PROBABILISTIC AND
DIFFERENTIABLE PROGRAMMING

V8: Probabilistic Programming |

Ozgur L. Ozcep
Universitat zu Libeck
Institut flir Informationssysteme

EEEEEEEEEEEEEEEEEEEEEEEEEE
3RSs2~» INSTITUT FUR INFORMATIONSSYSTEME
o, —

TOdaylS Agenda (in classical linear form)

1.
2.
3.
4.
5.
6.

Premotivation: Probabilities

Motivation: Probabilistic Programming

Running Example

Semantics of Probabilistic Programs
Nonparametrics

Landscape of Probabilistic Programming Languages

UUUUUUUUUUUUUUUUUUUUUUUU
3RSs2~» INSTITUT FUR INFORMATIONSSYSTEME
—

PREMOTIVATION: PROBABILITIES

& UNIVERSITAT ZU LUBECK
INSTITUT FUR INFORMATIONSSYSTEME

Remember: Problems with deep neural networks

- Very data hungry (e.g. often millions of examples)
- Very compute-intensive to train and deploy

- Poor at representing uncertainty

- Easily fooled by adversarial examples

- Finicky to optimise: non-convex + choice of
architecture, learning procedure, expertise required

- Uninterpretable black-boxes, lacking in trasparency,
difficult to trust

- => Amongst others, these problems lead to
developments towards generative models (lecture /&)

Bayes’ rule to rule them all ...

. If we use the mathematics of probability theory to
express all forms of uncertainty and noise associated
with our model ...

- ..theninverse probability (-> Bayes rule) allows us to
infer unknown quantities, adapt our models, make
predictions, and learn from data.

P(D|H)-P(H) P(D|H) - P(H)

PUHID) = =5y =5 pImP()

H = hypothesis, model
D = data, observation Bayes’ Rule

;7 The third wave of
differentiable programming

Getting deep systems that
know when they do not know
and, hence, recognise new
situations and adapt to them

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming n

1) Yes, a slide, quoting a slide

O AT &Y N oamaTioNssYsTEME IM FOCUS DAS LEBEN 6

Reminder on basics of w.r.t. Bayes’ Rule

P(D|H)-P(H) P(D|H)-P(H)
P(D) X, P(D|h)P(h)

P(H|D) =

If H U D is the set of all RVs, then P(H, D) is called the full joint
distribution, which is all you need for inference tasks

Bayes'rule relies on conditional probability
- P(H|D) = P(H,D)/P(D)if P(D) > 0

The step in the second equation relies on marginalization
- P(D) = Xpen P(D, 1)

With conditional probabilities this gives conditioning (on H):
- P(D) = pen P(D | h)P(R)

Reminder: Bayes Net/Probabilistic Graphical Model (PGM)

|dea: Encode efficiently (factorize)
full joint probabilities
- Defines full joint distribution

- P(Xy, ..., X,) =112, P (X; | Parents(X;))
— Here:

P(S,C,R,W)

= P(C)P(S|C)P(R|IC)P(W|S,R)
Gives, e.g.,

P(c,s,~r,w)= 05-0.1-0.2-09

- Graph topology encodes independencies
of variables (efficiency!); e.qg.

» Sindependent of R given C:
P(S|C) = P(S|C,R)

C P(S|C)
t .10
f .50

P(C)=.5

C P(RIC)
t .80
f .20

W S R PWSR)

t
t
f
f

.99
.90
.90

t
f
t
f .00

For in-depth treatment of (other) PGMs see (Koller/Friedman 2019)

IM FOCUS DAS LEBEN 8

Why then not stick to probabilities & PGMs

- Problem 1: Probabilistic model development and the
derivation of inference algorithms is time-consuming
and error-prone.

- Problem 2: Exact (and approximate inference) hard due
to normalization)

« Solutionto 1

— Develop Probabilistic Programming (PP) Languages for
expressing probabilistic models as computer programs
that generate data (i.e. simulators).

— Derive Universal Inference Engines for these languages
that do inference over program traces given observed

data (Bayes rule on computer programs).

