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Reminder: Backprop = AD in reverse mode

Sample FEGEL i Back- Update the
through the
labeled data > —» propagate —» network
network, get :
(batch) - the errors weights
predictions
t |

Backpropagation idea

* Generate error signal that measures difference between predictions and
target values

* Use error signal to change the weights and get more

(a) Forward pass

v

accurate predictions backwards
* Underlying mathematics: chain rule

Chain rule (1-dim)
dh B df dg
dx dg dx

(for h(x) = f(g(x)))

z
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Reminder: Computational graph perspective

Function f Partial Derivatives Chain rule applied
f(x,y,Z)=(x+y)'Z af g:z afZafanZ
= qz EPa dq Ox 0dq0x
forq =x+y aq_l a_q_l df 9dfadq _
ox dy dy  dqay
Gradient
Veyzf =(2,2,9) (In particular: (Y, ,,,f)(—2,5 —4) = (-4, -4, 3))
-2 (q’a_q,c')_q Forward pass:
X 4 of 0x "0y function values and
Ep (3,1,1) local gradients
X :
Backward: chain rule
5 B (2L, %)
y ’0q’ 0z
-4 g (_121_413)
0y
4 1 9f
y4 0
3 Of f




- To solve optimisation problems using gradient methods
we need to compute the gradients (derivatives) of the
objective with respect to the parameters.

— In neural nets we’re talking about the gradients of the
loss function, L with respect to the parameters 6

— AD is at the heart of ,Differentiable Programming” (the
next big thing after deep learning)
« AD s atopicon its own

« But has been come into focus with Differentiable
Programming and lead to many develeopments in the
intersection of programming languages, numerical
computing, and ML




. Symbolically
differentiate the
function with respect
to its parameters

- by hand
— using a CAS

- Make estimates using

finite differences

/ _ flathe))—f(a)
Fi(a) ~ Lathe

..+ Use Automatic
= “Differentiation

Problem: Static,
expression swell. Can't

differentiate algorithms

Problem: Numerical
errors (such as
rounding and
truncation errors)



Problem with symbolic computation

AF()-g(x) _ df)

g(x) + dg(x)f(x) (Product rule)

dx dx dx
- h(x) := g(x) - f(x)
dh(x)

— and h have two components in common

— This may also be the case for f.

— Symbollicaly calculating f won't profit from common
df (x)

dx

parts of f and




Problems with numerical calculation

Truncation error: Rounding error: due to limited
Approximation error due to precision in computation
not sufficiently small h

- tendstoOforh — 0 — Increases forh — 0

Can be mitigated partly by
using centered approximation

’ _ f(lathej)—f(a—he;)
f'(a) = .

(error shift from O (h) to




- Automatic Differentiation is a method to get exact
derivatives efficiently, by storing information as you go
forward that you can reuse as you go backwards.

— Takes code that computes a function and uses that to
compute the derivative of that function.

— The goal isn’t to obtain closed-form solutions, but to be
able to write a program that efficiently computes the
derivatives.
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Can directly reuse
program with
for-loop -

no need for
closed-form

ll =X
lpy1 =41, (1= 1,)

f(x) =1y = 64x(1 —x)(1—22)%(1 — 8z +822)?

Manual

f(x):
V=X
fori=1to3
v = 4xvx(1 - v)
return v

or, in closed-form,
f(x):

return 64*x* (1-x)*((1-2%x) ~2)
* (1-8xx+8*x*x) "2

f(x) = 1282(1 — x) (=8 + 162)(1 — 2z)2(1 —
8z +822%) +64(1 — ) (1 —2z)%(1 — 82+ 822)? —

»
"( 64z(1 —22)%(1 — 8z + 822)2 — 256x(1 — ) (1 —
Differentiation 2z)(1 — 8z + 8x2)?

Coding

A 4

Symbolic
Differentiation
of the Closed-form

Automatic
Differentiation

A4

Numerical
Differentiation

£2(x):
(v,dv) = (x,1)
fori=1to3
(v,dv) = (4xv*(1-v), 4xdv-8*v*dv)
return (v,dv)

£7(x0) = f'(20)
Exact

£2(x):
return 128*x* (1 — x)* (-8 + 16%*x)

*((1 - 2%x) "2)* (1 — 8*x + 8%x*X)
+64x(1 - x)*x((1 - 2*x)"2)*((1
— 8%x + 8*x*x)"2) - (64*x*x(1 -
2%x)"2)* (1 — 8*x + 8*x*x) "2 —
256%x* (1 — x)*(1 - 2*x)*(1 - 8*x
+ 8%x*x) "2

£’ <X0> f/(ll'uJ
Exact

£2(x):
h =0.000001
return (f(x+h) - f(x)) /h

£ (x0) ~ f'(z0)
Approximate

No one has
time for manual
computation

Gives you smell
of the expression
swell

Small h (as we have
seen) does not help
w.r.t. rounding errors
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From Differentiation to Programming

