
PROBABILISTIC AND
DIFFERENTIABLE PROGRAMMING

V7: Automatic Differentiation (AD)

Özgür L. Özçep

Universität zu Lübeck

Institut für Informationssysteme

Today‘s Agenda

2

!
!"

()

WHY YOU NEED AD

3

Sample
labeled data

(batch)

Forward it
through the
network, get
predictions

Back-
propagate
the errors

Update the
network
weights

Backpropagation idea
• Generate error signal that measures difference between predictions and

target values

• Use error signal to change the weights and get more
accurate predictions backwards

• Underlying mathematics: chain rule

Reminder: Backprop = AD in reverse mode

𝑑ℎ
𝑑𝑥

=
𝑑𝑓
𝑑𝑔

𝑑𝑔
𝑑𝑥

(for ℎ 𝑥 = 𝑓(𝑔(𝑥)))

Chain rule (1-dim)

Baydin, Pearlmutter, Radul, and Siskind

!a) Forward pass

x!

x2

E!y3$ t)

y2

@E=@y2

!b) Backward pass

w4

@E=@w4

w!

@E=@w!

w2

w3

y!

y3

@E=@y3

w5

w6

@E=@w6

@E=@E
@E=@w3

@E=@y!
@E=@w5

@E=@w2

Figure 1: Overview of backpropagation. (a) Training inputs xi are fed forward, generating
corresponding activations yi. An error E between the actual output y3 and the
target output t is computed. (b) The error adjoint is propagated backward,

giving the gradient with respect to the weights rwiE =
⇣

@E
@w1

, . . . ,
@E
@w6

⌘
, which is

subsequently used in a gradient-descent procedure. The gradient with respect to
inputs rxiE can be also computed in the same backward pass.

2.1 AD Is Not Numerical Di↵erentiation

Numerical di↵erentiation is the finite di↵erence approximation of derivatives using values of
the original function evaluated at some sample points (Burden and Faires, 2001) (Figure 2,
lower right). In its simplest form, it is based on the limit definition of a derivative. For
example, for a multivariate function f : Rn ! R, one can approximate the gradient rf =⇣

@f
@x1

, . . . ,
@f
@xn

⌘
using

@f(x)

@xi
⇡ f(x+ hei)� f(x)

h
, (1)

where ei is the i-th unit vector and h > 0 is a small step size. This has the advantage of
being uncomplicated to implement, but the disadvantages of performing O(n) evaluations
of f for a gradient in n dimensions and requiring careful consideration in selecting the step
size h.

Numerical approximations of derivatives are inherently ill-conditioned and unstable,5

with the exception of complex variable methods that are applicable to a limited set of
holomorphic functions (Fornberg, 1981). This is due to the introduction of truncation6 and

5. Using the limit definition of the derivative for finite di↵erence approximation commits both cardinal sins
of numerical analysis: “thou shalt not add small numbers to big numbers”, and “thou shalt not subtract
numbers which are approximately equal”.

6. Truncation error is the error of approximation, or inaccuracy, one gets from h not actually being zero.
It is proportional to a power of h.

4

Reminder: Computational graph perspective

5

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 / z
= qz

for q = 𝑥 + y

Function f Partial Derivatives Chain rule applied

𝜕𝑓
𝜕𝑧

= 𝑞
𝜕𝑞
𝜕𝑥

= 1

𝜕𝑓
𝜕𝑞

= 𝑧

𝜕𝑞
𝜕𝑦

= 1

𝜕𝑓
𝜕𝑥

=
𝜕𝑓
𝜕𝑞
𝜕𝑞
𝜕𝑥

= 𝑧

𝜕𝑓
𝜕𝑦

=
𝜕𝑓
𝜕𝑞
𝜕𝑞
𝜕𝑦

= 𝑧

Gradient

∇",:,;𝑓 = (𝑧, 𝑧, 𝑞)

Forward pass:
function values and
local gradients
Backward: chain rule

5

-4 1

(3,1,1)

(∇",:,;𝑓) −2,5, −4 = −4,−4, 3)

(𝑓, !A
!B
, !A
!;

)

(𝑞,
𝜕𝑞
𝜕𝑥
,
𝜕𝑞
𝜕𝑦
)

𝜕𝑓
𝜕𝑥

𝜕𝑓
𝜕𝑦

𝜕𝑓
𝜕𝑧

(-12,-4,3)
*

y

z

x

+

-2

3

-4

-4

𝜕𝑓
𝜕𝑓

-4

(In particular:

