
PROBABILISTIC AND
DIFFERENTIABLE PROGRAMMING

V9: Probabilistic Programming II

Özgür L. Özçep

Universität zu Lübeck

Institut für Informationssysteme

Probabilistic Logic Programs (PLP)

• devised by Poole and Sato in the 90s.

• built on top of the programming language Prolog

• upgrade directed graphical models

• Generalises probabilistic databases (Suciu et al.)

• combines the advantages / expressive power of
programming languages (Turing equivalent) and
graphical models

• Implementations: see next page

2

PLP Systems

• PRISM https://www.prismmodelchecker.org/

• ProbLog2 http://dtai.cs.kuleuven.be/problog/

• Yap Prolog https://github.com/vscosta/yap-6.3 includes
– ProbLog1

– cplint

– CLP(BN)

– LP2

• PITA in XSB Prolog http://xsb.sourceforge.net/

• AILog2 http://artint.info/code/ailog/ailog2.html

• SLPs http://stoics.org.uk/~nicos/sware/pepl

• contdist http://www.cs.sunysb.edu/~cram/contdist/

• DC https://code.google.com/p/distributional-clauses

• WFOMC http://dtai.cs.kuleuven.be/ml/systems/wfomc
3

https://www.prismmodelchecker.org/
http://dtai.cs.kuleuven.be/problog/
https://github.com/vscosta/yap-6.3
http://www.dcc.fc.up.pt/~vsc/Yap/
http://www.dcc.fc.up.pt/~vsc/Yap/
http://stoics.org.uk/~nicos/sware/pepl
http://www.cs.sunysb.edu/~cram/contdist/
https://code.google.com/p/distributional-clauses
http://dtai.cs.kuleuven.be/ml/systems/wfomc

Today‘s Agenda (in classical linear form)

1. Modeling

2. Reasoning

3. Learning

4

Probabilistic Logic Programming

MODELING

5

Motivation (suffering from Vennitis)

6

Reasoning with
Relational data

Dealing with Uncertainty

Learning
Various
formalisms
Here: PLP

Motivation (suffering from Vennitia)

7

Prolog/ logic
programming

0.8::stress(ann).
0.6::influences(ann,bob).
0.2::influences(bob,carl).

Parameter learning,
Adapted relational
Learning techniques

Various
formalisms
Here: PLP

stress(ann).
influences(ann,bob).
influences(bob,carl).

smokes(X) :- stress(X). 
smokes(X) :- influences(Y,X), smokes(Y).

One world

Atoms as RVs

Several possible worlds

Distribution Semantics (Sato, 95):
probabilistic choices + logic program
→ distribution over possible worlds

The motto: Logic everywhere

8

See also IFIS course Information systems

The Logic programming (LP) paradigm

• The other big three paradigms of programming
– Imperative (e.g. C)

– Functional (e.g., Lisp)

– Object-oriented (e.g. Java)

• Distinguishing feature of LP: Problem solving by
specifying the „What“ not the “How to“

• Abstracting from
– Control structures

– Memory layout

– Process direction

• Prominent examples: Prolog, Datalog, ASP (Answer set
programing)

9

Logic

Science of logic investigates mathematical structures
(static and dynamic) and formal languages to describe
them by specifying a logic given by

• syntax (well-formed formula)

• semantics (truth conditions for sentences, entailment
notion)

• calculus (provability, inference)

10

Introductory logic texbooks with CS in mind
• (Huth,Ryan 00)
• (Ben-Ari 01)

Where is the logic in logic programming?

• Specification of a domain with a set of formula
(sometimes called a knowledge base)
– Formula specifed by truth-condition semantics as in logic

– In Prolog: formula are facts or rules

• Specifcation of the problem as a query (also a formula)
– Query is Boolean or has variables to be bound

• Solving a problem according a logical calculus
– try to infer (bindings for) query w.r.t. the knowledge base

using rules

– In Prolog use resolution
11

Prolog

• Prolog: Programmation en Logique

• Invented around 1970 when there was high interest in
– Theorem proving

– Language processing with formal grammars

• Protagonists
– R. Kowalski: Theoretical contribution with SL-Resolution

– A. Colmerauer and P. Roussel: developer

12

• 0.4 :: heads.

• 0.3 :: col(1,red); 0.7 :: col(1, blue).

• 0.2 :: col(2,red); 0.3 :: col(2,green); 

0.5 :: col(2,blue).

