PROBABILISTIC AND DIFFERENTIABLE PROGRAMMING V9: Probabilistic Programming II

Özgür L. Özçep Universität zu Lübeck Institut für Informationssysteme

IM FOCUS DAS LEBEN

Probabilistic Logic Programs (PLP)

- devised by Poole and Sato in the 90s.
- built on top of the programming language Prolog
- upgrade directed graphical models
- Generalises probabilistic databases (Suciu et al.)
- combines the advantages / expressive power of programming languages (Turing equivalent) and graphical models
- Implementations: see next page

PLP Systems

- PRISM <u>https://www.prismmodelchecker.org/</u>
- ProbLog2 <u>http://dtai.cs.kuleuven.be/problog/</u>
- Yap Prolog <u>https://github.com/vscosta/yap-6.3</u> includes
 - ProbLog1
 - cplint
 - CLP(BN)
 - LP2
- PITA in XSB Prolog http://xsb.sourceforge.net/
- AlLog2 http://artint.info/code/ailog/ailog2.html
- SLPs <u>http://stoics.org.uk/~nicos/sware/pepl</u>
- contdist <u>http://www.cs.sunysb.edu/~cram/contdist/</u>
- DC <u>https://code.google.com/p/distributional-clauses</u>
- WFOMC <u>http://dtai.cs.kuleuven.be/ml/systems/wfomc</u>

Today's Agenda (in classical linear form)

Probabilistic Logic Programming

- 1. Modeling
- 2. Reasoning
- 3. Learning

MODELING

IM FOCUS DAS LEBEN 5

The motto: Logic everywhere

See also IFIS course Information systems

The Logic programming (LP) paradigm

- The other big three paradigms of programming
 - Imperative (e.g. C)
 - Functional (e.g., Lisp)
 - Object-oriented (e.g. Java)
- Distinguishing feature of LP: Problem solving by specifying the "What" not the "How to"
- Abstracting from
 - Control structures
 - Memory layout
 - Process direction
- Prominent examples: Prolog, Datalog, ASP (Answer set

Logic

Science of logic investigates mathematical structures (static and dynamic) and formal languages to describe them by specifying a logic given by

- syntax (well-formed formula)
- semantics (truth conditions for sentences, entailment notion)
- calculus (provability, inference)

Introductory logic texbooks with CS in mind

- (Huth,Ryan 00)
- (Ben-Ari 01)

Where is the logic in logic programming?

- Specification of a domain with a set of formula (sometimes called a knowledge base)
 - Formula specifed by truth-condition semantics as in logic
 - In Prolog: formula are facts or rules
- Specifcation of the problem as a query (also a formula)
 - Query is Boolean or has variables to be bound
- Solving a problem according a logical calculus
 - try to infer (bindings for) query w.r.t. the knowledge base using rules
- In Prolog use resolution

Prolog

- Prolog: Programmation en Logique
- Invented around 1970 when there was high interest in
 - Theorem proving
 - Language processing with formal grammars
- Protagonists
 - R. Kowalski: Theoretical contribution with SL-Resolution
 - A. Colmerauer and P. Roussel: developer

A bit of gambling with ProbLog

- Toss (biased) coin & draw ball from each urn
- win if (heads and a red ball) or (two balls of same color)
- 0.4 :: heads.
 0.3 :: col(1,red); 0.7 :: col(1, blue).
 - 0.2 :: col(2,red); 0.3 :: col(2,green);
 0.5 :: col(2,blue).
 Probabilistic choices

consequences

•

- win :- heads, col(_,red).
- win :- col(1,C), col(2,C).

- Probabilistic fact: Heads with probability 0.4
- annotated disjunction: first ball is red with probability 0.3 and blue with 0.7
- annotated disjunction: second ball is red with probability 0.2, green with 0.3, and blue with 0.5
- Logical rule encoding background knowledge

Queries

```
0.4 :: heads.
0.3 :: col(1,red); 0.7 :: col(1, blue).
0.2 :: col(2,red); 0.3 :: col(2,green);0.5 :: col(2,blue).
win :- heads, col(_,red).
win :- col(1,C), col(2,C).
```

- Probability of win? (marginal propability)
- Probability of win given col(2, green)?

(conditional propability)

Most probable world where win is true?

(Most probable explanation (MPE))

Possible Worlds

0.4 ::	heads.
--------	--------

- 0.3 :: col(1,red); 0.7 :: col(1, blue).
- 0.2 :: col(2,red); 0.3 :: col(2,green);0.5 :: col(2,blue).

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

0.4 x 0.3 x 0.3

Possible Worlds

```
0.4 :: heads.
0.3 :: col(1,red); 0.7 :: col(1, blue).
0.2 :: col(2,red); 0.3 :: col(2,green);0.5 :: col(2,blue).
win :- heads, col(_,red).
win :- col(1,C), col(2,C).
```


All Possible Worlds

(remember the discussion in $\sqrt{8}$ on traces)

Most likely world with W (win = true)?

$$P(win = true) = P(win) = \sum_{world with w=true} = 0.562$$

Marginal Probability

P(win | col(2, green)) = 0.036/0.3 = 0.12P(win, col(2, green))/P(col(2, green)) = Σ/Σ

Conditional Probability

Distribution semantics (Sato, 95)