• To solve optimisation problems using gradient methods
we need to compute the gradients (derivatives) of the
objective with respect to the parameters.
– In neural nets we’re talking about the gradients of the

loss function, 𝐿 with respect to the parameters 𝜽
– AD is at the heart of „Differentiable Programming“ (the

next big thing after deep learning)
• AD is a topic on its own

• But has been come into focus with Differentiable
Programming and lead to many develeopments in the
intersection of programming languages, numerical
computing, and ML

6

• Symbolically
differentiate the
function with respect
to its parameters
– by hand

– using a CAS

• Make estimates using
finite differences

𝑓E 𝑎 ≈ A HIJKL MA(H)
J

• Use Automatic
Differentiation

• Problem: Static,
expression swell. Can‘t
differentiate algorithms

• Problem: Numerical
errors (such as
rounding and
truncation errors)

7

Problem with symbolic computation

8

N(A " /O("))
N"

= N A "
N"

𝑔 𝑥 + N O "
N"

𝑓 𝑥 (Product rule)

– ℎ(𝑥) ∶ = 𝑔(𝑥) / 𝑓(𝑥)

– NJ(")
N"

and ℎ have two components in common

– This may also be the case for 𝑓.

– Symbollicaly calculating 𝑓 won‘t profit from common

parts of 𝑓 and
NA(")
N"

Problems with numerical calculation

Truncation error:
Approximation error due to
not sufficiently small ℎ

– tends to 0 for ℎ → 0

Can be mitigated partly by
using centered approximation

𝑓E 𝑎 ≈ A HIJKL MA(HMJKL)
J

(error shift from 𝑂(ℎ) to
𝑂(ℎU))

Rounding error: due to limited
precision in computation

– Increases for ℎ → 0

9

• Automatic Differentiation is a method to get exact
derivatives efficiently, by storing information as you go
forward that you can reuse as you go backwards.
– Takes code that computes a function and uses that to

compute the derivative of that function.

– The goal isn’t to obtain closed-form solutions, but to be
able to write a program that efficiently computes the
derivatives.

10

Automatic Differentiation in Machine Learning: a Survey

l1 = x

ln+1 = 4ln(1� ln)

f(x) = l4 = 64x(1�x)(1�2x)2(1�8x+8x2)2

f
0(x) = 128x(1 � x)(�8 + 16x)(1 � 2x)2(1 �

8x+8x2)+64(1�x)(1�2x)2(1�8x+8x2)2�
64x(1� 2x)2(1� 8x+8x2)2� 256x(1�x)(1�
2x)(1� 8x+ 8x2)2

f(x):
v = x
for i = 1 to 3

v = 4*v*(1 - v)
return v

or, in closed-form,

f(x):
return 64*x*(1-x)*((1-2*x)^2)

*(1-8*x+8*x*x)^2

f’(x):
return 128*x*(1 - x)*(-8 + 16*x)

*((1 - 2*x)^2)*(1 - 8*x + 8*x*x)
+ 64*(1 - x)*((1 - 2*x)^2)*((1
- 8*x + 8*x*x)^2) - (64*x*(1 -
2*x)^2)*(1 - 8*x + 8*x*x)^2 -
256*x*(1 - x)*(1 - 2*x)*(1 - 8*x
+ 8*x*x)^2

f’(x0) = f
0(x0)
Exact

f’(x):
(v,dv) = (x,1)
for i = 1 to 3

(v,dv) = (4*v*(1-v), 4*dv-8*v*dv)
return (v,dv)

f’(x0) = f
0(x0)
Exact

f’(x):
h = 0.000001
return (f(x + h) - f(x)) / h

f’(x0) ⇡ f
0(x0)

Approximate

Manual
Di↵erentiation

Symbolic
Di↵erentiation

of the Closed-form

Coding Coding

Numerical
Di↵erentiation

Automatic
Di↵erentiation

Figure 2: The range of approaches for di↵erentiating mathematical expressions and com-
puter code, looking at the example of a truncated logistic map (upper left). Sym-
bolic di↵erentiation (center right) gives exact results but requires closed-form in-
put and su↵ers from expression swell; numerical di↵erentiation (lower right) has
problems of accuracy due to round-o↵ and truncation errors; automatic di↵eren-
tiation (lower left) is as accurate as symbolic di↵erentiation with only a constant
factor of overhead and support for control flow.

