
PROBABILISTIC AND
DIFFERENTIABLE PROGRAMMING

V8: Probabilistic Programming I

Özgür L. Özçep

Universität zu Lübeck

Institut für Informationssysteme

Today‘s Agenda (in classical linear form)

1. Premotivation: Probabilities

2. Motivation: Probabilistic Programming

3. Running Example

4. Semantics of Probabilistic Programs

5. Nonparametrics

6. Landscape of Probabilistic Programming Languages

2

PREMOTIVATION: PROBABILITIES

3

Remember: Problems with deep neural networks

• Very data hungry (e.g. often millions of examples)

• Very compute-intensive to train and deploy

• Poor at representing uncertainty

• Easily fooled by adversarial examples

• Finicky to optimise: non-convex + choice of
architecture, learning procedure, expertise required

• Uninterpretable black-boxes, lacking in trasparency,
difficult to trust

• => Amongst others, these problems lead to
developments towards generative models (lecture V6)

4

Bayes‘ rule to rule them all ...

• If we use the mathematics of probability theory to
express all forms of uncertainty and noise associated
with our model ...

• ... then inverse probability (-> Bayes rule) allows us to
infer unknown quantities, adapt our models, make
predictions, and learn from data.

5

𝑃 𝐻 𝐷 =
𝑃(𝐷|𝐻) (𝑃(𝐻)

𝑃(𝐷)
=

𝑃(𝐷|𝐻) (𝑃(𝐻)
∑* 𝑃 𝐷|ℎ 𝑃(ℎ)

H = hypothesis, model

D = data, observation Bayes‘ Rule

6

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

Getting deep systems that
know when they do not know

and, hence, recognise new
situations and adapt to them

The third wave of
differentiable programming

Probabilities

Shallow

1970

Deep

2010

now

„

ph“

1) Yes, a slide, quoting a slide

1)

Reminder on basics of w.r.t. Bayes‘ Rule

• If 𝐻 ∪ 𝐷 is the set of all RVs, then 𝑷 𝐻,𝐷 is called the full joint
distribution, which is all you need for inference tasks

• Bayes3rule relies on conditional probability
– 𝑃(𝐻 | 𝐷) = 𝑃(𝐻, 𝐷) / 𝑃(𝐷) 𝑖𝑓 𝑃(𝐷) > 0

• The step in the second equation relies on marginalization
– 𝑷 𝐷 = ∑*∈F 𝑷(𝐷, ℎ)

• With conditional probabilities this gives conditioning (on H):
– 𝑷 𝐷 = ∑*∈F 𝑷 𝐷 ℎ 𝑃(ℎ)

7

𝑃 𝐻 𝐷 =
𝑃(𝐷|𝐻) (𝑃(𝐻)

𝑃(𝐷)
=

𝑃(𝐷|𝐻) (𝑃(𝐻)
∑* 𝑃 𝐷|ℎ 𝑃(ℎ)

Reminder: Bayes Net/Probabilistic Graphical Model (PGM)

Idea: Encode efficiently (factorize)

full joint probabilities

• Defines full joint distribution
– 𝑷 𝑋1, … , 𝑋𝑛 = ∏MNO

P 𝑷 (𝑋M ∣ 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋M))
– Here:
𝑷 𝑆, 𝐶, 𝑅,𝑊
= 𝑷 𝐶 𝑷 𝑆 𝐶 𝑷 𝑅 𝐶 𝑷(𝑊|𝑆, 𝑅)

Gives, e.g.,
𝑃 𝑐, 𝑠, ¬ 𝑟, 𝑤 = 0.5 ⋅ 0.1 ⋅ 0.2 ⋅ 0.9

• Graph topology encodes independencies
of variables (efficiency!); e.g.

• 𝑆 independent of 𝑅 given 𝐶:

𝑃(𝑆|𝐶) = 𝑃(𝑆|𝐶, 𝑅)

8

Cloudy

WetGrass

Sprinkler Rain

S R P(W|S,R)

t t .99

t f .90

f t .90
f f .00

P(C)=.5

C P(R|C)

t .80

f .20

C P(S|C)

t .10

f .50

For in-depth treatment of (other) PGMs see (Koller/Friedman 2019)

Why then not stick to probabilities & PGMs

• Problem 1: Probabilistic model development and the
derivation of inference algorithms is time-consuming
and error-prone.

• Problem 2: Exact (and approximate inference) hard due
to normalization)

• Solution to 1
– Develop Probabilistic Programming (PP) Languages for

expressing probabilistic models as computer programs
that generate data (i.e. simulators).

– Derive Universal Inference Engines for these languages
that do inference over program traces given observed
data (Bayes rule on computer programs).

