PROBABILISTIC AND
DIFFERENTIABLE PROGRAMMING

V7: Automatic Differentiation (AD)

Ozgur L. Ozcep
Universitat zu Libeck
Institut flir Informationssysteme

EEEEEEEEEEEEEEEEEEEEEEEEEE
3RSs2~» INSTITUT FUR INFORMATIONSSYSTEME
o, —

Today’s Agenda

C(FFE

0x

EEEEEEEEE
) %~ INSTITUT FUR INFORMATIONSSYSTEME

LoR-u

o

RSI
sqi S T4

I

>

WHY YOU NEED AD

& UNIVERSITAT ZU LUBECK

5

INSTITUT FUR INFORMATIONSSYSTEME

Reminder: Backprop = AD in reverse mode

Sample FEGEL i Back- Update the
through the
labeled data > —» propagate —» network
network, get :
(batch) - the errors weights
predictions
t |

Backpropagation idea

* Generate error signal that measures difference between predictions and
target values

* Use error signal to change the weights and get more

(a) Forward pass

v

accurate predictions backwards
* Underlying mathematics: chain rule

Chain rule (1-dim)
dh B df dg
dx dg dx

(for h(x) = f(g(x)))

z
2RSS~ INSTITUT FUR INFORMATIONSSYSTEME
9,

Reminder: Computational graph perspective

Function f Partial Derivatives Chain rule applied
f(x,y,Z)=(x+y)'Z af g:z afZafanZ
= qz EPa dq Ox 0dq0x
forq =x+y aq_l a_q_l df 9dfadq _
ox dy dy dqay
Gradient
Veyzf =(2,2,9) (In particular: (Y, ,,,f)(—2,5 —4) = (-4, -4, 3))
-2 (q’a_q,c')_q Forward pass:
X 4 of 0x "0y function values and
Ep (3,1,1) local gradients
X :
Backward: chain rule
5 B (2L, %)
y ’0q’ 0z
-4 g (_121_413)
0y
4 1 9f
y4 0
3 Of f

- To solve optimisation problems using gradient methods
we need to compute the gradients (derivatives) of the
objective with respect to the parameters.

— In neural nets we’re talking about the gradients of the
loss function, L with respect to the parameters 6

— AD is at the heart of ,Differentiable Programming” (the
next big thing after deep learning)
« AD s atopicon its own

« But has been come into focus with Differentiable
Programming and lead to many develeopments in the
intersection of programming languages, numerical
computing, and ML

. Symbolically
differentiate the
function with respect
to its parameters

- by hand
— using a CAS

- Make estimates using

finite differences

/ _ flathe))—f(a)
Fi(a) ~ Lathe

..+ Use Automatic
= “Differentiation

Problem: Static,
expression swell. Can't

differentiate algorithms

Problem: Numerical
errors (such as
rounding and
truncation errors)

Problem with symbolic computation

AF()-g(x) _ df)

g(x) + dg(x)f(x) (Product rule)

dx dx dx
- h(x) := g(x) - f(x)
dh(x)

— and h have two components in common

— This may also be the case for f.

— Symbollicaly calculating f won't profit from common
df (x)

dx

parts of f and

Problems with numerical calculation

Truncation error: Rounding error: due to limited
Approximation error due to precision in computation
not sufficiently small h

- tendstoOforh — 0 — Increases forh — 0

Can be mitigated partly by
using centered approximation

’ _ f(lathej)—f(a—he;)
f'(a) = .

(error shift from O (h) to

- Automatic Differentiation is a method to get exact
derivatives efficiently, by storing information as you go
forward that you can reuse as you go backwards.

— Takes code that computes a function and uses that to
compute the derivative of that function.

— The goal isn’t to obtain closed-form solutions, but to be
able to write a program that efficiently computes the
derivatives.

10

Can directly reuse
program with
for-loop -

no need for
closed-form

ll =X
lpy1 =41, (1= 1,)

f(x) =1y = 64x(1 —x)(1—22)%(1 — 8z +822)?

Manual

f(x):
V=X
fori=1to3
v = 4xvx(1 - v)
return v

or, in closed-form,
f(x):

return 64*x* (1-x)*((1-2%x) ~2)
* (1-8xx+8*x*x) "2

f(x) = 1282(1 — x) (=8 + 162)(1 — 2z)2(1 —
8z +822%) +64(1 —) (1 —2z)%(1 — 82+ 822)? —

»
"(64z(1 —22)%(1 — 8z + 822)2 — 256x(1 —) (1 —
Differentiation 2z)(1 — 8z + 8x2)?