- Example (Math) - Example (code)
x =7 X=7
y =7 Y= 7
a=xy a=x%*y
b = sin(x) b = sin(x)

Z=a+b Z=a+ b

13



The chain rule for vectors

Given functions [, g with

_rRm 5 Rn LR

-x P y=gxr- z=f()
the chain rule leads to the partial derivatives

0z 0z 0y]

dx; L dy; dx;
j

. . _ ()"
(in short;‘orm. V,z = (ax) Vyz
y

where (a_) is the n x m Jacobian matrix of g )

X

g =
TP = universiTAT 2u LoBECK
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Let us rename for the following

Given functions [, g with

_rm 5 Rv LR

-t pu=gx)r w=f(u
the chain rule leads to the partial derivatives

ot Liou; ot
]

w is some output variable from a family of outputs

{w;} and u; are the inputs variables w depends on.
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Applying the chain rule

Example expression Derivatives w.r.t. some yet to be
given variable t

x =7 0_x — 7

y = ? dt .

a=xy (3_y — 7

— o dt

i) _ er-ll—()l;) da B dy N 0x
ot ot 7 at
b dx
Fri COS X 5
dz da Jb

=—+

adt dt ot

: : .0
« If we substitutet = x we get an algorithm for computing EZC'

* Choosingt = vy similarly gives S—i.

esqif’f'r");

3 %

D Nz,

;*%; UNIVERSITAT ZU LUBECK ‘]6
3 %%  INSTITUT FUR INFORMATIONSSYSTEME



Translating to code

Derivatives as programs Substitutingt = x
dx="? dx= 1
dY= 7 dy= 0
da =y * dx + x * dy da =y * dx + x * dy
db = cos(x)*dx db = cos(x)*dx
dz = da + db dz = da + db

(Using the notation 5,
dx dy So, to compute —— just seed
dX=—dy=—,... )

=0 B =50 algorithm with

dx = 1, dy = 0
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Translating to code

Derivatives as programs Substitutingt =y
dx=7 dx= 0
dY= ? dy= 1
da =y * dx + x * dy da =y * dx + x * dy
db = cos(x)*dx db = cos(x)*dx
dz = da + db dz = da + db

(Using the notation I
So, to compute a—yjust seed

algorithm with

dx = 0, dy =1




Making Rules

- Ildea of the examples can be generalized to arbitrary
functions

« Need to describe rules for translation

program evaluating expression => program evaluating
derivates

.« These are just rules known from mathematics for
calculating derivates, e.q.

- Cc=a+Db => dc = da + db
-c=a *b => dc = b * da + a * db
— ¢ = sin(a) => dc = cos(a) * da

- Note: These rules are used on number-level (not for symbolic
computation of derivatives)
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Further Rules

a-»>b
a/ b
c = a**b

cos(a)
tan(a)

(a**b standsfor a?)

dc
dc

da - db

da/b —-a*db/b**2
b*a**(b-1)*da +
logCa)*a**b*db
-sin(a) * da
da/cos(a)**2

20
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Forward Mode AD

- To translate using the rules we simply replace each
primitive operation in the original program by its
differential analogue.

- The order of computation remains unchanged: if a
statement K is evaluated before another statement L,
then the differential analogue of K is evaluated before
the analogue statement of L.

« Thisis Forward-mode Automatic Differentiation.

— Nice feature: Interleaving (function evaluation and
derivatives) is possible

— Bad feature: Need to rerun program to compute
derivative for each input (in particular for gradient)

22



Interleave computing expression and derivatives

X
dx

y
dy
a
da
b
db
Z
dz

N N N N

X ¥y

y * dx + x * dy
sin(x)
cos(x)*dx

a+b

da + db

Can keep track of value
and gradient at the
same time

Can be mathematically
founded using “dual
numbers”

Leads to direct simple
implementation of AD
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The Jacobian in Forward Mode AD

e AR">R™" x> 2z . Efficient calculating
. Calculate derivatives product w.r.t. vector r
w.r.t. ith variable x; for _ oz
. dx
all outputs z; in one  Just seed with
paSS dX1 — r1, coey an — rn
021 021 021
. a—xl(a) g (a) a_x,,(a) |
—~=| s e Special case
0Zm L 0Zm ) OZm f- R R:
oy (a) o, (a) ox., (a) : - IR, X Z

Calculate directional
derivate in direction 7.