• win :- heads, col(_,red).
• win :- col(1,C), col(2,C).

A bit of gambling with ProbLog

• Probabilistic fact: Heads with
probability 0.4

• annotated disjunction: first
ball is red with probability 0.3
and blue with 0.7

• annotated disjunction:
second ball is red with
probability 0.2, green with
0.3, and blue with 0.5

• Logical rule encoding
background knowledge

13

• Toss (biased) coin & draw ball from each urn
• win if (heads and a red ball) or (two balls of same color)

Probabilistic choices

consequences

ProbLog by example:

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)

17

Queries

• Probability of win? (marginal propability)

• Probability of win given col(2,green)?

(conditional propability)

• Most probable world where win is true?

(Most probable explanation (MPE))
14

0.4 :: heads.

0.3 :: col(1,red); 0.7 :: col(1, blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

Possible Worlds

15

0.4 :: heads.

0.3 :: col(1,red); 0.7 :: col(1, blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

H R G

W

0.4 x 0.3 x 0.3

Possible Worlds

16

0.4 :: heads.

0.3 :: col(1,red); 0.7 :: col(1, blue).
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue).

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

H R G

W

0.4 x 0.3 x 0.3

R R

W

(1-0.4)x 0.3 x 0.2

R G

(1-0.4)x 0.3 x 0.3

All Possible Worlds

17

H R

W

0.024

R R

W

0.036

H

W

0.056

R

0.084

H R G

W

0.036

R

0.054

H G

0.084 0.126

H R

W

0.060

R

0.090

H

W

0.140

W

0.210

R B R B

B B

B B B B B B

GG

(remember the discussion in V8 on traces)

Most likely world with W (win = true)?

18

H R

W

0.024

R R

W

0.036

H

W

0.056

R

0.084

H R G

W

0.036

R

0.054

H G

0.084 0.126

H R

W

0.060

R

0.090

H

W

0.140

W

0.210

R B R B

B B

B B B B B B

GG

MPE inference

P(win = true)= P(win) = Σ!"#$% !&'(!)'#*+ = 0.562

19

H R

W

0.024

R R

W

0.036

H

W

0.056

R

0.084

H R G

W

0.036

R

0.054

H G

0.084 0.126

H R

W

0.060

R

0.090

H

W

0.140

W

0.210

R B R B

B B

B B B B B B

GG

Marginal Probability

P(win|col(2,green)) = 0.036/0.3= 0.12
P(win,col(2,green))/P(col(2,green)) = Σ/Σ

20

H R

W

0.024

R R

W

0.036

H

W

0.056

R

0.084

H R G

W

0.036

R

0.054

H G

0.084 0.126

H R

W

0.060

R

0.090

H

W

0.140

W

0.210

R B R B

B B

B B B B B B

GG

Conditional Probability

Distribution semantics (Sato, 95)

Distribution semantics with probabilistic facts (Sato 95)

𝑃 𝑄 = &
'∪)⊨+

,
-∈'

𝑝(𝑓),
-∉'

(1 − 𝑝 𝑓)

where

• 𝑄 = query

• 𝐹 = subset of facts (assumed to hold in a possible world)

• 𝑅 = Prolog rules

• 𝐹 ∪ 𝑅 ⊨ 𝑄: Summing condition: possible worlds where
𝑄 is true

21

Probability of possible world

INFERENCE

22

The challenge: disjoint sum problem

• 𝑃 𝑤𝑖𝑛 = 𝑃 ℎ 1 ∨ ℎ 𝑠 ∧ ℎ 3 ≠
𝑃 ℎ(1) + 𝑃(ℎ 2 ∧ ℎ(3))

• Rather should be

• = 𝑃 ℎ 1 + 𝑃 ℎ 2 ∧ ℎ 3 − 𝑃(ℎ 1 ∧ ℎ 2 ∧ ℎ(3))

23

0.4 :: heads(1).

0.7 :: heads(2).
0.5 :: heads(3).

win :- heads(1).
win :- heads(1), heads(3). % win <-> h(1) v (h(2) & h(3))

Idea: Weighted Model Counting (WMC)

• Ground out

• Put formula in CNF
(conjunctive normal
form)

• Weights

• Call WMC

24

0.4 :: heads(1).