MOTIVATION: PROBABILISTIC
PROGRAMMING

RSI
GERSIZ,

EEEEEEEEEEEEEEEEEEEEEE
3 == > INSTITUT FUR INFORMATIONSSYSTEME
—

A ,Vennified” Overview on Role of PP

Bayesian/Probabilistic Machine Learning Deep Learning
IFIS Course Intelligent Agents; V8 \V/3-V6

Generative DL

WwoJ} s3jo.d
WoJ} s11joid

sa1jduwaxa

Probabilistic Programming Gradient Descent/
Automatic Differentiation YEN

The third wave of

differentiable programming EffiCient representation Of

know when they do not know pro ba bilities

and, hence, recognise new

situations and adapt to them V1 O V1 2
=
1970)
%

: UNIVERSITAT ZU LUBECK IM FOCUS DAS LEBEN 11

INSTITUT FUR INFORMATIONSSYSTEME

(Even more Vennification)

Statistics:
Inference & Theroy

IM FOCUS DAS LEBEN 12

/& UNIVERSITAT ZU LUBECK
o INSTITUT FUR INFORMATIONSSYSTEME

Of course this is also a reason ...

PHYS {94

Probabilistic programming does in 50 lines
of code what used to take thousands

13 April 2015, by Larry Hardesty

systems with thousands of lines of code.

"This is the first time that we're introducing
probabilistic programming in the vision area," says
Tejas Kulkarni, an MIT graduate student in brain

and cognitive sciences and first author on the new
paper. "The whole hope is to write very flexible
models, both generative and discriminative models,
as short probabilistic code, and then not do
anything else. General-purpose inference schemes
solve the problems."

Data

Picture

Baseline |,ference

By the standards of conventional computer

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

13

. OeOe: Note the ,inverted”
COmpa riIson use of variables x and y

INntuition

Inference

Parameters] A[p(xly)]

7

[Parameters]

\

Program Program p(y|x)p(x)

A 4

Output Observations y

CS Probabilistic Programming Statistics

... EX:F.Wood: Probabilistic Programming, PPAML Summer School, Portland 2016

BEN 14

LoR-u

o

RSI
sqi S T4

I

>

RUNNING EXAMPLE

& UNIVERSITAT ZU LUBECK

5

INSTITUT FUR INFORMATIONSSYSTEME

15

RSI
44444

A probabilistic program (PP) is any program that can
depend on random choices.
— Can be written in any language that has a random
number generator.
— You can specify any computable prior by simply writing
down a PP that generates samples.
— A probabilistic program implicitly defines a distribution
over its output.

* There are many different PP languages based on
different paradigms: imperative, functional, and logical

* Here we illustrate PPs with a lightweight approach for
imperative programming based on MATLAB

TUEYT = UNIVERSITAT ZU LUBECK

:
AR08 INSTITUT FOR INFORMATIONSSYSTEME
&

16

An Example Probabilistic Program

flip = rand < 0.5
% flip 1s 1 1f random number from [O,1] smaller 0,5
if flip
X = randg + 2 % Random draw from Gamma(1l,1)
else

X = randn % Random draw from standard Normal
end

Implied distributions over variables

0.035; 1,

0.03 1
0.8

p(flip) °°

0.4

0.025 1

p(m) 0.02 1
0.0151

0.01 1

0.2
0.005 1

10

EEEEEEEEEEEEEEEEEEEEE
EY ==~ INSTITUT FUR INFORMATIONSSYSTEME
o>

Reminder: Gamma distribution I'(k, 6)

0.5

f(x; k,6)

04 F
0.3 F
0.2 F

0.1 |

0O 2 4 6 8 10 12 14 16 18 20

Probability density function of T

X

xk—le_g
f(x;k,8) = TG
where T'(k) = fooo x¥~le=* dx is gamma-function

(generelization of factorial to complex numbers)

18

An Example Probabilistic Program

flip = rand < 0.5
% flip 1s 1 if random number from [@,1] smaller 0,5
1f flip
X = randg + 2 % Random draw from Gamma(1,1)
else
X = randn % Random draw from standard Normal
end

Implied distributions over variables

19

Conditioning

Once we've defined a prior, what can we do with it?
PP defines joint distribution P (D, N, H)
— D to be the subset of variables we observe (condition on)

— H the set of variables we're interested in

— N the set of variables that we're not interested in, (so
we’ll marginalize them out).

