,

– distributions over samples 𝒙
• The model is a (differentiable) function 𝑔(𝒛, 𝜽)

– typically 𝑔 is a neural network.

26

Example: Samples from normal distribution

• Consider a simple generator network with a single
affine layer that maps samples 𝒩(𝟎, 𝑰) to 𝒩(𝝁, 𝚺):

𝒛 ∼ 𝒩 𝟎, 𝐈
&/ (() 𝒙 ∼ 𝒩 𝝁, 𝚺

• Note: Exact solution is 𝒙 = 𝑔(𝒛 = 𝝁 + 𝑳𝒛
where 𝑳 is the Cholesky decomposition of Σ: 𝚺 = 𝑳𝑳),

lower triangular 𝑳.

27

Generating samples

• More general: 𝑔 is a nonlinear transformation of a
distribution over 𝒛 to a distribution over 𝒙

𝑝(𝒛
&(()

𝑝* (𝒙)

• Calculus says: For any invertible, differentiable,
continuous 𝑔:

𝑝* 𝒛 = 𝑝𝒙 𝑔 𝑧 | det ,-
,*
|

• Hence one gets probability distribution over 𝒙

𝑝* 𝒙 = 𝑝𝒛 𝑔,- 𝒙 det
𝜕𝑔
𝜕𝑧

,-

28

Generating Distributions

• Rather than use 𝑔 to provide a sample of 𝒙 directly, we
could instead use g to define a conditional distribution
over 𝒙, 𝑝(𝒙|𝒛)

• For example, 𝑔 might produce the parameters of a
particular distribution - e.g.:
– means of Bernoulli

– mean and variance of a Gaussian

• The distribution over 𝒙 is imposed by marginalising 𝒛:
𝑝(𝒙) = 𝔼𝒛𝑝(𝒙|𝒛)

29

Distribution vs. Samples

• In both cases one can use reparameterisation tricks for
training models
– Needed, because we want to use backpropagation; and

how to do this with random nodes in network?

• Generating distributions:
– Plus: works for both continuous and discrete data

– Minus: need to specfify the form of the output
distribution

• Generating samples:
– Plus: works for continuous data

– (also discrete data with some additional trick)

– Plus: don‘t need to specify distribution in explicit form
30

Reparameterisation trick

• Assume 𝑦 ∼ 𝒩 𝜇, 𝜎/

• Want to calculate
,0
,1

and
,0
,2

• Idea: Factor out the random part. In this case

𝑦 = 𝜇 + 𝜎𝑧 where 𝑧 ∼ 𝒩 0,1
• 𝑦 now is a function of a deterministic operation with

variables 𝜇 and 𝜎 with an extra input 𝑧
– And, importantly, is not a function of 𝜇 or 𝜎 (and vice

versa)

• This works also for other distributions under similar
constraints

31

Complexity of Generative Modelling

• In classification both input and output are given
– Optimization only needs to learn the mapping

• Generative modelling is more complex than
classification because
– learning requires optimizing intractable criteria

– data does not specify both input 𝒛 and output 𝒙 of the
generator network

– learning procedure needs to determine how to arrange 𝒛
space in a useful way and how to map 𝒛 to 𝒙

32

VARIATIONAL AUTOENCODERS

33

Variational Autoencoders (VAEs)

• VAEs based on following generative process

𝒛 ∼ 𝑝.$"!/(𝒛)
001234 𝒙 𝒛;𝜽)4001234 𝒙 𝒈𝜽(𝒛)) 𝒙 ∼ 𝑝.$"!/(𝒙|𝒛; 𝜽)

• Learning problem: Find 𝑎𝑟𝑔𝑚𝑎𝑥𝜽𝑝(𝒙) for each 𝒙 in the
training set under 𝑝 𝒙 = ∫𝑝 𝒙 𝒛; 𝜽) 𝑝 𝒛 d𝐳

• Often: 𝑝.$"!/ 𝒛 = 𝒩 𝟎, 𝑰
• Often: 𝑝.$"!/ 𝒙|𝒛 chosen according to data; typically

Gaussian for real-valued or Bernoulli for binary data
– Intuition: Don‘t want exactly create the training data but

things like training examples
34

Key idea of VAE: Learn to sample values of 𝒛 that are likely to
have produced 𝒙 and compute 𝑝(𝒙) from them

• Define weighting function q(𝒛|𝒙)
• Space of 𝒛 values likely under 𝑞 should be much smaller

than the space under prior 𝑝(𝒛)
• We can now compute 𝔼𝒛∼'𝑝 𝒙 𝒛; 𝜽)

• But how does this help if 𝑞 is not a normal distribution?
• How does expectation relate to 𝑝(𝒙)?