5

11Ex: Baydin et al. 2017

Gives you smell
of the expression
swell

No one has
time for manual
computation

Small h (as we have
seen) does not help
w.r.t. rounding errors

Can directly reuse
program with
for-loop -
no need for
closed-form

AUTOMATIZATION

12

From Differentiation to Programming

• Example (Math)

𝑥 = ?
𝑦 = ?
𝑎 = 𝑥𝑦
𝑏 = sin 𝑥
𝑧 = 𝑎 + 𝑏

• Example (code)

x=?
Y= ?
a = x * y
b = sin(x)
z = a + b

13

The chain rule for vectors

Given functions 𝑓, 𝑔 with

– ℝ\ →
O

ℝ] →
A

ℝ
– 𝒙 ↦ 𝒚 = 𝑔 𝒙 ↦ 𝑧 = 𝑓(𝒚)

the chain rule leads to the partial derivatives

𝜕𝑧
𝜕𝑥a

= b
c

𝜕𝑧
𝜕𝑦c

𝜕𝑦c
𝜕𝑥a

14

(in short form: ∇𝒙𝑧 =
!𝒚
!𝒙

d
∇𝒚𝑧

where
!𝒚
!𝒙

is the 𝑛 𝑥 𝑚 Jacobian matrix of 𝑔)

Let us rename for the following

Given functions 𝑓, 𝑔 with

– ℝ\ →
O

ℝ] →
A

ℝ
– t ↦ 𝒖 = 𝑔 𝒙 ↦ 𝑤 = 𝑓(𝒖)

the chain rule leads to the partial derivatives

𝜕𝑤
𝜕𝑡

= b
c

𝜕𝑤
𝜕𝑢c

𝜕𝑢c
𝜕𝑡

15

𝑤 is some output variable from a family of outputs
𝑤a and 𝑢c are the inputs variables 𝑤 depends on.

Applying the chain rule

Derivatives w.r.t. some yet to be
given variable 𝑡

𝜕𝑥
𝜕𝑡

= ?
𝜕𝑦
𝜕𝑡

= ?
𝜕𝑎
𝜕𝑡

= 𝑥
𝜕𝑦
𝜕𝑡
+ 𝑦

𝜕𝑥
𝜕𝑡

𝜕𝑏
𝜕𝑡

= cos 𝑥
𝜕𝑥
𝜕𝑡

𝜕𝑧
𝜕𝑡
=
𝜕𝑎
𝜕𝑡
+
𝜕𝑏
𝜕𝑡

16

Example expression

𝑥 = ?
𝑦 = ?
𝑎 = 𝑥𝑦
𝑏 = sin 𝑥
𝑧 = 𝑎 + 𝑏

• If we substitute 𝑡 = 𝑥 we get an algorithm for computing
!;
!"

.

• Choosing 𝑡 = 𝑦 similarly gives
!;
!:

.

Translating to code

Derivatives as programs

dx=?
dY= ?
da = y * dx + x * dy
db = cos(x)*dx
dz = da + db

(Using the notation

dx =
!"
!l

, dy =
!:
!l
, …)

Substituting 𝑡 = 𝑥

dx= 1
dy= 0
da = y * dx + x * dy
db = cos(x)*dx
dz = da + db

So, to compute
!;
!"

just seed

algorithm with

dx = 1, dy = 0
17

Translating to code

Derivatives as programs

dx=?
dY= ?
da = y * dx + x * dy
db = cos(x)*dx
dz = da + db

(Using the notation

dx =
!"
!l

, dy =
!:
!l
, …)

Substituting 𝑡 = 𝑦

dx= 0
dy= 1
da = y * dx + x * dy
db = cos(x)*dx
dz = da + db

So, to compute
!;
!:

just seed

algorithm with

dx = 0, dy = 1
18

Making Rules

• Idea of the examples can be generalized to arbitrary
functions

• Need to describe rules for translation

program evaluating expression => program evaluating
derivates

• These are just rules known from mathematics for
calculating derivates, e.g.
– c = a + b => dc = da + db
– c = a * b => dc = b * da + a * db
– c = sin(a) => dc = cos(a) * da

• Note: These rules are used on number-level (not for symbolic
computation of derivatives)

19

Further Rules

c = a - b => dc = da - db
c = a / b => dc = da/b –a*db/b**2
c = a**b => dc = b*a**(b-1)*da +

log(a)*a**b*db
c = cos(a) => dc = -sin(a) * da
c = tan(a) => dc = da/cos(a)**2

(a**b stands for 𝑎n)

20

FORWARD MODE

21

Forward Mode AD

• To translate using the rules we simply replace each
primitive operation in the original program by its
differential analogue.