We want to know about P(H|D)

Probabilistic Programming

— Usually refers to doing conditional inference when a
probabilistic program specifies your prior.

— Could also be described as automated inference given a
model specified by a generative procedure.

UUUUUUUUUUUUUUUUUUUUU
EN 2~ INSTITUT FUR INFORMATIONSSYSTEME
=y

20

Conditioning with Probabilistic Program

flip = rand < 0.5
% flip 1s 1 if random number from [@,1] smaller 0,5
if flip
X = randg + 2 % Random draw from Gamma(1,1)

else
X = randn % Random draw from standard Normal

end

Implied distributions over variables
.

Condition/Evidence

D =2<x<3

o
o

o
o

o
(V)

p(flip]2 < x < 3)

21

SEMANTICS OF PROBABILISTIC
PROGRAMS

RSI
GERSIZ,

EEEEEEEEEEEEEEEEEEEEEE
3 == > INSTITUT FUR INFORMATIONSSYSTEME
—

Can we develop generic inference for all PPs?

. Rejection sampling i‘c??;pm”d <0 e
1. Run the program with x = randg + 2
fresh source of random e1¢e o> 2.7
numbers X = randn
2. If condition D is true, end

record H as a sample;
else ignore the sample

3. Repeat

In case of our example (with D = 2 < x < 3) this
produces samples over the execution trace, e.qg.,
(True, 2.7)

23

Can we develop generic inference for all PPs?

. Rejection samplin flip = rand < 0.5
1. Run the program with x = randg + 2
fresh source of random e1se % 5> 3.2
numbers X = randn
2. If condition D is true, end
record H as a sample; Sample
else ignore the sample (True, 3.2)
3. Repeat rejected

In case of our example (with D = 2 < x < 3)this
produces samples over the execution trace, e.qg.,
(True, 2.7)

24

Can we develop generic inference for all PPs?

. Rejection sampling i‘c??;pm”d <0 e
1. Run the program with x = randg + 2
fresh source of random e1¢e 5> 2.1
numbers X = randn
2. If condition D is true, end

record H as a sample;
else ignore the sample

3. Repeat

In case of our example (with D = 2 < x < 3)this
produces samples over the execution trace, e.qg.,
(True, 2.7) (True, 2.1)

25

Can we develop generic inference for all PPs?

.« Rejection sampling
1. Run the program with

fresh source of random
numbers

2. If condition D is true,
record H as a sample;
else ignore the sample

3. Repeat

In case of our example (with D

flip = rand < 0.5

if flip >> False
X = randg + 2

else

X = randn

end > -1.3
Sample
(False, -1.3)
rejected

= 2 < x < 3)this

produces samples over the execution trace, e.qg.,

(True, 2.7) (True, 2.1)

26

Can we develop generic inference for all PPs?

.« Rejection sampling
1. Run the program with

fresh source of random
numbers

2. If condition D is true,
record H as a sample;
else ignore the sample

3. Repeat

In case of our example (with D

flip = rand < 0.5

if flip >> False
X = randg + 2

else

X = randn

end >> 2.3

= 2 < x < 3)this

produces samples over the execution trace, e.qg.,
(True, 2.7) (True, 2.1) (False, 2.3),...

27

Of course we can do better

- Rejection sampling (as the simplest form of stochastic
simulation) is inefficient

— Rejects to many samples because

— Probability P (D) is small (drops exponentially with
increasing numbers of evidence variables)

. Better is likelihood weighting:

— produce only samples consistent with evidence, the
probabilities of which are incorporated as weights

« Another well-known stochastic simulation is an instance
of Markov-Chain-Monte-Carlo (MCMC) simulation:
Metropolis-Hastings (MH)

28

Reminder: Likelihood Weighting for Bayes Nets

P(Rain|Sprinkler=true, WetGrass = true) = ?
Sampling

w = 1.0 (weight initialized)