0.7 :: heads(2).
0.5 :: heads(3).

win :- heads(1).
win :- heads(1), heads(3). % win <-> h(1) v (h(2) & h(3))

• ¬𝑤𝑖𝑛 ∨ ℎ 1 ∨ ℎ 2
∧ ¬win ∨ ℎ 1 ∨ ℎ 3
∧ 𝑤𝑖𝑛 ∨ ¬ℎ 1
∧ 𝑤𝑖𝑛 ∨ ¬ℎ 2 ∨ ¬ℎ 3

• ℎ(1) → 0.4 ¬ℎ 1 → 0.6
ℎ 2 → 0.7 ¬ℎ 2 → 0.3
ℎ 3 → 0.5 ¬ ℎ 3 → 0.5

Recap on some terminlogy from logic

• A propositional formula is in conjunctive normal form (CNF)
iff it is a conjunction of disjunctions of literals

• Literals = proposition symbol or its negation

• Every propositional formula can be transformed into CNF
(using distribution, de Morgan rules and double negation
elimination)

25

Recap on some terminlogy from logic

For the example note that
– 𝐴 ↔ 𝐵 and 𝐴 → 𝐵 ∧ 𝐵 → 𝐴 are equivalent

– 𝐴 → 𝐵 is equivalent to ¬𝐴 ∨ 𝐵
– Interpretations 𝐼T (truth value assignments) can also be

recorded in set notation (as doen in the following)

– E.g. 𝐼U = {¬ 𝐴, 𝐵} or even shorter: IU = {𝐵} (considering only
the propositional variables with value 1)

26

𝐴 𝐵 𝐴 ↔ 𝐵 (𝐴 → 𝐵) ∧ (𝐵 → 𝐴) (¬𝐴 ∨ 𝐵) ∧ (¬𝐵 ∨ 𝐴)

𝐼Z 0 0 1 1 1 1 1 1 1

𝐼U 0 1 0 1 0 0 1 0 0

𝐼[1 0 0 0 0 1 0 0 1

𝐼\ 1 1 1 1 1 1 1 1 1

in CNF

Recap on some terminology from logic

• Grounding
– Idea: „Propositionalize“ rules

– Technically: Instantiate all variables with all possible constant
combinations

– E.g. successfulStudent(X):- lovesLogic(X) over constants {a,b}
• successfulStudent(a):- lovesLogic(a),

• successfulStudent(b):- lovesLogic(b)

– (Grounding not used actually on the slides before, as rules
contained no variables)

27

Weighted Model Counting

𝑊𝑀𝐶 𝜙 = &
ab⊨c

,
d∈ab

𝑤(𝑙)

where
– 𝜙 : propositional formula in CNF
(resulting from problog programm or any other statistical relational model (SRL))

– 𝐼f : interpretation of propositional variables
(in set notation; corresponds to possible world)

– 𝑤(𝑙): weight of literal
(for 𝑝: : 𝑓 one assigns 𝑤(𝑓) = 𝑝,𝑤(¬ 𝑓) = 1 − 𝑝)

For 𝜙 = 𝑄:

𝑊𝑀𝐶 𝑄 = &
'∪)⊨+

,
-∈'

𝑝(𝑓),
-∉'

1 − 𝑝(𝑓)

28

Weighted Model Counting

• Simple WMC solvers based on a generalisation of DPLL
algorithm for SAT (Davis Putnam Logeman Loveland
algorithm)

• Current solvers often use knowledge compilation – here
an OBDD (ordered binary decision diagram), many
variations s-dDNNF, SDDs, (see also following lectures
V10-V13)

29

𝑤𝑖𝑛 ↔ ℎ 1 ∨ (ℎ 2 ∧ ℎ(3))

h(1)

h(2)

h(3)

10

true

false

win?

Weighted Model Counting

• Simple WMC solvers based on a generalisation of DPLL
algorithm for SAT (Davis Putnam Logeman Loveland
algorithm)

• Current solvers often use knowledge compilation – here
an OBDD (ordered binary decision diagram), many
variations s-dDNNF, SDDs, (see also following lectures
V10-V13)

30

h(1)

h(2)

h(3)

10

0.4
0.6

0.3
0.7

0.5
0.5

𝑤𝑖𝑛 ↔ ℎ 1 ∨ (ℎ 2 ∧ ℎ(3))

ℎ(1) → 0.4 ¬ℎ 1 → 0.6
ℎ 2 → 0.7 ¬ℎ 2 → 0.3
ℎ 3 → 0.5 ¬ ℎ 3 → 0.5

More inference

• Many variations / extensions

• Approximate inference

• Lifted inference (lifting from propositional to first order)
– infected(X) :- contact(X,Y), sick(Y).