Coding

A 4

Symbolic
Differentiation
of the Closed-form

Automatic
Differentiation

A4

Numerical
Differentiation

£2(x):
(v,dv) = (x,1)
fori=1to3
(v,dv) = (4xv*(1-v), 4xdv-8*v*dv)
return (v,dv)

£7(x0) = f'(20)
Exact

£2(x):
return 128*x* (1 — x)* (-8 + 16%*x)

((1 - 2%x) "2) (1 — 8*x + 8%x*X)
+64x(1 - x)*x((1 - 2*x)"2)*((1
— 8%x + 8*x*x)"2) - (64*x*x(1 -
2%x)"2)* (1 — 8*x + 8*x*x) "2 —
256%x* (1 — x)*(1 - 2*x)*(1 - 8*x
+ 8%x*x) "2

£’ <X0> f/(ll'uJ
Exact

£2(x):
h =0.000001
return (f(x+h) - f(x)) /h

£ (x0) ~ f'(z0)
Approximate

No one has
time for manual
computation

Gives you smell
of the expression
swell

Small h (as we have
seen) does not help
w.r.t. rounding errors

& UNIVERSITAT ZU LUBECK
INSTITUT FUR INFORMATIONSSYSTEME

Ex: Baydin et al. 2017 1

AUTOMATIZATION

ERSIp
NEL
ST,

| S UNIVERSITAT ZU LUBECK
= INSTITUT FUR INFORMATIONSSYSTEME

~

12

From Differentiation to Programming

- Example (Math) - Example (code)
x =7 X=7
y =7 Y= 7
a=xy a=x%*y
b = sin(x) b = sin(x)

Z=a+b Z=a+ b

13

The chain rule for vectors

Given functions [, g with

_rRm 5 Rn LR

-x P y=gxr- z=f()
the chain rule leads to the partial derivatives

0z 0z 0y]

dx; L dy; dx;
j

. . _ ()"
(in short;‘orm. V,z = (ax) Vyz
y

where (a_) is the n x m Jacobian matrix of g)

X

g =
TP = universiTAT 2u LoBECK
3RSs2~» INSTITUT FUR INFORMATIONSSYSTEME
) =4

14

Let us rename for the following

Given functions [, g with

_rm 5 Rv LR

-t pu=gx)r w=f(u
the chain rule leads to the partial derivatives

ot Liou; ot
]

w is some output variable from a family of outputs

{w;} and u; are the inputs variables w depends on.

15

Applying the chain rule

Example expression Derivatives w.r.t. some yet to be
given variable t

x =7 0_x — 7

y = ? dt .

a=xy (3_y — 7

— o dt

i) _ er-ll—()l;) da B dy N 0x
ot ot 7 at
b dx
Fri COS X 5
dz da Jb

=—+

adt dt ot

: : .0
« If we substitutet = x we get an algorithm for computing EZC'

* Choosingt = vy similarly gives S—i.

esqif’f'r");

3 %

D Nz,

;*%; UNIVERSITAT ZU LUBECK ‘]6
3 %% INSTITUT FUR INFORMATIONSSYSTEME

Translating to code

Derivatives as programs Substitutingt = x
dx="? dx= 1
dY= 7 dy= 0
da =y * dx + x * dy da =y * dx + x * dy
db = cos(x)*dx db = cos(x)*dx
dz = da + db dz = da + db

(Using the notation 5,
dx dy So, to compute —— just seed
dX=—dy=—,...)

=0 B =50 algorithm with

dx = 1, dy = 0

17

Translating to code

Derivatives as programs Substitutingt =y
dx=7 dx= 0
dY= ? dy= 1
da =y * dx + x * dy da =y * dx + x * dy
db = cos(x)*dx db = cos(x)*dx
dz = da + db dz = da + db

(Using the notation I
So, to compute a—yjust seed

algorithm with

dx = 0, dy =1

Making Rules

- Ildea of the examples can be generalized to arbitrary
functions

« Need to describe rules for translation

program evaluating expression => program evaluating
derivates

.« These are just rules known from mathematics for
calculating derivates, e.q.