Sample P(Cloudy) = (0.5,0.5) => true

Sprinkler is an evidence variable with value
true

w € w * P(Sprinkler=true | Cloudy = true) = 0.1
Sample P(Rain|Cloudy=true)=(0.8,0.2) => true
WetGrass is an evidence variable with value

true
w €w * P(WetGrass=true |Sprinkler=true, Rain
= true) = 0.099

[true, true, true, true] with weight 0.099
Estimating

Accumulating weights to either Rain=true or
Rain=false

Normalize (= divide by sum of weights)

C P(S|C)
t .10
f .50

C P(RIC)
t .80
f .20

@ S R PWSR)

t t .99
t f .90
f t .90
f f .00

IM FOCUS DAS LEBEN 29

Reminder: Markov Chain Monte Carlo (MCMQ)

. Let's think of the network as being in a particular current
state specifying a value for every variable

- MCMC generates each event by making a random change to
the preceding event

- The next state is generated by randomly sampling a value
for one of the non-evidence variables X;, conditioned on the
current values of the variables in the Markov blanket of X,

- Note: Likelihood Weighting only takes into account the
evidences of the parents. (Problematic if evidence on
leaves).

Reminder: Markov Blanket

- Markov blanket: Parents + children + children’s parents

- Node is conditionally independent of all other nodes in network, given
its Markov Blanket

444444

S RULTT = UNIVERSITAT ZU LUBECK
2 =2~ INSTITUT FUR INFORMATIONSSYSTEME

Reminder: MCMC

With Sprinkler =true, WetGrass =true, there are four states:

iz

I I,

Dy
e

Arrows describe transition probabilities; leads to a (the Markov) chain of states
Wander about for a while, average what you see

>

IM FOCUS DAS LEBEN

Reminder: Markov Chain Monte Carlo: Example

e P(Rain|Sprinkler = true,WetGrass = c P(SIC) P(C)=.5 C P(RIC)
true) =7
. States [Cloudy,Sprinkler,Rain,WetGrass] -

— Cloudy ~ P(Cloudy|Sprinkler= true,
Rain=false) => Cloudy = false

State update: [false, true, false, true]

— Rain ~ P(Rain|Cloudy=false,Sprinkler=true,
WetGrass=true) => Rain = true

- Initial state is [true, true, false, true] : '13 ! £ 20
- The following steps are executed repeatedly: d

State update: [false, true, true, true]

- After all the iterations, let’s say the process
visited 20 states where Rain is true and 60

states where Rain is false then the answer : : 'zz

of the query is '

NORMALIZE((20,60))=(0.25,0.75) f ot .90
f f .00

IM FOCUS DAS LEBEN

Example: Metropolis-Hastings

1.

Start with a trace

Change one random decision,
discarding subsequent
decisions

Sample subsequent decisions

Accept with appropriate
MCMC acceptance probability

1.

(True, 2.3)

(False,)

(False, -0,9)

Reject, does
not satisfy
observation

34

Example: Metropolis-Hastings

1. Start with at race 1. (True, 2.3)

2. Change one randomdecision, > (True, 2.9)
discarding subsequent

decisions ,
. 3. Nothing to
3. Sample subsequent decisions do
4. Accept with appropriate 4. Accept,

MCMC acceptance probability maybe

35

Semantics of PP via MH - Notation

- Evaluating a program results in a sequence of random
choices

- X1 "’Ptl(x1)
Y "’Ptz(xz | x1)

- X3~ Ptg(x3 | x2,%1)

- k ~ ptk(xk | xk_l, ...,Xl)
(for execution trace x = xy, ... Xp_1)

- Density/Probability of a particular evaluation is then

K
B p(xb ""xn) — k=1 ptk(xk | Xk—1» ""xl)

- Then perform MH over the execution traces x

36

MH over traces

« Select arandom decision in the execution trace x
- E.g.xy
- Propose a new value
- Eg.x'y ~ K¢ (xp | x) (K¢, is called proposal distribution)
« Run the program to determine all subsequent choices (x;: 1 > k),
reusing current choices where possible