• The order of computation remains unchanged: if a
statement 𝐾 is evaluated before another statement 𝐿,
then the differential analogue of 𝐾 is evaluated before
the analogue statement of 𝐿.

• This is Forward-mode Automatic Differentiation.
– Nice feature: Interleaving (function evaluation and

derivatives) is possible

– Bad feature: Need to rerun program to compute
derivative for each input (in particular for gradient)

22

Interleave computing expression and derivatives

x = ?
dx = ?
y = ?
dy = ?
a = x * y
da = y * dx + x * dy
b = sin(x)
db = cos(x)*dx
z = a + b
dz = da + db

• Can keep track of value
and gradient at the
same time

• Can be mathematically
founded using “dual
numbers“

• Leads to direct simple
implementation of AD

23

The Jacobian in Forward Mode AD

• 𝑓: ℝ] → ℝ\; 𝒙 ↦ 𝒛
• Calculate derivatives

w.r.t. ith variable 𝑥a for
all outputs 𝑧a in one
pass

• Efficient calculating
product w.r.t. vector 𝒓
– !𝒛

!𝒙
⋅ 𝒓

– Just seed with

dx1 = r1, ..., dxn = rn

• Special	case
f: ℝ] → ℝ; 𝒙 ↦ 𝑧

Calculate directional
derivate in direction 𝒓.

– ∇𝑓 ⋅ 𝒓
24

𝜕𝒛
𝜕𝒙

=

𝜕𝑧𝟏
𝜕𝑥𝟏

𝒂 ⋯
𝜕𝑧𝟏
𝜕𝑥𝒊

𝒂
𝜕𝑧𝟏
𝜕𝑥𝒏

𝒂

⋮ ⋱ ⋮
𝜕𝑧𝒎
𝜕𝑥𝟏

𝒂 ⋯
𝜕𝑧𝒎
𝜕𝑥𝒊

𝒂 ⋯
𝜕𝑧𝒎
𝜕𝑥𝒏

𝒂

Another view on AD

• 𝑓: ℝ] → ℝ\

– 𝑣aM] = 𝑥a, i = 1, … , 𝑛 input variables

– 𝑣a, i = 1, … , 𝑙 intermediate variables

– 𝑦\Ma = 𝑣�Ma, 𝑖 = 𝑚 − 1,… , 0 output variables

– 𝑣a = 𝜙a 𝑣c c≺a
, 𝜙a: ℝ]� → ℝ (elemental functions)

• where≺ is precedence relation (𝑗 ≺ 𝑖 iff 𝑣_𝑖 directly
depends on 𝑣_𝑗)

• 𝑛c number of elements preceding 𝑣c
– 𝑢a = 𝑣c c≺a

25

Forward mode AD = Tangents mapping

• Assume you have time-depending paths 𝑥 𝑡 , 𝑦(𝑡)
• Forward mode AD is mapping function evaluation

(F: x ↦ 𝑦) plus tangents mapping �̇�: �̇� ↦ �̇�

𝑣aM], �̇�aM] = [𝑥a, �̇�a] for 𝑖 = 1, … , 𝑛
𝑣a, �̇�a = [𝜙a 𝑢a , �̇�a(𝑢a, ̇𝑢a)] for 𝑖 = 1, … , 𝑙
𝑦\Ma, �̇�\Ma = [𝑣�Ma, �̇��Ma] for 𝑖 = 0, … ,𝑚 − 1

26

improve the efficiency of the derivative calculation, but the mode has not yet been well established for the efficient calculation
of general-purpose Jacobians.

3.1 | Forward mode of AD

As mentioned in the Introduction, the main idea of AD is the application of the chain rule. In a very simple approach, deriva-
tives can be propagated together with the evaluation of the function during the execution of a given code segment. From a
mathematical point of view, this can be interpreted as the computation of tangent information in the following way. Assume
for a moment that the argument vector x represents the value of a time-dependent path x(t) at t = 0. Then, this time-dependent
path defines a tangent _x = ∂x(t)/∂t |t =0. Using the forward mode of AD, one computes the resulting tangent _y obtained for the
time-dependent path F(x(t)) that is well defined if the function F is sufficiently smooth, that is,

_y=
∂

∂t
F x tð Þð Þjt=0 =F0x tð Þð Þ∂x tð Þ

∂t
jt=0 =F0xð Þ _x# _F x, _xÞ:ð

This interpretation also explains the alternative names sometimes used for the forward mode of AD, namely tangent mode
or tangent-linear mode. The underlying idea is illustrated (geometrically) in Figure 3.