9

MOTIVATION: PROBABILISTIC
PROGRAMMING

10

A „Vennified“ Overview on Role of PP

11

Bayesian/Probabilistic Machine Learning
IFIS Course Intelligent Agents; V8

Deep Learning
V3-V6

Generative DL V6

Gradient Descent/
Automatic Differentiation V3,V7

Probabilistic Programming
V8, V9

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

Getting deep systems that
know when they do not know

and, hence, recognise new
situations and adapt to them

The third wave of
differentiable programming

Probabilities

Shallow

1970

Deep

2010

now

Efficient representation of
probabilities
V10- V12

Profits from

Profits from exem
p

lifies

(Even more Vennification)

12

ML: Algorithms &
Applications

Statistics:
Inference & Theroy

PL:
Compilers,
Semantics,
Transformations

PP

Of course this is also a reason ...

Probabilistic programming does in 50 lines
of code what used to take thousands
13 April 2015, by Larry Hardesty

Two-dimensional images of human faces (top row) and
front views of three-dimensional models of the same
faces, produced by both a new MIT system (middle row)
and one of its predecessors (bottom row).

Most recent advances in artificial intelligence—such
as mobile apps that convert speech to text—are the
result of machine learning, in which computers are
turned loose on huge data sets to look for patterns.

To make machine-learning applications easier to
build, computer scientists have begun developing
so-called probabilistic programming languages,
which let researchers mix and match machine-
learning techniques that have worked well in other
contexts. In 2013, the U.S. Defense Advanced
Research Projects Agency, an incubator of cutting-
edge technology, launched a four-year program to
fund probabilistic-programming research.

At the Computer Vision and Pattern Recognition
conference in June, MIT researchers will
demonstrate that on some standard computer-
vision tasks, short programs—less than 50 lines
long—written in a probabilistic programming
language are competitive with conventional

systems with thousands of lines of code.

"This is the first time that we're introducing
probabilistic programming in the vision area," says
Tejas Kulkarni, an MIT graduate student in brain
and cognitive sciences and first author on the new
paper. "The whole hope is to write very flexible
models, both generative and discriminative models,
as short probabilistic code, and then not do
anything else. General-purpose inference schemes
solve the problems."

By the standards of conventional computer
programs, those "models" can seem absurdly
vague. One of the tasks that the researchers
investigate, for instance, is constructing a 3-D
model of a human face from 2-D images. Their
program describes the principal features of the face
as being two symmetrically distributed objects
(eyes) with two more centrally positioned objects
beneath them (the nose and mouth). It requires a
little work to translate that description into the
syntax of the probabilistic programming language,
but at that point, the model is complete. Feed the
program enough examples of 2-D images and their
corresponding 3-D models, and it will figure out the
rest for itself.

"When you think about probabilistic programs, you
think very intuitively when you're modeling,"
Kulkarni says. "You don't think mathematically. It's
a very different style of modeling."

Joining Kulkarni on the paper are his adviser,
professor of brain and cognitive sciences Josh
Tenenbaum; Vikash Mansinghka, a research
scientist in MIT's Department of Brain and
Cognitive Sciences; and Pushmeet Kohli of
Microsoft Research Cambridge. For their
experiments, they created a probabilistic
programming language they call Picture, which is
an extension of Julia, another language developed
at MIT.

 1 / 3

13

Comparison

14

Ex: F. Wood: Probabilistic Programming, PPAML Summer School, Portland 2016

OeOe: Note the „inverted“
use of variables x and y

RUNNING EXAMPLE

15

A probabilistic program (PP) is any program that can
depend on random choices.

– Can be written in any language that has a random
number generator.

– You can specify any computable prior by simply writing
down a PP that generates samples.

– A probabilistic program implicitly defines a distribution
over its output.

16

• There are many different PP languages based on
different paradigms: imperative, functional, and logical

• Here we illustrate PPs with a lightweight approach for
imperative programming based on MATLAB

An Example Probabilistic Program

flip = rand < 0.5
% flip is 1 if random number from [0,1] smaller 0,5

if flip
x = randg + 2 % Random draw from Gamma(1,1)

else
x = randn % Random draw from standard Normal

end

17

AN EXAMPLE PROBABILISTIC PROGRAM

1 flip = rand < 0.5
2 i f flip
3 x = randg + 2 % Random draw from Gamma(1,1)
4 e l s e
5 x = randn % Random draw from standard Normal
6 end

Implied distributions over variables

0 5 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

x

p(x)

0 1
0

0.2

0.4

0.6

0.8

1

flip

p(flip)

5 / 11

Implied distributions over variables

Reminder: Gamma distribution Γ(𝑘, 𝜃)

18

Probability density function of Γ

𝑓 𝑥; 𝑘, 𝜃 = ijklmk
n
o

pjq r
where Γ 𝑘 = ∫t

u𝑥rvO𝑒vi 𝑑𝑥 is gamma-function
(generelization of factorial to complex numbers)

𝑓 𝑥; 𝑘, 𝜃

An Example Probabilistic Program

flip = rand < 0.5
% flip is 1 if random number from [0,1] smaller 0,5

if flip
x = randg + 2 % Random draw from Gamma(1,1)

else
x = randn % Random draw from standard Normal

end

19

Implied distributions over variables

AN EXAMPLE PROBABILISTIC PROGRAM

1 flip = rand < 0.5
2 i f flip
3 x = randg + 2 % Random draw from Gamma(1,1)
4 e l s e
5 x = randn % Random draw from standard Normal
6 end

Implied distributions over variables

0 1
0

0.2

0.4

0.6

0.8

1

flip

p(flip)

5 / 11

Conditioning

• Once we’ve defined a prior, what can we do with it?