- Propose moving from the state x4, ..., xg to
/ !/
(X1 ey X1 5 X gy wee s Xper)

)\ - -

N

old choices new choices

- Accept the change with the appropriate MH acceptance
probability (= min{«, 1})

x x, K, I/ /)}
Ktk(Kl k)Hi=kPtg(xiIX1,---,xk_1,xk,...,xi_1)

— a - 7 %
Ktk(xk|xk) [li=k ptl.(xilxl,...,xk_l,xk,...,xi_l)

37

NONPARAMETRICS

ERSIp
NEL
ST,

| S UNIVERSITAT ZU LUBECK
= INSTITUT FUR INFORMATIONSSYSTEME

~

38

Works also for non-parametric models

. If we can sample from the prior of a nonparametric
model using finite resources with probability 1, then we
can perform inference automatically using the
techniques described thus far

- We can sample from a number of nonparametric
processes/models with finite resources (with probability
1) using a variety of techniques

— Gaussian processes via marginalisation <=
— Dirichlet processes via stick breaking
— Indian Buffet processes via urn schemes

39

Tackling non-parametric models

- Non-parametric models: Allow distributions over
arbitrary functions to learn a target function

output, f(x)

-5 0 5
input, x input, x
Prior Posterior

_+ Typical Example: Gaussian Process (GP)

IIIIIIIIIII
EY 2 INSTITUT FUR INFORMATIONSSYSTEME
6S

40

Reminder: Multivariate Gaussians

Xl
: X, :
Writer.v.X =| Then define X ~N(p,X) tomean
Xm
B] (1 I oy-l)
p(x) = T expl—5 (X—p)” X (X—p)
Qr) 2 | &
Co-variance matrix
where the Gaussian’ s parameters U, o2 o, - O,
have... 2
u: ﬂz Z: 012 O 2 °c sz
Hy G, Oy 0 Ol

where Ojj = COU(Xi,Xj) =
One can show: E[X] = u and Cov[X] = Z. E[(X; —EX)) - (X; — E(X))]

Reminder: Gaussians

—joint Gaussian
—conditional

The class of Gaussians is invariant both under conditionalizing and marginalizing

—joint Gaussian
—marginal

42

Tackling non-parametric models

Gaussian Process (GPs)

— A Gaussian process is a collection of random variables,
any finite number of which have (consistent) Gaussian
distributions

— GPs generalize of multivariate Gaussians to infinitely
many variables (and infinitely long vector = function)

A Gaussian distribution N (u, X) is specified by mean
vector i and covariance matrix X

- A GPis fully specified by a mean function p(x) and a
covariance function k(x, x)

43

Doing the sampling finitely

- Marginalization works here too, so can marginalize on
all variables except for finite vector of RVs x

- p(x) = [p(x,y)dy (forarbitrary continous variables)

— For Gaussians

- Ifp(x,y) = N ((Z) (;T lg)), then p(x) = N(a, A)

44

Advanced Automatic Inference

- Now that we have separated inference and model
design, can use any inference algorithm.

- Free to develop inference algorithms independently of
specific models.

- Once graphical models identified as a general class,
many model-agnostic inference methods:

— Belief Propagation

— Pseudo-likelihood

— Mean-field Variational
- MCMC

- What generic inference algorithms can we implement
... formore expressive generative models?

33333333
3RSs2~» INSTITUT FUR INFORMATIONSSYSTEME
—

45

LANDSCAPE OF PROBABILISTIC
PROGRAMMING LANGUAGES

RSI
GERSIZ,

EEEEEEEEEEEEEEEEEEEEEE
3 == > INSTITUT FUR INFORMATIONSSYSTEME
—

History of PP with Programming Languages

2010

2000

1990

PL

Figaro
HANSAI

IBAL

Simula

Long

Al

ProblLog

Prism

Prolog

Blog

ML

webP

R
Venturerolgr?a Ll

° Factorie

KMP

Church | ter NET

STATS

LibBi
STAN

JAGS

WinBUGS

BUGS

47

First-Order PP languages

FL Al ML STATS

Pfobabilisti ,Haskell,Sche
WebREL

Venture %ﬁaig%thc_c

A Church

Simula Prolog

IM FOCUS DAS LEBEN 48

Higher-Order PP Languages

PL Al ML SIAIS
webPPL @ .
ilistic- LibB
Figaro Venturero/&)r?atlclsétrlwcc STANI !
2010 pansal
~ InferNET
ProbLog\ Factorie JAGS
2000 IBAL
Prism KMP WinBUGS
1990
BUGS
Simula Prolog