When this idea is applied to an elemental function φi :Rn i!R, vi = φi(u i), we have

_φi :R2 n i!R, _vi =rφi u ið Þ _u i # _φi u i, _u ið Þ, that is,

_vi =
X

j≺i

∂

∂vj
φi u ið Þ* _vj,

where we use the abbreviations u i = (vj)j ≺ i and _u i = _vj
! "

j≺i. For a multiplication v = u * w, for example, the tangent operation

is given by

v=φ u ,wð Þ= u *w, _v= _φ u ,w, _u , _wð Þ= _u *w+ u * _w:

Combining the resulting derivative information with the other differentiated elemental functions using the chain rule, one
obtains the tangent for a given code segment, that is, the overall derivative F

0
(x) _x.

For an efficient implementation of a function evaluation, it is essential to reuse memory. Let us consider as example again
a multiplication to illustrate the challenges that arise in the case of forward mode AD. Assume that the result of the multiplica-
tion v = u * w, is stored in the memory location of one of the arguments, say u . Then, the corresponding derivative calculation
_v= _u *w+ u * _w obviously would yield the wrong value if it is executed after the evaluation of the product since the original
value of u is no longer available. However, the derivative calculation is exactly the same if performed before the computation
of v then giving the correct value _v. In other cases, values computed during the evaluation of an elemental function can be
reused for the derivative calculation as for example if φ (u) = exp(u). For these reasons, it is advantageous to evaluate φi and
_φi simultaneously, sharing intermediate results. We denote this by

vi, _vi½ %= φi u ið Þ, _φi u i, _u ið Þ½ %:

x = x (0)

x (t)

ẋ F

Ḟ

y = y(0)

ẏ

y(t)FIGURE 3 Idea of forward mode algorithmic differentiation:
Mapping of variable x to variable y by function F and tangent _x to

tangent _y by function _F

GEBREMEDHIN AND WALTHER 5 of 21

Dual numbers (Clifford 1873)

• Want to mathematize parallel evaluation of 𝑓, 𝑓′
• Dual numbers have the form 𝑣 + �̇�𝜖 where

– 𝑣, �̇� ∈ ℝ
– 𝜖 is a nilpotent element (𝜖U = 0, 𝜖 ≠ 0)

– compare with complex numbers 𝑥 + 𝑦𝑖 where 𝑖U = −1,
which can be considered as pairs in ℝU (more general:
quaterions)

• Gives intended behaviour mirroring symbolic derivation
– 𝑣 + �̇�𝜖 + 𝑢 + �̇�𝜖 = (𝑣 + 𝑢) + (�̇� + �̇�)𝜖
– (𝑣 + �̇�𝜖)(𝑢 + �̇�𝜖) = (𝑣𝑢) + (𝑣�̇� + �̇�𝑢)𝜖

27

Dual numbers (Clifford 1873)

• Can define functions 𝑓 on dual numbers by
𝑓 𝑣 + �̇�𝜖 = 𝑓 𝑣 + 𝑓′(𝑣)�̇�𝜖
(results from Taylor series application)

• Then: Chain rule works as expected:
𝑓 𝑔(𝑣 + �̇�𝜖) = 𝑓 𝑔 𝑣 + 𝑔′(𝑣)�̇�𝜖

= 𝑓 𝑔 𝑣) + 𝑓′(𝑔(𝑣))𝑔′(𝑣)�̇�𝜖
• Can extract derivative

𝑑𝑓
𝑑𝑥

𝑣 = 𝜖 − 𝑐𝑜𝑒𝑓𝑓(𝑑𝑢𝑎𝑙 − 𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑓)(𝑣 + 1𝜖))

28

REVERSE MODE

29

Reverse Mode AD

• Whilst Forward-mode AD is easy to implement, it comes
with a very big disadvantage. . .

• For every variable we wish to compute the gradient
with respect to, we have to run the complete program
again.

• This is obviously going to be a problem if we’re talking
about the gradients of a function with very many
parameters (e.g. a deep network).

• A solution is Reverse Mode Automatic Differentiation.