-Vf-r

24




Another view on AD

e f: R" - R™
- Vi, =x;,i=1,...,n input variables
- v, i=1,..,1 intermediate variables

- Ym—i = V;_;, L =m—1,...,0 output variables
— . n; .
-y = ¢i(vj)j<i'¢i' R™ — R (elemental functions)

- where < is precedence relation (j < i iff v_i directly
dependsonv_j)

 n; number of elements preceding v;

W= (VJ)M

RSI
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Forward mode AD = Tangents mapping

« Assume you have time-depending paths x(t), y(t)

- Forward mode AD is mapping function evaluation
(F:x = y) plus tangents mapping F: x = 7

_Ul' —1 f?i n] — [XL,X] fori = 1, e, N
v;, ;] = [ (wy), P; (ug, 1;)] fori =1,..,1
Ym—i» Ym-il = [Vi—i, V1—i] fori =0,..,m—1

26



Dual numbers (Clifford 1873)

Want to mathematize parallel evaluation of f, [’

Dual numbers have the form (v +ve)  where
-1, 7ENR

- cisanilpotent element (¢ = 0,¢ # 0)

— compare with complex numbers x + yi where i* = —1,
which can be considered as pairs in R (more general:
quaterions)

Gives intended behaviour mirroring symbolic derivation
-(w+ve)+ (u +1ue) = (v +u) + (W+ue
- (W+ve)(u+ue) = (vu) + (vu + vu)e

RSI
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Dual numbers (Clifford 1873)

Can define functions f on dual numbers by

flv+ve) =fw) + f(v)ve

(results from Taylor series application)

Then: Chain rule works as expected:
flgw +ve)) = f(gw) + g (v)ve)
= flg)) + f'(g(w))g' (v)ve)
Can extract derivative

% (v) = € — coef f(dual — version(f)(v + 1¢))

3 ‘\?, BT & UNIVERSITAT ZU LUBECK
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Reverse Mode AD

- Whilst Forward-mode AD is easy to implement, it comes
with a very big disadvantage. ..

- For every variable we wish to compute the gradient
with respect to, we have to run the complete program
again,

- This is obviously going to be a problem if we're talking
about the gradients of a function with very many
parameters (e.g. a deep network).

« A solution is Reverse Mode Automatic Differentiation.

RSI
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Reversing the Chain Rule

- Conceptually, chain rule doesn’t care about role of
enumerator and denominator — can turn it upside down

ow
- — becomes
ot
ot :
- o becomes by renaming (s for t and u for w)
ds . . .
e is by applying chain
oJs Z dw; 0s
ou  “J ou ow;
e U is some input variable

e w;s areoutputvariables depending on u
e s isthe yet-to-be-given variable

ds 65

Now can compute in 1-pass in parallel: — 9%’ 3y
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Example

ds dw; 0s
ou —~ Ou Ow;
X =7
y =7
a=xy
b = sin(x)
z=a+b

ds
— =7
0z
ds 0zds 3 ds

b 0bodz 0z
ds 6265_65

da  0adz 0z
ds daads ds

dy  dyda  oda

ds 3 dads dbads

0y B0 GOk

3 ds N ds
—yaa cosxab
ds

= (y+cosx)£

32



Visualising dependencies

- Differentiating in reverse can be quite mind-bending:
instead of asking what input variables an output
depends on, we have to ask what output variables a
given input variable can affect.

- We can see this visually by drawing a dependency
graph of the expression (e.g. x effects a and b):

33




Translating to Code

- As before we replace the derivatives (ds/dz, ds/
db,...) with variables (gz, gb, ...) whichwe call
adjoint variables:

-gz = ?¢
- gb = gz We need only 1 pass for
~ga = gz Calculating all derivatives
- gy = X * ga
—gXx =y * ga + cos(x) * gb

- Substituting s = z in equations gives both gradients%

0z . .
and Y in last two lines

Equivalently set gz =1

£l *{t, BT & UNIVER
22552~  INSTITUT FUR INFORMATIONSSYSTEME
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Reverse mode AD = Co-tangents mapping

- Reverse mode AD: function evaluation, F: x — vy, plus
co-tangents mapping by adjoint F: y — %

o — Flx,) =y'F'(x) =%
\_/
F
v; =0 fori = 1,...,1
[Ui_n, 171'_1] = [Xi, fi] fori=1,..,n
Push(v_i)
vi = ¢i(w;) fori = 1,...,1
VYm-1 = Vj-1 fori=0,....m—1
Ui = Vi fori=0,..,m—1 : :
Zl . pg;n( 1) o " (simple algorithm
l ol without sophisticated

memory management:
fori=1,..,n just using stack)

35



But wait... Limitations of Reverse Mode AD

- We have a problem dual to that of forward AD: Now

have to run the program for each outvariable one is
interested in differentiating

- Example
: Calculating 9% and 2 each requires
- z= 2x +sinx 0x dx
_ v = 4x + coS X running the programm

— Cannotinterleave the calculations as they appear to be in
reverse mode.=> Recent research on automatization

. So: Reverse AD has advantage only if number of output
variables much smaller than number of input variables

baD Y | .
ST E unive 36
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Implementing Reverse Mode AD

There are two ways to implement Reverse AD:

1. We can parse the original program and generate the
adjoint program that calculates the derivatives.

— Potentially hard to do.