49

The Church Family

. Lisp like constructs extended with two main functions
— Sample
— Observe

. For a book-lengthy treatment see (Van de Ment et al
2018)

— In particular, describes a formal grammar, astonishingly
simple grammar

UUUUUUUUUUUUUUUUUUUUUUUU
3RSs2~» INSTITUT FUR INFORMATIONSSYSTEME
—

50

The church family

Church

Interpreted Anglican<— VentureScrig

Probabilistic-C

WebPPL <> Anglican :
v v v oV H
lisp javascript clojure ¢
Inspiration —
Modeling language —»
Compiled N

51

Example: Bayes Net in Anglican

P(C)=.5
c P(SIC) Cc P(RlC) (defquery sprinkler-bayes-net [sprinkler wet-grass]
@ (let [is-cloudy (sample (£flip 0.5))
t .10 ¢ 80 is-raining (cond (= is—cloud¥ true)
(sample (flip 0.8))
f .50 f 20 (= is-cloudy false)
’ (sample (£flip 0.2)))
sprinkler-dist (cond (= is-cloudy true)

(flip 0.1)
(= is-cloudy false)

(£lip 0.5))
wet-grass-dist (cond
(and (= sprinkler true)

(= is-raining true))
(flip 0.99)
S R P(VVlS,R) (and (= sprinkler false)
- (= is-raining false))
(flip 0.0)
(or (= sprinkler true)
.99 L .
(= 1s-raining true))

t t

t f .90 (flip 0.9))]
(observe sprinkler-dist sprinkler)

f t .90 (observe wet-grass-dist wet-grass)

F f .00 is-raining))

SITA UBEC
: U’;‘l!l\ggl'TTllJTTIlJZI;‘JIIF\IUFE)ERI\:I(ATIONSSVSTEME IM FOCUS DAS LEBEN

Example Application: CAPTCHA Breaking

Observation

Posterior Samples

Generative Model

(defquery captcha @

[image num-chars tol]
(let [[w h] (size image)
;; sample random characters
num-chars (sample
(poisson num-chars))
chars (repeatedly
num-chars sample-char)]
;; compare rendering to true image
(map (fn [y z]
(observe (normal z tol) y))
(reduce-dim image)
(reduce-dim (render chars w h)))
;; pbredict captcha text
{:text
(map :symbol (sort-by :x chars))}))

X Yy
text Image
OeOe: Note the ,inverted” use of variables x and y

& UNIVERSITAT ZU LUBECK
INSTITUT FUR INFORMATIONSSYSTEME

IM FOCUS DAS LEBEN

53

Examle Application: Scene interpretation

Captcha Solving

Intermediate

w

X

Final Inferred Image

|
o -
;

on

mlw

dromiv) g

Yy

Observed

Image |(reconstruction)

*r?iﬁ l;
t"-)
L

Scene Description

X

Inferred

B a7 > ,
& & ~)
: —; .

Inferred model
re-rendered with
novel poses

r\r

Inferred model
re-rendered with
novel lighting

|= -
— ‘: 3 ‘"
’ b

--

(Kulkarni et al. 2015) et al 2013)

54

Next week

. ,Probabilistic Programming” is sometimes used in
narrow sense for probabilistically enhanced imperative
or functional languages (Gordon et al. 14)

- We useitin a broader sense to include also probabilistic
logic programs — the topic of next week

EEEEEEEEEEE
EY 2 INSTITUT FUR INFORMATIONSSYSTEME
6S

55

RSI
ERSIT,

UM,

Uhhh, a lecture with a hopefully useful

APPENDIX

UNIVERSITAT ZU LUBECK
INSTITUT FUR INFORMATIONSSYSTEME

56

Probability theory basics reminder

Random variable (RV)

possible worlds defined by assignment of
values to random variables.