• PP defines joint distribution 𝑃(𝐷, 𝑁, 𝐻)
– D to be the subset of variables we observe (condition on)

– H the set of variables we’re interested in

– N the set of variables that we’re not interested in, (so
we’ll marginalize them out).

• We want to know about 𝑃(𝐻|𝐷)
• Probabilistic Programming

– Usually refers to doing conditional inference when a
probabilistic program specifies your prior.

– Could also be described as automated inference given a
model specified by a generative procedure.

20

Conditioning with Probabilistic Program

flip = rand < 0.5
% flip is 1 if random number from [0,1] smaller 0,5

if flip
x = randg + 2 % Random draw from Gamma(1,1)

else
x = randn % Random draw from standard Normal

end

21

Implied distributions over variables

AN EXAMPLE PROBABILISTIC PROGRAM:
CONDITIONING

1 flip = rand < 0.5
2 i f flip
3 x = randg + 2 % Random draw from Gamma(1,1)
4 e l s e
5 x = randn % Random draw from standard Normal
6 end

Implied distributions over variables

0 1
0

0.2

0.4

0.6

0.8

1

flip

p
(fl
ip
|2

<
x
<
3)

7 / 11

Condition/Evidence
𝐷 = 2 < 𝑥 < 3

SEMANTICS OF PROBABILISTIC
PROGRAMS

22

Can we develop generic inference for all PPs?

• Rejection sampling
1. Run the program with

fresh source of random
numbers

2. If condition D is true,
record H as a sample;
else ignore the sample

3. Repeat

flip = rand < 0.5
if flip

x = randg + 2
else
x = randn
end

23

In case of our example (with 𝐷 = 2 < 𝑥 < 3) this
produces samples over the execution trace, e.g.,

>> True

>> 2.7

(True, 2.7)

Can we develop generic inference for all PPs?

• Rejection sampling
1. Run the program with

fresh source of random
numbers

2. If condition D is true,
record H as a sample;
else ignore the sample

3. Repeat

flip = rand < 0.5
if flip %

x = randg + 2
else %
x = randn
end

24

>> True

>> 3.2

In case of our example (with 𝐷 = 2 < 𝑥 < 3) this
produces samples over the execution trace, e.g.,
(True, 2.7)

Sample

(True, 3.2)
rejected

Can we develop generic inference for all PPs?

• Rejection sampling
1. Run the program with

fresh source of random
numbers

2. If condition D is true,
record H as a sample;
else ignore the sample

3. Repeat

flip = rand < 0.5
if flip

x = randg + 2
else
x = randn
end

25

>> True

>> 2.1

In case of our example (with 𝐷 = 2 < 𝑥 < 3) this
produces samples over the execution trace, e.g.,
(True, 2.7) (True, 2.1)

Can we develop generic inference for all PPs?

• Rejection sampling
1. Run the program with

fresh source of random
numbers

2. If condition D is true,
record H as a sample;
else ignore the sample

3. Repeat

flip = rand < 0.5
if flip

x = randg + 2
else
x = randn
end

26

>> False

>> -1.3

In case of our example (with 𝐷 = 2 < 𝑥 < 3) this
produces samples over the execution trace, e.g.,
(True, 2.7) (True, 2.1)

Sample

(False, -1.3)
rejected

Can we develop generic inference for all PPs?

• Rejection sampling
1. Run the program with

fresh source of random
numbers

2. If condition D is true,
record H as a sample;
else ignore the sample

3. Repeat

flip = rand < 0.5
if flip

x = randg + 2
else
x = randn
end

27

>> False

>> 2.3

In case of our example (with 𝐷 = 2 < 𝑥 < 3) this
produces samples over the execution trace, e.g.,
(True, 2.7) (True, 2.1) (False, 2.3),...