— Static, so can only be used to differentiate algorithms
that have parameters predefined.

— But, efficient (lots of opportunities for optimisation)

2. We can make a dynamicimplementation by
constructing a graph that represents the original
expression as the program runs.

5 RULYT © UNIVERSITAT ZU LUBEC
3NS5~  INSTITUT FUR INFORMATIONSSYSTEME
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Constructing an expression graph (in Python)

Goal: get a graph as

class Var:
y def __init__(self, value):
° self.value = value

self.children = []

b x = Var (0.5)
Var (4.2)

<
Il

Root of the graph are
independent variables x, y

Can have children (initially
empty): nodes that
depending on parent

38



Building expressions

. Expression creation class Var:

) Self—reglstrat!on of def __mul__(self, other):
each expression u as z = Var(self.value * other.value)
a child of each of its
dependencies w; # weight = dz/dself = other.value

: . 1f.children. d((other.value,
. Also register weight self.children.append((other.value, z))

%(used for gradient # weight = dz/dother = self.value
calculation) other.children.append((self.value, z))
return z
y
a
X # "a" 1s a new Var that is a child of
z both x and y

b # a=x*y

39



Computing gradients

- Propagate
Derivatives

« Cache derivatives
ingrad_value

RSI
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class Var:
def __init__(self):

ééif.grad_value = None

def grad(self):
1f self.grad_value is None:

# using chain rule
self.grad_value =
sum(weight * var.grad()
for weight, var in self.children)
return self.grad_value ...

a:grad_value =1.0
print("da/dx_=_{}".format(x.grad()))

40



Optimising reverse Mode AD

- The outline implemntation not very space efficient
— Instead of children direclty store in indices (Wengert list,
tape)
. Space efficiency for reverse AD is challenging hence
research topic

— Count-Trailing-Zeros CTZ): trade-off computation for
memory of caches (Griewank 92).

— But, in reality memory is relatively cheap (if managed
well)

UUUUUUUUUUUUUUUUUUUUU
EY =/~ INSTITUT FUR INFORMATIONSSYSTEME
o>

41



CTZ example

Idea: Hierarchical cache storing only O(log(N)) of all N

values in expression in forward sweep and maintained

during reverse sweep
— Cache, store first value

— Cache, stores value at 2 down chain

— Cache, stores value at 34 down the chain ...

— Cache,, stores value at n/n+1 down the chain

- 0123456789abcdef
e X X---X X

Assume linear expression of N= 16 Operators

(value indices)
(stored value indication)

42



CTZ example (continued)

- Reverse sweep (with head postion _)
- 0123456789abcdef_ (can swee over ef)
S GO —— X---==-X---X X

- 0123456789abcdef (d not cached, recalculate)
— X - X------- X---X X

- 0123456789abcdef (d not cached, recalculate)

— Xemmemmmmmeemenes X------- X---XX  from cached ¢)
+-X




CTZ example (continued)

- Reverse sweep (with head postion _)

0123456789abcdef

X-mmmmmmm o X------- X---X X
+-X

0123456789%9abcdef

X-mmmmmmm o X------- X---X X
+--X-X+-X

0123456789%9abcdef
Xmmmmmmmmmm e X--mmm- X---X X
=== X X=X X-X+-X
+-X

(sweep over ¢, missing b,
sweep to 8 and cache a)

(recompute 9 from 8§,
then 7to be recomputed
move to 0, store along 6,4)

(and soon..)
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CTZ example (continued)

e Intheend
- 0123456 89abcdef

) —— X-m-mee-X---X X
— e XXX X-X4-X
— XX +-X

— +-X
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Color Convention in this Course

- Formulae, when occurring inline

- Newly introduced terminology and definitions

- Important results (observations, theorems) as well as
emphasizing some aspects

- Examples are given with standard orange with possibly
light orange frame

« Comments ano
. Algorithms anc

notes in nearly opaque post-it
program code

« Reminders (int

ne grey fog of your memory)
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Today’s lecture is based on the following

Jonathon Hare: Lecture 5 of course ,COMP6248 Differentiable
Programming (and some Deep Learning)”
http://comp6248.ecs.soton.ac.uk/

Blog post by Rufflewind: Reverse-mode automatic differentiation: a
tutorial https://rufflewind.com/2016- 12- 30/reverse- mode- automatic-
differentiation

A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic
differentiation in machine learning: A survey. J. Mach. Learn. Res.,
18(1):5595-5637, Jan. 2017.

A. H. Gebremedhin and A. Walther. An introduction to algorithmic
differentiation. WIREs Data Mining and Knowledge Discovery,
10(1):e1334, 2020.
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