30

Reversing the Chain Rule

• Conceptually, chain rule doesn‘t care about role of
enumerator and denominator – can turn it upside down

– !�
!l

becomes

– !l
!�

becomes by renaming (𝑠 for 𝑡 and 𝑢 for 𝑤)

–
!�
!�

is by applying chain

– !�
!�

= ∑c
!�L
!�

!�
!�L

• 𝑢 is some input variable

• 𝑤as are output variables depending on 𝑢
• 𝑠 is the yet-to-be-given variable

• Now can compute in 1-pass in parallel:
!�
!"
, !�
!:
, …

31

Example

𝜕𝑠
𝜕𝑢 =b

c

𝜕𝑤a
𝜕𝑢

𝜕𝑠
𝜕𝑤a

𝑥 = ?
𝑦 = ?
𝑎 = 𝑥𝑦
𝑏 = sin 𝑥
𝑧 = 𝑎 + 𝑏

𝜕𝑠
𝜕𝑧

=?
𝜕𝑠
𝜕𝑏

=
𝜕𝑧
𝜕𝑏
𝜕𝑠
𝜕𝑧

=
𝜕𝑠
𝜕𝑧

𝜕𝑠
𝜕𝑎

=
𝜕𝑧
𝜕𝑎

𝜕𝑠
𝜕𝑧

=
𝜕𝑠
𝜕𝑧

𝜕𝑠
𝜕𝑦

=
𝜕𝑎
𝜕𝑦

𝜕𝑠
𝜕𝑎

= 𝑥
𝜕𝑠
𝜕𝑎

𝜕𝑠
𝜕𝑦

=
𝜕𝑎
𝜕𝑥

𝜕𝑠
𝜕𝑎

+
𝜕𝑏
𝜕𝑥

𝜕𝑠
𝜕𝑏

= 𝑦
𝜕𝑠
𝜕𝑎

+ cos 𝑥
𝜕𝑠
𝜕𝑏

= (𝑦 + cos 𝑥)
𝜕𝑠
𝜕𝑧

32

Visualising dependencies

• Differentiating in reverse can be quite mind-bending:
instead of asking what input variables an output
depends on, we have to ask what output variables a
given input variable can affect.

• We can see this visually by drawing a dependency
graph of the expression (e.g. x effects a and b):

33

+
b

*

x

y
a

sin

z

Translating to Code

• As before we replace the derivatives (𝜕𝑠/𝜕𝑧, 𝜕𝑠/
𝜕𝑏, . . .) with variables (gz, gb, ...) which we call
adjoint variables:
– gz = ?
– gb = gz
– ga = gz
– gy = x * ga
– gx = y * ga + cos(x) * gb

• Substituting 𝑠 = 𝑧 in equations gives both gradients
!;
!"

and
!;
!:

in last two lines

• Equivalently set gz = 1
34

We need only 1 pass for
Calculating all derivatives

Reverse mode AD = Co-tangents mapping

• Reverse mode AD: function evaluation, F: x ↦ 𝑦, plus
co-tangents mapping by adjoint ¢𝐹: ¢𝑦 ↦ �̅�

𝑣a = 0 for 𝑖 = 1,… , 𝑙
𝑣aM], �̅�aM¤ = [𝑥a, �̅�a] for 𝑖 = 1,… , 𝑛
𝑃𝑢𝑠ℎ(𝑣_𝑖)
𝑣a = 𝜙a 𝑢a for 𝑖 = 1,… , 𝑙
𝑦\M¤ = 𝑣�M¤ for 𝑖 = 0,… ,𝑚 − 1
�̅��Ma = ¢𝑦\M¤ for 𝑖 = 0,… ,𝑚 − 1
𝑣a ← 𝑝𝑜𝑝
¢𝑢a += �̅�a ∗ ∇𝜙a 𝑢a for 𝑙, … , 1
𝑣a = 0
�̅�a = �̅�aM] for i = 1,… , 𝑛

35

interpretation from a mathematical point of view is possible. Consider for a given vector !y2Rm and a given value c2R the
hyperplane y2Rmj!y>y= cf g in the range of F. The hyperplane has the inverse image x2Rn j!y>F xð Þ= cf g. By the implicit
function theorem, this set is a smooth hypersurface with the normal !x> = !y>F0xð Þ# !F x,!yð Þ at x, provided !x> does not vanish.
Geometrically, !y and !x can be seen as normals or cotangents as illustrated in Figure 4. It is important to note that the vector-
Jacobian product !y>F0xð Þ cannot be approximated directly by finite differences.