Variational Autoencoders

First try: 𝑝 𝑥 ≈ ∑𝑝 𝑥 𝑧6; 𝜃) for 𝑛 samples {𝒛𝟏, … , 𝒛𝒏} of 𝒛
– But intractable in practice; 𝑛 would be extremely big

– For most 𝒛 , 𝑝(𝒙|𝒛) will be nearly zero, hence no significant
contribution to 𝑝(𝒙)

35

Deriving ELBO: Evidence Lower Bound

log 𝑝 𝑥 = log'𝑝 𝑥 𝑧) 𝑝 𝑧 𝑑z

log 𝑝 𝑥 = 𝑙𝑜𝑔'𝑝 𝑥 𝑧)
𝑝 𝑧
𝑞(𝑧|𝑥)

q z x 𝑑z

log 𝑝 𝑥 ≥ '𝑞 𝑧 𝑥 𝑙𝑜𝑔 𝑝 𝑥 𝑧)
𝑝 𝑧
𝑞(𝑧|𝑥)

𝑑z

𝑙𝑜𝑔 𝑝 𝑥 ≥ '𝑞 𝑧 𝑥 𝑙𝑜𝑔 𝑝 𝑥 𝑧) 𝑑z −

'𝑞 𝑧 𝑥 𝑙𝑜𝑔 𝑝 𝑥 𝑧)
𝑞(𝑧|𝑥)
𝑝 𝑧

𝑑z

𝑙𝑜𝑔 𝑝 𝑥 ≥ 𝔼G∼I 𝑧 𝑥 log 𝑝 𝑥 𝑧 − 𝐷JK(𝑞 𝑧 𝑥 ||𝑝(𝑧))

Log-probability

Propososal

Jensens‘s Inequality
log$𝑝(𝑥)𝑔(𝑥)d𝒙 ≥ $𝑝 𝑥 log𝑔(𝑥)d𝒙

Rearrange
log𝑎 ⋅ 𝑏 = log𝑎 + log𝑏

𝑎!" = −𝑏 log𝑎
𝑎
𝑏 =

𝑏
𝑎

!#

ELBO

𝐷$%: Kullback-Leibler divergence

Measures difference of probability
distributions

36

The cornerstone of VAEs: ELBO

ELBO
𝐿 𝑞 = 𝔼(∼: 𝑧 𝑥 log 𝑝 𝑥 𝑧 − 𝐷;< 𝑞 𝑧 𝑥 𝑝 𝑧 ≤ 𝑙𝑜𝑔 𝑝 𝑥

• Maximize 𝐿(𝑞) to maximize log 𝑝(𝑥)
• Expectation term is like a reconstruction of log-

lieklihood found in normal autoencoders
– If 𝑝.$"!/ 𝑥 𝑧 is Gaussian, then this is MSE between the

true training 𝑥 and generated sample computed from 𝑧,
averaged across many 𝑧’s (each a function of x)

– The KL term is forcing the approximate posterior
𝑞(𝑧|𝑥) towards the prior 𝑝.$"!/ 𝑧 .

37

Why is it called an autoencoder?

• 𝑞(𝑧|𝑥) is considered as encoder (𝑧 are the hiddens ℎ)

• 𝑝"3456 (𝑥; 𝑔((𝑧)) is a decoder network; it takes a 𝑧 and
decodes it into a target 𝑥

• From a practical standpoint, a VAE is a normal
autoencoder with two key differences:
– the encoder generates a distribution that must be

sampled
• the network produces the sufficient statistics of the

distribution (e.g. means and diagonal co-variances for a
typical VAE with Gaussian 𝑞(𝑧|𝑥))

– the decoder generates a distribution, which, during
training the negative log-likelihood of the true data 𝑥 is
compared against

38

VAE

Encoder
()

Decoder
()

Sample from

Encoder
()

Decoder
()

Sample from

*

+

Figure 4: A training-time variational autoencoder implemented as a feed-
forward neural network, where P(X|z) is Gaussian. Left is without the
“reparameterization trick”, and right is with it. Red shows sampling opera-
tions that are non-differentiable. Blue shows loss layers. The feedforward
behavior of these networks is identical, but backpropagation can be applied
only to the right network.

want to optimize is:

EX⇠D [log P(X)�D [Q(z|X)kP(z|X)]] =
EX⇠D [Ez⇠Q [log P(X|z)]�D [Q(z|X)kP(z)]] .