Of course we can do better

• Rejection sampling (as the simplest form of stochastic
simulation) is inefficient
– Rejects to many samples because

– Probability 𝑃(𝐷) is small (drops exponentially with
increasing numbers of evidence variables)

• Better is likelihood weighting:
– produce only samples consistent with evidence, the

probabilities of which are incorporated as weights

• Another well-known stochastic simulation is an instance
of Markov-Chain-Monte-Carlo (MCMC) simulation:

Metropolis-Hastings (MH)

28

Reminder: Likelihood Weighting for Bayes Nets

• P(Rain|Sprinkler=true, WetGrass = true) = ?
• Sampling

– w = 1.0 (weight initialized)
– Sample 𝑷(𝐶𝑙𝑜𝑢𝑑𝑦) = (0.5,0.5) => 𝑡𝑟𝑢𝑒
– Sprinkler is an evidence variable with value

true
w ç w * P(Sprinkler=true | Cloudy = true) = 0.1

– Sample P(Rain|Cloudy=true)=(0.8,0.2) => true
– WetGrass is an evidence variable with value

true
w çw * P(WetGrass=true |Sprinkler=true, Rain
= true) = 0.099

– [true, true, true, true] with weight 0.099
• Estimating

– Accumulating weights to either Rain=true or
Rain=false

– Normalize (= divide by sum of weights)

29

Cloudy

WetGrass

Sprinkler Rain

S R P(W|S,R)

t t .99

t f .90

f t .90
f f .00

P(C)=.5

C P(R|C)

t .80

f .20

C P(S|C)

t .10

f .50

• Let’s think of the network as being in a particular current
state specifying a value for every variable

• MCMC generates each event by making a random change to
the preceding event

• The next state is generated by randomly sampling a value
for one of the non-evidence variables Xi, conditioned on the
current values of the variables in the Markov blanket of Xi

• Note: Likelihood Weighting only takes into account the
evidences of the parents. (Problematic if evidence on
leaves).

Reminder: Markov Chain Monte Carlo (MCMC)

Reminder: Markov Blanket

• Markov blanket: Parents + children + children’s parents

• Node is conditionally independent of all other nodes in network, given
its Markov Blanket

Reminder: MCMC

Arrows describe transition probabilities; leads to a (the Markov) chain of states

• 𝑃(𝑅𝑎𝑖𝑛|𝑆𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 = 𝑡𝑟𝑢𝑒,𝑊𝑒𝑡𝐺𝑟𝑎𝑠𝑠 =
𝑡𝑟𝑢𝑒) = ?

• States [Cloudy,Sprinkler,Rain,WetGrass]
• Initial state is [true, true, false, true]
• The following steps are executed repeatedly:

– Cloudy ∼ P(Cloudy|Sprinkler= true,
Rain=false) => Cloudy = false
State update: [false, true, false, true]

– Rain ∼ P(Rain|Cloudy=false,Sprinkler=true,
WetGrass=true) => Rain = true
State update: [false, true, true, true]

• After all the iterations, let’s say the process
visited 20 states where Rain is true and 60
states where Rain is false then the answer
of the query is
NORMALIZE((20,60))=(0.25,0.75)

Reminder: Markov Chain Monte Carlo: Example

Cloudy

WetGrass

Sprinkler Rain

S R P(W|S,R)

t t .99

t f .90

f t .90
f f .00

P(C)=.5 C P(R|C)

t .80

f .20

C P(S|C)

t .10

f .50

Example: Metropolis-Hastings

1. Start with a trace

2. Change one random decision,
discarding subsequent
decisions

3. Sample subsequent decisions

4. Accept with appropriate
MCMC acceptance probability

1. (True, 2.3)

2. (False,)

3. (False, -0,9)
4. Reject, does

not satisfy
observation

34

Example: Metropolis-Hastings

1. Start with at race

2. Change one random decision,
discarding subsequent
decisions

3. Sample subsequent decisions

4. Accept with appropriate
MCMC acceptance probability

1. (True, 2.3)

2. (True, 2.9)

3. Nothing to
do

4. Accept,
maybe

35

Semantics of PP via MH - Notation

• Evaluating a program results in a sequence of random
choices
– 𝑥O ∼ 𝑝�l 𝑥O
– 𝑥� ∼ 𝑝�� 𝑥� 𝑥O
– 𝑥� ∼ 𝑝�� 𝑥� 𝑥�, 𝑥O
– …
– 𝑘 ∼ 𝑝�j 𝑥r 𝑥rvO, … , 𝑥O

(for execution trace x = 𝑥O, … 𝑥rvO)

• Density/Probability of a particular evaluation is then

– 𝑝 𝑥O, … , 𝑥P = ∏rNO
� 𝑝�j(𝑥r ∣ 𝑥rvO, … , 𝑥O)

• Then perform MH over the execution traces 𝑥
36

MH over traces

• Select a random decision in the execution trace 𝑥
– E.g. 𝑥r

• Propose a new value

– E.g. 𝑥′r ∼ 𝐾�j(𝑥r
3 ∣ 𝑥r) (𝐾�j is called proposal distribution)

• Run the program to determine all subsequent choices (𝑥�3: 𝑙 > 𝑘),
reusing current choices where possible

• Propose moving from the state 𝑥O, … , 𝑥� to
(𝑥O, … , 𝑥rvO , 𝑥′r, … , 𝑥��

3)

old choices new choices

• Accept the change with the appropriate MH acceptance
probability (= min{𝛼, 1})