- Cc=a+Db => dc = da + db
-c=a *b => dc = b * da + a * db
— ¢ = sin(a) => dc = cos(a) * da

- Note: These rules are used on number-level (not for symbolic
computation of derivatives)

UUUUUUUUUUUUUUUUUUUUU
EY ==~ INSTITUT FUR INFORMATIONSSYSTEME
o>

Further Rules

a-»>b
a/ b
c = a**b

cos(a)
tan(a)

(a**b standsfor a?)

dc
dc

da - db

da/b —-a*db/b**2
b*a**(b-1)*da +
logCa)*a**b*db
-sin(a) * da
da/cos(a)**2

20

FORWARD MODE

ERSIp
NEL
ST,

| S UNIVERSITAT ZU LUBECK
= INSTITUT FUR INFORMATIONSSYSTEME

~

21

Forward Mode AD

- To translate using the rules we simply replace each
primitive operation in the original program by its
differential analogue.

- The order of computation remains unchanged: if a
statement K is evaluated before another statement L,
then the differential analogue of K is evaluated before
the analogue statement of L.

« Thisis Forward-mode Automatic Differentiation.

— Nice feature: Interleaving (function evaluation and
derivatives) is possible

— Bad feature: Need to rerun program to compute
derivative for each input (in particular for gradient)

22

Interleave computing expression and derivatives

X
dx

y
dy
a
da
b
db
Z
dz

N N N N

X ¥y

y * dx + x * dy
sin(x)
cos(x)*dx

a+b

da + db

Can keep track of value
and gradient at the
same time

Can be mathematically
founded using “dual
numbers”

Leads to direct simple
implementation of AD

23

The Jacobian in Forward Mode AD

e AR">R™" x> 2z . Efficient calculating
. Calculate derivatives product w.r.t. vector r
w.r.t. ith variable x; for _ oz
. dx
all outputs z; in one Just seed with
paSS dX1 — r1, coey an — rn
021 021 021
. a—xl(a) g (a) a_x,,(a) |
—~=| s e Special case
0Zm L 0Zm) OZm f- R R:
oy (a) o, (a) ox., (a) : - IR, X Z

Calculate directional
derivate in direction 7.

-Vf-r

24

Another view on AD

e f: R" - R™
- Vi, =x;,i=1,...,n input variables
- v, i=1,..,1 intermediate variables

- Ym—i = V;_;, L =m—1,...,0 output variables
— . n; .
-y = ¢i(vj)j<i'¢i' R™ — R (elemental functions)

- where < is precedence relation (j < i iff v_i directly
dependsonv_j)

 n; number of elements preceding v;

W= (VJ)M

RSI
GERSIZ,

EEEEEEEEEEEEEEEEEEEEE
3 == > INSTITUT FUR INFORMATIONSSYSTEME
—

25

Forward mode AD = Tangents mapping

« Assume you have time-depending paths x(t), y(t)

- Forward mode AD is mapping function evaluation
(F:x = y) plus tangents mapping F: x = 7

_Ul' —1 f?i n] — [XL,X] fori = 1, e, N
v;, ;] = [(wy), P; (ug, 1;)] fori =1,..,1
Ym—i» Ym-il = [Vi—i, V1—i] fori =0,..,m—1

26

Dual numbers (Clifford 1873)

Want to mathematize parallel evaluation of f, [’

Dual numbers have the form (v +ve) where
-1, 7ENR

- cisanilpotent element (¢ = 0,¢ # 0)

— compare with complex numbers x + yi where i* = —1,
which can be considered as pairs in R (more general:
quaterions)

Gives intended behaviour mirroring symbolic derivation
-(w+ve)+ (u +1ue) = (v +u) + (W+ue
- (W+ve)(u+ue) = (vu) + (vu + vu)e

RSI
GERSIZ,

IIIIIIIIIIIIIIIIIIII
EY 2/ INSTITUT FUR INFORMATIONSSYSTEME

27

Dual numbers (Clifford 1873)

Can define functions f on dual numbers by

flv+ve) =fw) + f(v)ve

(results from Taylor series application)

Then: Chain rule works as expected:
flgw +ve)) = f(gw) + g (v)ve)
= flg)) + f'(g(w))g' (v)ve)
Can extract derivative

% (v) = € — coef f(dual — version(f)(v + 1¢))

3 ‘\?, BT & UNIVERSITAT ZU LUBECK
22552~ INSTITUT FUR INFORMATIONSSYSTEME
¥

28

LoR-u

o

RSI
sqi S T4

I

>

REVERSE MODE

& UNIVERSITAT ZU LUBECK

5

INSTITUT FUR INFORMATIONSSYSTEME

29

Reverse Mode AD

- Whilst Forward-mode AD is easy to implement, it comes
with a very big disadvantage. ..