(8)
If we take the gradient of this equation, the gradient symbol can be moved
into the expectations. Therefore, we can sample a single value of X and a
single value of z from the distribution Q(z|X), and compute the gradient of:

log P(X|z)�D [Q(z|X)kP(z)] . (9)

We can then average the gradient of this function over arbitrarily many
samples of X and z, and the result converges to the gradient of Equation 8.

There is, however, a significant problem with Equation 9. Ez⇠Q [log P(X|z)]
depends not just on the parameters of P, but also on the parameters of Q.
However, in Equation 9, this dependency has disappeared! In order to make
VAEs work, it’s essential to drive Q to produce codes for X that P can reliably
decode. To see the problem a different way, the network described in Equa-
tion 9 is much like the network shown in Figure 4 (left). The forward pass of
this network works fine and, if the output is averaged over many samples
of X and z, produces the correct expected value. However, we need to

10

39

without reparameterization with reparameterization

From Carl Doersch’s Tutorial on VAEs - https://arxiv.org/pdf/1606.05908.pdf

https://arxiv.org/pdf/1606.05908.pdf

VAE Models and Performance

• VAEs can be used with any kind of data
– the distributions and network architecture just need to be set

– e.g. it’s common to use convolutions in the encoder and
transpose convolutions in (Gaussian) decoder for image data

• VAEs tend to be easy to optimise with stable convergence

• VAEs have a reputation for producing blurry reconstructions
of images
– Supposed to be due to a side effect of maximum-likelihood

training

• VAEs tend to only utilise a small subset of dimensions of 𝑧
– Pro: automatic latent variable selection

– Con: better reconstructions should be possible given the
available code-space

40

GENERATIVE ADVERSERIAL
NETWORKS

41

The idea of GANs

• Pitch a generator and a discriminator against each other
– Generator tries to draw samples from 𝑝(𝑥)
– Discriminator tries to tell if sample came from the

generator (fake) or the real world

• Both discriminator and generator are deep networks
(differentiable functions)

• LeCun himself again: ‘GANs, the most interesting idea in
the last ten years in machine learning‘

42

General Architecture

43
(w

.r.
t.

di
sc

rim
in

at
or

er
ro

r)

(w.r.t. generator error)

GANs formally

• The generator 𝑥 = 𝑔(𝒛)
– Input: sample 𝑧 ∈ ℝ= , z ∼ 𝒩 𝟎, 𝑰 𝑜𝑟 𝑧 ∼ 𝑈(0, 𝐼)
– Output: sample 𝑥 ∈ ℝ", 𝑥 ∼ 𝑑𝑎𝑡𝑎 𝑑𝑖𝑠𝑡𝑟𝑖𝑏., 𝑛 << 𝑑

• The discriminator 𝑦 = 𝑑 𝑥
– Input: sample 𝑥
– Out: probability 𝑦 ∈ 0,1 for query: is 𝑥 fake or real?

44

GANs practically

• Training a standard GAN is difficult and often results in
two undesirable behaviours
– Oscillations without convergence. No guarantee that the

loss will actually decrease...
• It has been shown that a GAN has saddle-point solution,

rather than local minima.

– The mode collapse problem, when the generator models
very well a small sub-population, concentrating on a few
modes.

• Additionally, performance is hard to assess and often
boils down to heuristic observations.

45

Deep Convolutional GANs (DCGANs)

• Motivates the use of GANS to learn reusable feature
representations from large unlabelled datasets

• GANs known to be unstable to train, often resulting in
generators that produce “nonsensical outputs”

• Model exploration to identify architectures that result in
stable training across datasets with higher resolution
and deeper models.

46

Coping with the problems: architecture guidelines

• Replace pooling layers with strided convolutions in the
discriminator and fractional-strided (transpose) convolutions in
the generator.

– This will allow the network to learn its own spatial downsampling.

• Use batchnorm in both the generator and the discriminator.
– This helps deal with training problems due to poor initialisation and

helps the gradient flow.

• Eliminate fully connected hidden layers for deeper architectures.

• Use ReLU activation in the generator for all layers except for the
output, which uses tanh.

• Use LeakyReLU activation in the discriminator for all layers

47

Summary on generative modelling

• Generative modelling is a massive field with a long history

• Differentiable generators have had a profound impact in
making models that work with real data at scale

• VAEs and GANs are currently the most popular approaches
to training generators for spatial data

• We’ve only scratched the surface of generative modelling
– Auto-regressive approaches are popular for sequences (e.g.

language modelling).