To implement the reverse mode of AD, one obtains for each elemental function φi :Rn i!R, the adjoint function

!u i + = !vi*rφi u ið Þ for !u i # !vj
! "

j≺i 2R
n i : ð5Þ

In the forward mode, one can take care of the reuse of memory by rearranging the order of evaluating φi and _φi corre-
spondingly, as described earlier for a multiplication in more detail. However, since vi is computed during the function evalua-
tion and !u i on the way backwards, such rearrangements no longer help in the case of the reverse mode. Therefore, one very
simple strategy for maintaining all values needed for the derivative calculation is to store and restore them on a strictly sequen-
tially accessed data structure. To do so, the evaluation of the elemental function and its adjoint is modified to

push vð Þ v popðÞ
v=φ uð Þ !u + = !v*rφ uð Þ

!v=0
elemental function adjoint function

: ð6Þ

Here, the push(v) operation stores the value of v onto a stack-like data structure, whereas the v pop() operation retrieves
a value from the same data structure and stores this value in the variable v. This notation is borrowed from the AD tool Tape-
nade, where one finds exactly these operations in the generated source code. Note that the popped value of v may be part of
the vector u required to evaluate the correct adjoint value !u . The nullifying of the adjoint value !v is necessary for potential later
updates, in the case of overwrites. This yields the adjoint procedure illustrated in Table 4 for the computation of !x> = !y>F0xð Þ.

Once more, one could also propagate a matrix !Y 2Rm× q instead of just a vector !y2Rm backwards yielding the vector

reverse mode of AD to compute !X> = !Y>F0xð Þ2Rn × q . Using again a complexity analysis based on a count of the additional

TABLE 3 The tangent procedure for
Example 2.1

v−2 = x1 _v−2 = _x1

v−1 = x2 _v−1 = _x2

v0 = x3 _v0 = _x3

v1 = v−2 + v−1 _v1 = _v−2 + _v−1

v2 = exp(v1) _v2 = exp v1ð Þ* _v1
v3 = sin(v1) _v3 = cos v1ð Þ* _v1
v4 = v20 _v4 = 2*v0* _v0

v5 = v2 + v3 _v5 = _v2 + _v3

v6 = v4 * v1 _v6 = _v4*v1 + v4* _v1

y1 = v5 _y1 = _v5

y2 = v6 _y2 = _v6

x

x̄ F

F̄

y

ȳ

ȳ
F
(x) =

c

ȳ
y =

c
FIGURE 4 Idea of reverse mode of algorithmic differentiation:
Mapping of variable x to variable y by function F and normal !y to
normal !x by function !F

GEBREMEDHIN AND WALTHER 7 of 21

¢𝐹 𝑥, ¢𝑦 ≔ ¢𝑦d𝐹E 𝑥 = �̅�

(simple algorithm
without sophisticated
memory management:
just using stack)

But wait... Limitations of Reverse Mode AD

• We have a problem dual to that of forward AD: Now
have to run the program for each outvariable one is
interested in differentiating

• Example
– 𝑧 = 2𝑥 + sin 𝑥
– 𝑣 = 4𝑥 + cos 𝑥
– Cannot interleave the calculations as they appear to be in

reverse mode.=> Recent research on automatization

• So: Reverse AD has advantage only if number of output
variables much smaller than number of input variables

36

Calculating
!;
!"

and
!ª
!"

each requires

running the programm

Implementing Reverse Mode AD

There are two ways to implement Reverse AD:

1. We can parse the original program and generate the
adjoint program that calculates the derivatives.
– Potentially hard to do.

– Static, so can only be used to differentiate algorithms
that have parameters predefined.

– But, efficient (lots of opportunities for optimisation)

2. We can make a dynamic implementation by
constructing a graph that represents the original
expression as the program runs.

37

Constructing an expression graph (in Python)

• Goal: get a graph as

• Root of the graph are
independent variables x, y

• Can have children (initially
empty): nodes that
depending on parent

class Var:
def __init__(self, value):
self.value = value
self.children = [] ...
...
x = Var (0.5)
y = Var (4.2)

38

+
b

*

x

y
a

sin

z

Building expressions

• Expression creation

• Self-registration of
each expression 𝑢 as
a child of each of its
dependencies 𝑤a

• Also register weight
!�L
!�

(used for gradient

calculation)

class Var:
...
def __mul__(self, other):
z = Var(self.value * other.value)

weight = dz/dself = other.value
self.children.append((other.value, z))

weight = dz/dother = self.value
other.children.append((self.value, z))
return z

...