– 𝛼 =
��j 𝑥r 𝑥r3 ∏��j

�� ���
�(i�

�∣il,…,ijkl,ij
� ,…,i�kl

�)

��j 𝑥r3 𝑥r ∏��j
� ���(i�∣il,…,ijkl,ij,…,i�kl) 37

NONPARAMETRICS

38

Works also for non-parametric models

• If we can sample from the prior of a nonparametric
model using finite resources with probability 1, then we
can perform inference automatically using the
techniques described thus far

• We can sample from a number of nonparametric
processes/models with finite resources (with probability
1) using a variety of techniques
– Gaussian processes via marginalisation

– Dirichlet processes via stick breaking

– Indian Buffet processes via urn schemes

39

<=

Tackling non-parametric models

• Non-parametric models: Allow distributions over
arbitrary functions to learn a target function

• Typical Example: Gaussian Process (GP)
40

Prior and Posterior

−5 0 5

−2

−1

0

1

2

input, x

ou
tp

ut
, f

(x
)

−5 0 5

−2

−1

0

1

2

input, x

ou
tp

ut
, f

(x
)

Predictive distribution:

p(y⇤|x⇤ x y) ⇠ N
�
k(x⇤ x)>[K + �2

noiseI]
-1

y

k(x⇤ x⇤) + �2
noise - k(x⇤ x)>[K + �2

noiseI]
-1

k(x⇤ x)
�

Rasmussen (MPI for Biological Cybernetics) Advances in Gaussian Processes December 4th, 2006 20 / 55

Prior Posterior

Reminder: Multivariate Gaussians

())()(exp
||||)2(

1)(1
2
1

2
1

2
μxΣμx

Σ
x ---= -T

mp
p

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

=

mµ

µ
µ

!

2

1

μ

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

=

mX

X
X

!

2

1

 r.v. Write X

÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç

è

æ

=

mmm

m

m

2
21

22
2

12

1121
2

sss

sss
sss

!

"#""

!

!

Σ

Then define),(~ ΣμNX to mean

where the Gaussian’s parameters
have…

One can show: E[X] = µ and Cov[X] = S.

Co-variance matrix

where 𝜎M� = 𝐶𝑜𝑣 𝑋M, 𝑋� =
𝐸[(𝑋M − 𝐸 𝑋M) ⋅ (𝑋� − 𝐸(𝑋�))]

Reminder: Gaussians

42

Conditionals and Marginals of a Gaussian

joint Gaussian
conditional

joint Gaussian
marginal

Both the conditionals and the marginals of a joint Gaussian are again Gaussian.

Rasmussen (MPI for Biological Cybernetics) Advances in Gaussian Processes December 4th, 2006 9 / 55

The class of Gaussians is invariant both under conditionalizing and marginalizing

Tackling non-parametric models

• Gaussian Process (GPs)
– A Gaussian process is a collection of random variables,

any finite number of which have (consistent) Gaussian
distributions

– GPs generalize of multivariate Gaussians to infinitely
many variables (and infinitely long vector = function)

• A Gaussian distribution 𝑁(𝝁, 𝚺) is specified by mean
vector 𝝁 and covariance matrix 𝚺

• A GP is fully specified by a mean function µ(x) and a
covariance function k(x, x′)

43

Doing the sampling finitely

• Marginalization works here too, so can marginalize on
all variables except for finite vector of RVs 𝒙
– 𝑝 𝒙 = ∫ 𝑝 𝒙, 𝒚 d𝒚 (for arbitrary continous variables)

– For Gaussians

– If 𝑝 𝒙, 𝒚 = 𝑁 𝒂
𝒃

𝑨 𝑩
𝑩© 𝑪 , then 𝑝 𝒙 = 𝑁(𝒂, 𝑨)

44

Advanced Automatic Inference

• Now that we have separated inference and model
design, can use any inference algorithm.

• Free to develop inference algorithms independently of
specific models.

• Once graphical models identified as a general class,
many model-agnostic inference methods:
– Belief Propagation

– Pseudo-likelihood

– Mean-field Variational

– MCMC

• What generic inference algorithms can we implement
for more expressive generative models?