• But also for images (e.g. PixelRNN, PixelCNN)

– typically RNN-based

– but not necessarily - e.g. WaveNet is a convolutional auto-
regressive generative model

48

APPENDIX
Uhhh, a lecture with a hopefully useful

49

Probability theory basics reminder

Random variable (RV)

• possible worlds defined by assignment of
values to random variables.

• Boolean random variables
e.g., Cavity (do I have a cavity?).

Domain is < true , false >

• Discrete random variables
e.g., possible value of Weather is one of

< sunny, rainy, cloudy, snow >

• Domain values must be exhaustive and
mutually exclusive

• Elementary propositions are constructed by
assignment of a value to a
random variable: e.g.,

– Cavity = false (abbreviated as ¬cavity)
– Cavity = true (abbreviated as cavity)

• (Complex) propositions formed from
elementary propositions and standard logical
connectives, e.g., Weather = sunny Ú Cavity =
false

Probabilities
• Axioms (for propositions 𝑎, 𝑏, ⊤ = (𝑎 ∨ ¬𝑎), and

⊥ = ¬ ⊤):

– 0 ≤ 𝑃 𝑎 ≤ 1; 𝑃(⊤) = 1; 𝑃(⊥) = 0
– (𝑃(𝑎 ∨ 𝑏) = 𝑃(𝑎) + 𝑃(𝑏) − 𝑃(𝑎 ∧ 𝑏)

• Joint probability distribution of 𝐗 = {𝑋4, … , 𝑋5}
– 𝑷 𝑋#, … ,𝑋&
– gives the probability of every atomic event on 𝑿

• Conditional probability
𝑃(𝑎 | 𝑏) = 𝑃(𝑎 ∧ 𝑏) / 𝑃(𝑏) 𝑖𝑓 𝑃(𝑏) > 0

• Chain rule

𝑷 𝑋4, … , 𝑋5 = b
<=4

5
𝑷(𝑋<|𝑋4, … , 𝑋<>4)

• Marginalization: 𝑷 𝑌 = ∑?∈A 𝑷(𝑌, 𝑧)
• Conditioning on 𝑍:

– 𝑷 𝑌 = ∑?∈A 𝑷 𝑌 𝑧 𝑷(𝑧) (discrete)

– 𝑷 𝑌 = ∫𝑷 𝑌 𝑧 𝑷 𝑧 𝑑𝑧 (continuous)
= 𝔼𝒛∼D(?)P(Y|z) (expected value

notation)

• Bayes‘ Rule

𝑃 𝐻 𝐷 =
𝑃(𝐷|𝐻) i 𝑃(𝐻)

𝑃(𝐷) =
𝑃(𝐷|𝐻) i 𝑃(𝐻)
∑E 𝑃 𝐷|ℎ 𝑃(ℎ)

50

Reminder: Multivariate Gaussians

())()(exp
||||)2(

1)(1
2
1

2
1

2
μxΣμx

Σ
x ---= -T

mp
p

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

=

mµ

µ
µ

!

2

1

μ

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

=

mX

X
X

!

2

1

 r.v. Write X

÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç

è

æ

=

mmm

m

m

2
21

22
2

12

1121
2

sss

sss
sss

!

"#""

!

!

Σ

Then define),(~ ΣμNX to mean

where the Gaussian’s parameters
have…

One can show: E[X] = µ and Cov[X] = S.

Co-variance matrix

Reminder: Why Gaussian?

• Andrew Moore: “Gaussians are as natural as Orange
Juice and Sunshine”

(http://www.cs.cmu.edu/~awm/tutorials)

• Proves useful to model RVs that are combinations of
many (non)-measured influences

• Makes life easy because
1. Efficient representation

2. Substitute probabilities by expectations

52

http://www.cs.cmu.edu/~awm/tutorials

Color Convention in this Course

• Formulae, when occurring inline

• Newly introduced terminology and definitions

• Important results (observations, theorems) as well as
emphasizing some aspects

• Examples are given with standard orange with possibly
light orange frame

• Comments and notes in nearly opaque post-it

• Algorithms

• Reminders (in the grey fog of your memory)

53

Today‘s lecture is based on the following

• Jonathon Hare: Lectures 15, 17 of course „COMP6248 Differentiable
Programming (and some Deep Learning)“
http://comp6248.ecs.soton.ac.uk/

54

http://comp6248.ecs.soton.ac.uk/

References

• H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and singular value decomposition. Biological
Cybernetics, 59(4):291–294, 1988.

55