31

LEARNING

32

Parameter Learning: an example

• Webpage classification model

• For each Class1, Class2 and each Word

33

?? :: link_class(Source,Target, Class1, Class2).
?? :: word_class(Word,Class).

class(Page,C) :- has_word(Page,W), word_class(W,C).
class(Page,C) :- links_to(OtherPage,Page),

class(OtherPage,OtherClass),
link_class(OtherPage,Page,OtherClass,C).

Sampling interpretations

34

𝑃 𝑓𝑎𝑐𝑡 =
#(𝑓𝑎𝑐𝑡 𝑡𝑟𝑢𝑒)

𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛𝑠

Partial interpretations

• Not all facts are observed
– Note: this is different from some

facts Being false

• Use for this some form of the

EM-algorithm (Expectation maximization)
– Expected count used instead of count

– P(Q|E) –conditional queries

35

Reminder: EM: How it Works on Naive Bayes

• Consider the following data,

• N examples with Boolean attributes X1, X2, X3, X4

• which we want to categorize in one of three possible values
of class C = {1,2,3} (hidden, no observations given)

• We use a Naive Bayes classifier with hidden variable C

?
?
?
?
?

Reminder: EM: General Idea

• The algorithm starts from “invented”
(e.g., randomly generated) information
to solve the learning problem, i.e.

• Determine the network parameters (CPT in
Bayesian networks)

• It then refines this initial guess by cycling through two basic
steps

• Expectation (E): update the data with predictions generated via the
current model

• Maximization (M): given the updated data, update the model
parameters using the Maximum Likelihood (ML) approach

üThis is the same step that is used for learning parameters for fully
observable networks

EM Cycle

Expected Counts
(“Augmented data”) Probabilities

Note: Actually you never
generate any data in E-step
but expected counts

Learning Rules/Structures

Information Extraction in NELL

NELL: http://rtw.ml.cmu.edu/rtw/

instances for many
different relations

degree of certainty

39

ProbFOIL

• Upgrade rule-learning to a probabilistic setting within a
relational learning / inductive logic programming
setting
– Works with a probabilistic logic program instead of a

deterministic one.

• Introduce ProbFOIL, an adaption of Quinlan’s FOIL

• Apply to probabilistic databases like NELL

40

Example in Pro Log

41

surfing(X) :- not rain(X), windOK(X). %H

surfing(X) :- not rain(X), sunshine(X).

rain(e1). %B

windOK(e1).
sunshine(e1).

?- surfing(e1). % Query
No % Answer no, because surfing(e1) does not follow from H u B

Example in ProbLog

42

p1 :: surfing(X) :- not rain(X), windOK(X). % H

p2 ::surfing(X) :- not rain(X), sunshine(X).

0.2 :: rain(e1). % B

0.7 :: windOK(e1).
0.6 :: Sunshine(e1).

?- P(surfing(e1)). % Query
% gives asnwer probability P(B U H |= e) =
% (1-0.2) x 0.7 x p1 + (1-0.2) x 0.6 x (1-0.7) x p2
% no rain x windok x p1 + no rain x sunshine x not windOk x p2

Note: probabilities 𝑝!, 𝑝" in front of rules are syntactic sugar.

Classical FOIL (Quinlan)

• Input
– Prolog program (or any FOL theory)

– Observed sequence of facts 𝐸 (such as surfing(e1))

– Space of hypotheses 𝐿
• Output: Hypothesis set 𝐻 ⊆ 𝐿 (rules) s.t. 𝐵 ∪ 𝐻 ⊨ 𝐸

• Hypothesis space contains all admissible rules over the
language up to some complexity

• Various heuristics

43

Inductive Probabilistic Logic Programming

• Input

– a set of example facts 𝑒 ∈ 𝐸 together with the
probability 𝑝 that they hold

– a background theory 𝐵 in ProbLog

(note: 𝐵 may contain facts and rules, which we know
to hold)

– a hypothesis space 𝐿 (a set of clauses)

• Output
𝑎𝑟𝑔𝑚𝑖𝑛y 𝑙𝑜𝑠𝑠 𝐻, 𝐵, 𝐸 = 𝑎𝑟𝑚𝑖𝑛𝑔y/

z0∈{
|𝑃| 𝐵 ∪ 𝐻 ⊨ 𝑒T − 𝑝T |

with optimal probabilities for rules.
44

Next weeks

• More details on the efficient representation of
probabilities and formula.