45

LANDSCAPE OF PROBABILISTIC
PROGRAMMING LANGUAGES

46

History of PP with Programming Languages

47

First-Order PP languages

48

Higher-Order PP Languages

49

The Church Family

• Lisp like constructs extended with two main functions
– Sample

– Observe

• For a book-lengthy treatment see (Van de Ment et al
2018)
– In particular, describes a formal grammar, astonishingly

simple grammar

50

The church family

51

Example: Bayes Net in Anglican

Bayes Net

34

(defquery sprinkler-bayes-net [sprinkler wet-grass]
 (let [is-cloudy (sample (flip 0.5))

 is-raining (cond (= is-cloudy true)
 (sample (flip 0.8))
 (= is-cloudy false)
 (sample (flip 0.2)))
 sprinkler-dist (cond (= is-cloudy true)
 (flip 0.1)
 (= is-cloudy false)
 (flip 0.5))
 wet-grass-dist (cond
 (and (= sprinkler true)
 (= is-raining true))
 (flip 0.99)
 (and (= sprinkler false)
 (= is-raining false))
 (flip 0.0)
 (or (= sprinkler true)
 (= is-raining true))
 (flip 0.9))]
 (observe sprinkler-dist sprinkler)
 (observe wet-grass-dist wet-grass)

 is-raining))

52

Cloudy

WetGrass

Sprinkler Rain

P(C)=.5

C P(R|C)

t .80

f .20

C P(S|C)

t .10

f .50

S R P(W|S,R)

t t .99

t f .90

f t .90
f f .00

Example Application: CAPTCHA Breaking

53

(defquery captcha
 [image num-chars tol]
 (let [[w h] (size image)
 ;; sample random characters
 num-chars (sample
 (poisson num-chars))
 chars (repeatedly
 num-chars sample-char)]
 ;; compare rendering to true image
 (map (fn [y z]
 (observe (normal z tol) y))
 (reduce-dim image)
 (reduce-dim (render chars w h)))
 ;; predict captcha text
 {:text
 (map :symbol (sort-by :x chars))}))

Posterior Samples

CAPTCHA breaking
Generative ModelObservation

yx

text image
Mansinghka,, Kulkarni, Perov, and Tenenbaum

“Approximate Bayesian image interpretation using generative probabilistic graphics programs." NIPS (2013).OeOe: Note the „inverted“ use of variables x and y

Examle Application: Scene interpretationPerception / Inverse Graphics

22

Kulkarni, Kohli, Tenenbaum, Mansinghka
"Picture: a probabilistic programming language for

scene perception." CVPR (2015).

Mansinghka,, Kulkarni, Perov, and Tenenbaum.
"Approximate Bayesian image interpretation using

generative probabilistic graphics programs." NIPS (2013).

Observed
Image

Inferred
(reconstruction)

Inferred model
re-rendered with

novel poses

Inferred model
re-rendered with

novel lighting

Figure 3: Inference on representative faces using Picture: We
tested our approach on a held-out dataset of 2D image projections
of laser-scanned faces from [36]. Our short probabilistic program
is applicable to non-frontal faces and provides reasonable parses as
illustrated above using only general-purpose inference machinery.
For quantitative metrics, refer to section 4.1.

and informed samplers [19]. GPGP aimed to address the
main challenges of generative vision by representing visual
scenes as short probabilistic programs with random vari-
ables, and using a generic MCMC (single-site Metropolis-
Hastings) method for inference. However, due to modeling
limitations of earlier probabilistic programming languages,
and the inefficiency of the Metropolis-Hastings sampler,
GPGP was limited to working with low-dimensional scenes,
restricted shapes, and low levels of appearance variability.
Moreover, it did not support the integration of bottom-up
discriminative models such as deep neural networks [23, 25]
for data-driven proposal learning. Our current work extends
the GPGP framework in all of these directions, letting us
tackle a richer set of real-world 3D vision problems.

Picture is an imperative programming language, where
expressions can take on either deterministic or stochastic val-
ues. We use the transformational compilation technique [46]
to implement Picture, which is a general method of trans-
forming arbitrary programming languages into probabilistic
programming languages. Compared to earlier formulations
of GPGP, Picture is dynamically compiled at run-time (JIT-
compilation) instead of interpreting, making program execu-
tion much faster.

A Picture program f defines a stochastic procedure that
generates both a scene description and all other information
needed to render an approximation image IR for compari-
son with an observed image ID. The program f induces a
joint probability distribution on the program trace ⇢ = {⇢i},
the set of all random choices i needed to specify the scene
hypothesis S and render IR. Each random choice ⇢i can
belong to a familiar parametric or non-parametric family of
distributions, such as Multinomial, MvNormal, DiscreteU-
niform, Poisson, or Gaussian Process, but in being used to
specify the trace of a probabilistic graphics program, their

effects can be combined much more richly than is typical for
random variables in traditional statistical models.

Consider running the program in Figure 2 unconditionally
(without observed data): as different ⇢i’s are encountered
(for e.g. coeff), random values are sampled w.r.t their under-
lying probability distribution and cached in the current state
of the inference engine. Program execution outputs an image
of a face with random shape, texture, camera and lighting
parameters. Given image data ID, inference in Picture pro-
grams amounts to iteratively sampling or evolving program
trace ⇢ to a high probability state while respecting constraints
imposed by the data (Figure 3). This constrained simulation
can be achieved by using the observe language construct
(see code in Figure 2), first proposed in Venture [32] and
also used in [35, 47].