- For every variable we wish to compute the gradient
with respect to, we have to run the complete program
again,

- This is obviously going to be a problem if we're talking
about the gradients of a function with very many
parameters (e.g. a deep network).

« A solution is Reverse Mode Automatic Differentiation.

RSI
quququququ

5)

> ddh

§\%; UNIVERSITAT ZU LUBECK 30
3 27 INSTITUT FUR INFORMATIONSSYSTEME

Reversing the Chain Rule

- Conceptually, chain rule doesn’t care about role of
enumerator and denominator — can turn it upside down

ow
- — becomes
ot
ot :
- o becomes by renaming (s for t and u for w)
ds . . .
e is by applying chain
oJs Z dw; 0s
ou “J ou ow;
e U is some input variable

e w;s areoutputvariables depending on u
e s isthe yet-to-be-given variable

ds 65

Now can compute in 1-pass in parallel: — 9%’ 3y

31

Example

ds dw; 0s
ou —~ Ou Ow;
X =7
y =7
a=xy
b = sin(x)
z=a+b

ds
— =7
0z
ds 0zds 3 ds

b 0bodz 0z
ds 6265_65

da 0adz 0z
ds daads ds

dy dyda oda

ds 3 dads dbads

0y B0 GOk

3 ds N ds
—yaa cosxab
ds

= (y+cosx)£

32

Visualising dependencies

- Differentiating in reverse can be quite mind-bending:
instead of asking what input variables an output
depends on, we have to ask what output variables a
given input variable can affect.

- We can see this visually by drawing a dependency
graph of the expression (e.g. x effects a and b):

33

Translating to Code

- As before we replace the derivatives (ds/dz, ds/
db,...) with variables (gz, gb, ...) whichwe call
adjoint variables:

-gz = ?¢
- gb = gz We need only 1 pass for
~ga = gz Calculating all derivatives
- gy = X * ga
—gXx =y * ga + cos(x) * gb

- Substituting s = z in equations gives both gradients%

0z . .
and Y in last two lines

Equivalently set gz =1

£l *{t, BT & UNIVER
22552~ INSTITUT FUR INFORMATIONSSYSTEME
¥

34

Reverse mode AD = Co-tangents mapping

- Reverse mode AD: function evaluation, F: x — vy, plus
co-tangents mapping by adjoint F: y — %

o — Flx,) =y'F'(x) =%
_/
F
v; =0 fori = 1,...,1
[Ui_n, 171'_1] = [Xi, fi] fori=1,..,n
Push(v_i)
vi = ¢i(w;) fori = 1,...,1
VYm-1 = Vj-1 fori=0,....m—1
Ui = Vi fori=0,..,m—1 : :
Zl . pg;n(1) o " (simple algorithm
l ol without sophisticated

memory management:
fori=1,..,n just using stack)

35

But wait... Limitations of Reverse Mode AD

- We have a problem dual to that of forward AD: Now

have to run the program for each outvariable one is
interested in differentiating

- Example
: Calculating 9% and 2 each requires
- z= 2x +sinx 0x dx
_ v = 4x + coS X running the programm

— Cannotinterleave the calculations as they appear to be in
reverse mode.=> Recent research on automatization

. So: Reverse AD has advantage only if number of output
variables much smaller than number of input variables

baD Y | .
ST E unive 36
RSS2 ¢ INSTITUT FUR INFORMATIONSSYSTEME

25 s1en”

Implementing Reverse Mode AD

There are two ways to implement Reverse AD:

1. We can parse the original program and generate the
adjoint program that calculates the derivatives.

— Potentially hard to do.

— Static, so can only be used to differentiate algorithms
that have parameters predefined.

— But, efficient (lots of opportunities for optimisation)

2. We can make a dynamicimplementation by
constructing a graph that represents the original
expression as the program runs.

5 RULYT © UNIVERSITAT ZU LUBEC
3NS5~ INSTITUT FUR INFORMATIONSSYSTEME

37

Constructing an expression graph (in Python)

Goal: get a graph as

class Var:
y def __init__(self, value):
° self.value = value

self.children = []

b x = Var (0.5)
Var (4.2)

<
Il

Root of the graph are
independent variables x, y

Can have children (initially
empty): nodes that
depending on parent

38

Building expressions

. Expression creation class Var:

) Self—reglstrat!on of def __mul__(self, other):
each expression u as z = Var(self.value * other.value)
a child of each of its
dependencies w; # weight = dz/dself = other.value

: . 1f.children. d((other.value,
. Also register weight self.children.append((other.value, z))