45

APPENDIX
Uhhh, a lecture with a hopefully useful

46

Probability theory basics reminder

Random variable (RV)

• possible worlds defined by assignment of
values to random variables.

• Boolean random variables
e.g., Cavity (do I have a cavity?).

Domain is < true , false >

• Discrete random variables
e.g., possible value of Weather is one of

< sunny, rainy, cloudy, snow >

• Domain values must be exhaustive and
mutually exclusive

• Elementary propositions are constructed by
assignment of a value to a
random variable: e.g.,

– Cavity = false (abbreviated as ¬cavity)
– Cavity = true (abbreviated as cavity)

• (Complex) propositions formed from
elementary propositions and standard logical
connectives, e.g., Weather = sunny Ú Cavity =
false

Probabilities
• Axioms (for propositions 𝑎, 𝑏, ⊤ = (𝑎 ∨ ¬𝑎), and

⊥ = ¬ ⊤):

– 0 ≤ 𝑃 𝑎 ≤ 1; 𝑃(⊤) = 1; 𝑃(⊥) = 0
– (𝑃(𝑎 ∨ 𝑏) = 𝑃(𝑎) + 𝑃(𝑏) − 𝑃(𝑎 ∧ 𝑏)

• Joint probability distribution of 𝐗 = {𝑋8, … , 𝑋9}
– 𝑷 𝑋8,… ,𝑋9
– gives the probability of every atomic event on 𝑿

• Conditional probability
𝑃(𝑎 | 𝑏) = 𝑃(𝑎 ∧ 𝑏) / 𝑃(𝑏) 𝑖𝑓 𝑃(𝑏) > 0

• Chain rule

𝑷 𝑋8, … , 𝑋9 = ,
?@8

9
𝑷(𝑋?|𝑋8, … , 𝑋?A8)

• Marginalization: 𝑷 𝑌 = ∑B∈D 𝑷(𝑌, 𝑧)
• Conditioning on 𝑍:

– 𝑷 𝑌 = ∑B∈D 𝑷 𝑌 𝑧 𝑷(𝑧) (discrete)

– 𝑷 𝑌 = ∫𝑷 𝑌 𝑧 𝑷 𝑧 𝑑𝑧 (continuous)
= 𝔼𝒛∼G(B)P(Y|z) (expected value

notation)

• Bayes‘ Rule

𝑃 𝐻 𝐷 =
𝑃(𝐷|𝐻) � 𝑃(𝐻)

𝑃(𝐷) =
𝑃(𝐷|𝐻) � 𝑃(𝐻)
∑J 𝑃 𝐷|ℎ 𝑃(ℎ)

47

Color Convention in this Course

• Formulae, when occurring inline

• Newly introduced terminology and definitions

• Important results (observations, theorems) as well as
emphasizing some aspects

• Examples are given with standard orange with possibly
light orange frame

• Comments and notes in nearly opaque post-it

• Algorithms and program code

• Reminders (in the grey fog of your memory)

48

Today‘s lecture is based on the following

• Mainly
– Luc de Raedt: Probabilistic Logic Programming and its Applications.

Tutorial given at The Turing, London, September 11, 2017

https://logic-data-science.github.io/Slides/DeRaedt.pdf

– L. De Raedt and A. Kimmig. Probabilistic (logic) programming
concepts. Machine Learning, 100(1):5–47, 2015.

• A little bit
– Tutorial on

https://dtai.cs.kuleuven.be/problog/tutorial.html

- Book: L. D. Raedt. Logical and relational learning. Cognitive
Technologies. Springer, 2008.

49

https://logic-data-science.github.io/Slides/DeRaedt.pdf
https://dtai.cs.kuleuven.be/problog/tutorial.html

References

• T. Sato. A statistical learning method for logic programs with distribution semantics. In IN PROCEED- INGS OF THE 12TH
INTERNATIONAL CONFERENCE ON LOGIC PROGRAMMING (ICLP’95, pages 715–729. MIT Press, 1995.

• [1] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about Systems. Cambridge University
Press, 2000.

• M. Ben-Ari. Mathematical Logic for Computer Science. Springer, 2. edition, 2001.

50