2.1. Architecture
In this section, we will explain the essential architectural

components highlighted in Figure 1 (see Figure 4 for a sum-
mary of notation used).
Scene Language: The scene language is used to describe
2D/3D visual scenes as probabilistic code. Visual scenes
can be built out of several graphics primitives such as: de-
scription of 3D objects in the scene (e.g. mesh, z-map,
volumetric), one or more lights, textures, and the camera
information. It is important to note that scenes expressed
as probabilistic code are more general than parametric prior
density functions as is typical in generative vision models.
The probabilistic programs we demonstrate in this paper
embed ideas from computer-aided design (CAD) and non-
parametric Bayesian statistics[37] to express variability in
3D shapes.
Approximate Renderer (AR): Picture’s AR layer takes in
a scene representation trace S

⇢ and tolerance variables X
⇢,

and uses general-purpose graphics simulators (Blender[5]
and OpenGL) to render 3D scenes. The rendering tolerance
X

⇢ defines a structured noise process over the rendering and
is useful for the following purposes: (a) to make automatic
inference more tractable or robust, analogous to simulated
annealing (e.g. global or local blur variables in GPGP [31]),
and (b) to soak up model mismatch between the true scene
rendering ID and the hypothesized rendering IR. Inspired by
the differentiable renderer[29], Picture also supports express-
ing AR’s entire graphics pipeline as Picture code, enabling
the language to express end-to-end differentiable generative
models.
Representation Layer (RL): To avoid the need for photo-
realistic rendering of complex scenes, which can be slow
and modeling-intensive, or for pixel-wise comparison of
hypothesized scenes and observed images, which can some-
times yield posteriors that are intractable for sampling-based
inference, the RL supports comparison of generated and ob-
served images in terms of a hierarchy of abstract features.

Figure 2: Four input images from our CAPTCHA corpus, along with the final results and conver-
gence trajectory of typical inference runs. The first row is a highly cluttered synthetic CAPTCHA
exhibiting extreme letter overlap. The second row is a CAPTCHA from TurboTax, the third row
is a CAPTCHA from AOL, and the fourth row shows an example where our system makes errors
on some runs. Our probabilistic graphics program did not originally support rotation, which was
needed for the AOL CAPTCHAs; adding it required only 1 additional line of probabilistic code. See
the main text for quantitative details, and supplemental material for the full corpus.

3 Generative Probabilistic Graphics in 2D for Reading Degraded Text.
We developed a probabilistic graphics program for reading short snippets of degraded text consisting
of arbitrary digits and letters. See Figure 2 for representative inputs and outputs. In this program,
the latent scene S = {Si} contains a bank of variables for each glyph, including whether a potential
letter is present or absent from the scene, what its spatial coordinates and size are, what its identity
is, and how it is rotated:

P (Spres
i

= 1) = 0.5 P (Sx

i
= x) =

⇢
1/w 0  x  w
0 otherwise

P (Sy

i
= y) =

⇢
1/h 0  x  h
0 otherwise

P (Sglyph id
i

= g) =

(
1/G 0  Sglyph id

i
< G

0 otherwise
P (S✓

i
= g) =

⇢
1/2✓max �✓max  S✓

i
< ✓max

0 otherwise

Our renderer rasterizes each letter independently, applies a spatial blur to each image, composites
the letters, and then blurs the result. We also applied global blur to the original training image
before applying the stochastic likelihood model on the blurred original and rendered images. The
stochastic likelihood model is a multivariate Gaussian whose mean is the blurry rendering; formally,
ID ⇠ N(IR;�). The control variables X = {Xj} for the renderer and likelihood consist of per-
letter Gaussian spatial blur bandwidths Xi

j
⇠ � · Beta(1, 2), a global image blur on the rendered

image Xblur rendered ⇠ � · Beta(1, 2), a global image blur on the original test image Xblur test ⇠
� · Beta(1, 2), and the standard deviation of the Gaussian likelihood � ⇠ Gamma(1, 1) (with �,
� and � set to favor small bandwidths). To make hard classification decisions, we use the sample
with lowest pixel reconstruction error from a set of 5 approximate posterior samples. We also
experimented with enabling enumerative (griddy) Gibbs sampling for uniform discrete variables
with 10% probability. The probabilistic code for this model is shown in Figure 4.

To assess the accuracy of our approach on adversarially obscured text, we developed a corpus con-
sisting of over 40 images from widely used websites such as TurboTax, E-Trade, and AOL, plus
additional challenging synthetic CAPTCHAs with high degrees of letter overlap and superimposed
distractors. Each source of text violates the underlying assumptions of our probabilistic graphics
program in different ways. TurboTax CAPTCHAs incorporate occlusions that break strokes within

4

Captcha Solving Scene Description

yx

scene description image

xy y x

54
(Masinghka et al 2013) (Kulkarni et al. 2015) et al 2013)

Next week

• „Probabilistic Programming“ is sometimes used in
narrow sense for probabilistically enhanced imperative
or functional languages (Gordon et al. 14)

• We use it in a broader sense to include also probabilistic
logic programs – the topic of next week

55

APPENDIX
Uhhh, a lecture with a hopefully useful

56

Probability theory basics reminder

Random variable (RV)

• possible worlds defined by assignment of
values to random variables.