...

"a" is a new Var that is a child of
both x and y
a=x*y

39

+
b

*

x

y
a

sin

z

Computing gradients

• Propagate
Derivatives

• Cache derivatives
in grad_value

class Var:
def __init__(self):
...
self.grad_value = None

def grad(self):
if self.grad_value is None:
using chain rule
self.grad_value =
sum(weight * var.grad()

for weight, var in self.children)
return self.grad_value ...
...
a.grad_value = 1.0
print("da/dx␣=␣{}".format(x.grad()))

40

+
b

*

x

y
a

sin

z

Optimising reverse Mode AD

• The outline implemntation not very space efficient
– Instead of children direclty store in indices (Wengert list,

tape)

• Space efficiency for reverse AD is challenging hence
research topic
– Count-Trailing-Zeros CTZ): trade-off computation for

memory of caches (Griewank 92).

– But, in reality memory is relatively cheap (if managed
well)

41

CTZ example

• Idea: Hierarchical cache storing only 𝑂(log(𝑁)) of all 𝑁
values in expression in forward sweep and maintained
during reverse sweep
– Cache0 store first value

– Cache1 stores value at ½ down chain

– Cache2 stores value at ¾ down the chain ...

– Cachen-1 stores value at n/n+1 down the chain

• Assume linear expression of N= 16 Operators
– 0 1 2 3 4 5 6 7 8 9 a b c d e f (value indices)

– X-----------------X-------X---X X (stored value indication)

42

CTZ example (continued)

• Reverse sweep (with head postion _)
– 0 1 2 3 4 5 6 7 8 9 a b c d e f _ (can swee over e,f)

– X-----------------X-------X---X X

– 0 1 2 3 4 5 6 7 8 9 a b c d e f (d not cached, recalculate)

– X-----------------X-------X---X X

– 0 1 2 3 4 5 6 7 8 9 a b c d e f (d not cached, recalculate)

– X-----------------X-------X---X X from cached c)
+-X

43

CTZ example (continued)

• Reverse sweep (with head postion _)
– 0 1 2 3 4 5 6 7 8 9 a b c d e f (sweep over c, missing b,

– X-----------------X-------X---X X sweep to 8 and cache a)
+-X

– 0 1 2 3 4 5 6 7 8 9 a b c d e f (recompute 9 from 8,

– X-----------------X-------X---X X then 7to be recomputed

– +--X-X+-X move to 0, store along 6,4)

– 0 1 2 3 4 5 6 7 8 9 a b c d e f (and so on ...)

– X-----------------X-------X---X X

– +-------X--X-X-+---X-X+-X

– +-X
44

CTZ example (continued)

• In the end
– 0 1 2 3 4 5 6 8 9 a b c d e f

– X-----------------X-------X---X X

– +-------X--X-X-+---X-X+-X

– +---X-X +-X

– +-X

45

APPENDIX
Uhhh, a lecture with a hopefully useful

46

Color Convention in this Course

• Formulae, when occurring inline

• Newly introduced terminology and definitions

• Important results (observations, theorems) as well as
emphasizing some aspects

• Examples are given with standard orange with possibly
light orange frame

• Comments and notes in nearly opaque post-it

• Algorithms and program code

• Reminders (in the grey fog of your memory)

47

Today‘s lecture is based on the following

• Jonathon Hare: Lecture 5 of course „COMP6248 Differentiable
Programming (and some Deep Learning)“
http://comp6248.ecs.soton.ac.uk/

• Blog post by Rufflewind: Reverse-mode automatic differentiation: a
tutorial https://rufflewind.com/2016- 12- 30/reverse- mode- automatic-
differentiation

• A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic
differentiation in machine learning: A survey. J. Mach. Learn. Res.,
18(1):5595–5637, Jan. 2017.

• A. H. Gebremedhin and A. Walther. An introduction to algorithmic
differentiation. WIREs Data Mining and Knowledge Discovery,
10(1):e1334, 2020.

48

http://comp6248.ecs.soton.ac.uk/
https://rufflewind.com/2016-%2012-%2030/reverse-%20mode-%20automatic-%20differentiation

References

• W. K. Clifford. Preliminary sketch of bi-quaternions. Proceedings of the London Mathematical Society, pages 381—395,
1873.

• A. Griewank. Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation.
Optimization Methods and Software, 1(1):35–54, 1992.

49