%(used for gradient # weight = dz/dother = self.value
calculation) other.children.append((self.value, z))
return z
y
a
X # "a" 1s a new Var that is a child of
z both x and y

b # a=x*y

39

Computing gradients

- Propagate
Derivatives

« Cache derivatives
ingrad_value

RSI
GERSIZ,

EEEEEEEEEEEEEEEEEEEE
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

class Var:
def __init__(self):

ééif.grad_value = None

def grad(self):
1f self.grad_value is None:

using chain rule
self.grad_value =
sum(weight * var.grad()
for weight, var in self.children)
return self.grad_value ...

a:grad_value =1.0
print("da/dx_=_{}".format(x.grad()))

40

Optimising reverse Mode AD

- The outline implemntation not very space efficient
— Instead of children direclty store in indices (Wengert list,
tape)
. Space efficiency for reverse AD is challenging hence
research topic

— Count-Trailing-Zeros CTZ): trade-off computation for
memory of caches (Griewank 92).

— But, in reality memory is relatively cheap (if managed
well)

UUUUUUUUUUUUUUUUUUUUU
EY =/~ INSTITUT FUR INFORMATIONSSYSTEME
o>

41

CTZ example

Idea: Hierarchical cache storing only O(log(N)) of all N

values in expression in forward sweep and maintained

during reverse sweep
— Cache, store first value

— Cache, stores value at 2 down chain

— Cache, stores value at 34 down the chain ...

— Cache,, stores value at n/n+1 down the chain

- 0123456789abcdef
e X X---X X

Assume linear expression of N= 16 Operators

(value indices)
(stored value indication)

42

CTZ example (continued)

- Reverse sweep (with head postion _)
- 0123456789abcdef_ (can swee over ef)
S GO —— X---==-X---X X

- 0123456789abcdef (d not cached, recalculate)
— X - X------- X---X X

- 0123456789abcdef (d not cached, recalculate)

— Xemmemmmmmeemenes X------- X---XX from cached ¢)
+-X

CTZ example (continued)

- Reverse sweep (with head postion _)

0123456789abcdef

X-mmmmmmm o X------- X---X X
+-X

0123456789%9abcdef

X-mmmmmmm o X------- X---X X
+--X-X+-X

0123456789%9abcdef
Xmmmmmmmmmm e X--mmm- X---X X
=== X X=X X-X+-X
+-X

(sweep over ¢, missing b,
sweep to 8 and cache a)

(recompute 9 from 8§,
then 7to be recomputed
move to 0, store along 6,4)

(and soon..)

44

CTZ example (continued)

e Intheend
- 0123456 89abcdef

) —— X-m-mee-X---X X
— e XXX X-X4-X
— XX +-X

— +-X

RSI
ERSIT,

UM,

Uhhh, a lecture with a hopefully useful

APPENDIX

UNIVERSITAT ZU LUBECK
INSTITUT FUR INFORMATIONSSYSTEME

46

Color Convention in this Course

- Formulae, when occurring inline

- Newly introduced terminology and definitions

- Important results (observations, theorems) as well as
emphasizing some aspects

- Examples are given with standard orange with possibly
light orange frame

« Comments ano
. Algorithms anc

notes in nearly opaque post-it
program code

« Reminders (int

ne grey fog of your memory)

47

Today’s lecture is based on the following

Jonathon Hare: Lecture 5 of course ,COMP6248 Differentiable
Programming (and some Deep Learning)”
http://comp6248.ecs.soton.ac.uk/

Blog post by Rufflewind: Reverse-mode automatic differentiation: a
tutorial https://rufflewind.com/2016- 12- 30/reverse- mode- automatic-
differentiation

A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic
differentiation in machine learning: A survey. J. Mach. Learn. Res.,
18(1):5595-5637, Jan. 2017.

A. H. Gebremedhin and A. Walther. An introduction to algorithmic
differentiation. WIREs Data Mining and Knowledge Discovery,
10(1):e1334, 2020.

48

http://comp6248.ecs.soton.ac.uk/
https://rufflewind.com/2016-%2012-%2030/reverse-%20mode-%20automatic-%20differentiation

References

. W. K. Clifford. Preliminary sketch of bi-quaternions. Proceedings of the London Mathematical Society, pages 381—395,
1873.

. A. Griewank. Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation.
Optimization Methods and Software, 1(1):35-54, 1992.

/ & UNIVERSITAT ZU LUBECK
%= INSTITUT FUR INFORMATIONSSYSTEME

49