• Boolean random variables
e.g., Cavity (do I have a cavity?).

Domain is < true , false >

• Discrete random variables
e.g., possible value of Weather is one of

< sunny, rainy, cloudy, snow >

• Domain values must be exhaustive and
mutually exclusive

• Elementary propositions are constructed by
assignment of a value to a
random variable: e.g.,

– Cavity = false (abbreviated as ¬cavity)
– Cavity = true (abbreviated as cavity)

• (Complex) propositions formed from
elementary propositions and standard logical
connectives, e.g., Weather = sunny Ú Cavity =
false

Probabilities
• Axioms (for propositions 𝑎, 𝑏, ⊤ = (𝑎 ∨ ¬𝑎), and

⊥ = ¬ ⊤):

– 0 ≤ 𝑃 𝑎 ≤ 1; 𝑃(⊤) = 1; 𝑃(⊥) = 0
– (𝑃(𝑎 ∨ 𝑏) = 𝑃(𝑎) + 𝑃(𝑏) − 𝑃(𝑎 ∧ 𝑏)

• Joint probability distribution of 𝐗 = {𝑋O,… , 𝑋P}
– 𝑷 𝑋O,… ,𝑋P
– gives the probability of every atomic event on 𝑿

• Conditional probability
𝑃(𝑎 | 𝑏) = 𝑃(𝑎 ∧ 𝑏) / 𝑃(𝑏) 𝑖𝑓 𝑃(𝑏) > 0

• Chain rule

𝑷 𝑋O,… , 𝑋P = ´
MNO

P
𝑷(𝑋M|𝑋O,… , 𝑋MvO)

• Marginalization: 𝑷 𝑌 = ∑¶∈· 𝑷(𝑌, 𝑧)
• Conditioning on 𝑍:

– 𝑷 𝑌 = ∑¶∈· 𝑷 𝑌 𝑧 𝑷(𝑧) (discrete)

– 𝑷 𝑌 = ∫𝑷 𝑌 𝑧 𝑷 𝑧 𝑑𝑧 (continuous)
= 𝔼𝒛∼¼(¶)P(Y|z) (expected value

notation)

• Bayes‘ Rule

𝑃 𝐻 𝐷 =
𝑃(𝐷|𝐻) (𝑃(𝐻)

𝑃(𝐷) =
𝑃(𝐷|𝐻) (𝑃(𝐻)
∑* 𝑃 𝐷|ℎ 𝑃(ℎ)

57

Color Convention in this Course

• Formulae, when occurring inline

• Newly introduced terminology and definitions

• Important results (observations, theorems) as well as
emphasizing some aspects

• Examples are given with standard orange with possibly
light orange frame

• Comments and notes in nearly opaque post-it

• Algorithms and program code

• Reminders (in the grey fog of your memory)

58

Today‘s lecture is based on the following

• Mainly
– D. Duvenaud/J. Loyd: Introduction toProbabilistic Programming. Talk given

at Computational and Biological Learning Lab, University of Cambridge,
March 2013 (https://jamesrobertlloyd.com/talks)

• A little bit of
– Zoubin Ghahramani: Probabilistic Machine Learning and AI, Microsoft AI

Summer School Cambridge 2017
http://mlss.tuebingen.mpg.de/2017/speaker_slides/Zoubin1.pdf

– F. Wood: Probabilistic Programming, PPAML Summer School, Portland 2016,
link

59

https://jamesrobertlloyd.com/talks
http://mlss.tuebingen.mpg.de/2017/speaker_slides/Zoubin1.pdf
https://media.nips.cc/Conferences/2015/tutorialslides/wood-nips-probabilistic-programming-tutorial-2015.pdf

References

• Gordon, Henzinger, Nori, and Rajamani
“Probabilistic programming.” In Proceedings of On The Future of Software Engineering (2014).

• Mansinghka,, Kulkarni, Perov, and Tenenbaum
“Approximate Bayesian image interpretation using generative probabilistic graphics programs." NIPS (2013).

• J.-W. van de Meent, B. Paige, H. Yang, and F. Wood. An Introduction to Probabilistic Programming. arXiv e-prints, page
arXiv:1809.10756, Sept. 2018.

• T. D. Kulkarni, P. Kohli, J. B. Tenenbaum, and V. K. Mansinghka. Picture: A probabilistic programming language for scene
perception. In Proceedings of CVPR 2015, 2015, pages 4390–4399.

• D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques - Adaptive Com- putation and
Machine Learning. The MIT Press, 2009.

60