Boolean random variables

e.g., Cavity (do | have a cavity?).
Domain is < true, false >

Discrete random variables

e.g., possible value of Weather is one of
< sunny, rainy, cloudy, snow >

Domain values must be exhaustive and
mutually exclusive

Elementary propositions are constructed by
assignment of a value to a
random variable: e.g.,
— Cavity = false (abbreviated as —cavity)
— Cavity = true (abbreviated as cavity)

(Complex) propositions formed from
elementary propositions and standard logical
connectives, e.g., Weather = sunny v Cavity =
false

& UNIVERSITAT ZU LUBECK

i INSTITUT FUR INFORMATIONSSYSTEME

Probabilities

Axioms (for propositions a, b, T = (a VvV —a), and
1l ==T):

- 0<P@=s L, P(M=1PWL =0

- (P(avb) = P(a) + P(b) — P(aAb)
Joint probability distribution of X = {X;, ..., X,,}

- P(Xy, . Xp)
- gives the probability of every atomic event on X

Conditional probability
P(a|b) = P(an b)/P(b)if P(b) > 0
Chain rule

P(Xy, ..

n
_ 1P(Xi|X1» s Xj—1)
i=

P(Y) = Y,ez P(Y,2)

»Xn) =

Marginalization:
Conditioning on Z:

- P(Y)=),c; P(Y|2)P(z) (discrete)
- P(Y)= [P(Y|z)P(z)dz (continuous)
=[E,-p)P(Y|2) (expected value

notation)

Bayes’ Rule
_ P(DIH)-P(H) _ P(D|H)-P(H)
PUEID)= P(D) Y, P(D|R)P(h)

57

Color Convention in this Course

- Formulae, when occurring inline

- Newly introduced terminology and definitions

- Important results (observations, theorems) as well as
emphasizing some aspects

- Examples are given with standard orange with possibly
light orange frame

« Comments ano
. Algorithms anc

notes in nearly opaque post-it
program code

« Reminders (int

ne grey fog of your memory)

58

Today’s lecture is based on the following

- Mainly

— D. Duvenaud/J. Loyd: Introduction toProbabilistic Programming. Talk given
at Computational and Biological Learning Lab, University of Cambridge,
March 2013 (https://jamesrobertlloyd.com/talks)

« Alittle bit of

— Zoubin Ghahramani: Probabilistic Machine Learning and Al, Microsoft Al
Summer School Cambridge 2017

http://mlss.tuebingen.mpq.de/2017/speaker slides/Zoubin1.pdf

— F.Wood: Probabilistic Programming, PPAML Summer School, Portland 2016,
link

RSI
44444

N -

B)

> ddh

§\%; UNIVERSITAT ZU LUBECK 59
3 =~ INSTITUT FUR INFORMATIONSSYSTEME

Ors ares”

https://jamesrobertlloyd.com/talks
http://mlss.tuebingen.mpg.de/2017/speaker_slides/Zoubin1.pdf
https://media.nips.cc/Conferences/2015/tutorialslides/wood-nips-probabilistic-programming-tutorial-2015.pdf

References

Gordon, Henzinger, Nori, and Rajamani

“Probabilistic programming.” In Proceedings of On The Future of Software Engineering (2014).

Mansinghka,, Kulkarni, Perov, and Tenenbaum

“Approximate Bayesian image interpretation using generative probabilistic graphics programs." NIPS (2013).

J.-W. van de Meent, B. Paige, H. Yang, and F. Wood. An Introduction to Probabilistic Programming. arXiv e-prints, page
arXiv:1809.10756, Sept. 2018.

T. D. Kulkarni, P. Kohli, J. B. Tenenbaum, and V. K. Mansinghka. Picture: A probabilistic programming language for scene
perception. In Proceedings of CVPR 2015, 2015, pages 4390-4399.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques - Adaptive Com- putation and
Machine Learning. The MIT Press, 20009.

& UNIVERSITAT ZU LUBECK
& INSTITUT FUR INFORMATIONSSYSTEME

60