Distribution semantics with probabilistic facts (Sato 95)

$$P(Q) = \sum_{F \cup R \models Q} \prod_{f \in F} p(f) \prod_{f \notin F} (1 - p(f))$$
Probability of possible world

where

NIVERSITÄT ZU LÜBECK

- Q = query
- F = subset of facts (assumed to hold in a possible world)
- R = Prolog rules
- $F \cup R \models Q$: Summing condition: possible worlds where Q is true

INFERENCE

IM FOCUS DAS LEBEN 22

The challenge: disjoint sum problem

```
0.4 :: heads(1).
0.7 :: heads(2).
0.5 :: heads(3).
win :- heads(1).
win :- heads(1), heads(3). % win <-> h(1) v (h(2) & h(3))
```

•
$$P(win) = P\left(h(1) \lor (h(s) \land h(3))\right) \neq$$

 $P(h(1)) + P(h(2) \land h(3))$

Rather should be

• =
$$P(h(1)) + P(h(2) \wedge h(3)) - P(h(1) \wedge h(2) \wedge h(3))$$

Idea: Weighted Model Counting (WMC)

```
0.4 :: heads(1).
0.7 :: heads(2).
0.5 :: heads(3).
win :- heads(1).
win :- heads(1), heads(3). % win <-> h(1) v (h(2) & h(3))
```

- Ground out
- Put formula in CNF (conjunctive normal form)
- Weights
- Call WMC

Recap on some terminlogy from logic

- A propositional formula is in conjunctive normal form (CNF) iff it is a conjunction of disjunctions of literals
- Literals = proposition symbol or its negation
- Every propositional formula can be transformed into CNF (using distribution, de Morgan rules and double negation elimination)

Recap on some terminlogy from logic

For the example note that

- $A \leftrightarrow B$ and $(A \rightarrow B) \land (B \rightarrow A)$ are equivalent
- $A \rightarrow B$ is equivalent to $\neg A \lor B$
- Interpretations I_i (truth value assignments) can also be recorded in set notation (as doen in the following)
- E.g. $I_2 = \{\neg A, B\}$ or even shorter: $I_2 = \{B\}$ (considering only the propositional variables with value 1)

							III CN	Г	
	Α	В	$A \leftrightarrow B$	$(A \rightarrow B)$	٨	$(B \rightarrow A)$	$(\neg A \lor B)$	٨	$(\neg B \lor A)$
I ₁	0	0	1	1	1	1	1	1	1
I_2	0	1	0	1	0	0	1	0	0
I ₃	1	0	0	0	0	1	0	0	1
I_4	1	1	1	1	1	1	1	1	1

in CNF

Recap on some terminology from logic

- Grounding
 - Idea: "Propositionalize" rules
 - Technically: Instantiate all variables with all possible constant combinations
 - E.g. successfulStudent(X):- lovesLogic(X) over constants {a,b}
 - successfulStudent(a):- lovesLogic(a),
 - successfulStudent(b):- lovesLogic(b)

- (Grounding not used actually on the slides before, as rules contained no variables)

Weighted Model Counting

$$WMC(\phi) = \sum_{I_V \vDash \phi} \prod_{l \in I_V} w(l)$$

where

- ϕ : propositional formula in CNF

(resulting from problog programm or any other statistical relational model (SRL))

- I_V : interpretation of propositional variables

(in set notation; corresponds to possible world)

- w(l): weight of literal (for p::f one assigns $w(f) = p, w(\neg f) = 1 - p$)

For
$$\phi = Q$$
:

$$WMC(Q) = \sum_{F \cup R \models Q} \prod_{f \in F} p(f) \prod_{f \notin F} 1 - p(f)$$

Weighted Model Counting

- Simple WMC solvers based on a generalisation of DPLL algorithm for SAT (Davis Putnam Logeman Loveland algorithm)
- Current solvers often use knowledge compilation here an OBDD (ordered binary decision diagram), many variations s-dDNNF, SDDs, (see also following lectures V10-V13)

win $\leftrightarrow h(1) \lor (h(2) \land h(3))$

29

Weighted Model Counting

- Simple WMC solvers based on a generalisation of DPLL algorithm for SAT (Davis Putnam Logeman Loveland algorithm)
- Current solvers often use knowledge compilation here an OBDD (ordered binary decision diagram), many variations s-dDNNF, SDDs, (see also following lectures V10-V13)

win
$$\leftrightarrow h(1) \lor (h(2) \land h(3))$$

 $h(1) \to 0.4 \quad \neg h(1) \to 0.6$
 $h(2) \to 0.7 \quad \neg h(2) \to 0.3$
 $h(3) \to 0.5 \quad \neg h(3) \to 0.5$

More inference

- Many variations / extensions
- Approximate inference
- Lifted inference (lifting from propositional to first order)
 infected(X) :- contact(X,Y), sick(Y).

LEARNING

IM FOCUS DAS LEBEN 32

Parameter Learning: an example

- Webpage classification model
- For each Class1, Class2 and each Word

```
?? :: link_class(Source,Target, Class1, Class2).
```

?? :: word_class(Word,Class).

Sampling interpretations

Partial interpretations

- Not all facts are observed
 - Note: this is different from some facts Being false
- Use for this some form of the

EM-algorithm (Expectation maximization)

- Expected count used instead of count
- P(Q|E) –conditional queries

Reminder: EM: How it Works on Naive Bayes

- Consider the following data,
 - N examples with Boolean attributes X1, X2, X3, X4

- which we want to categorize in one of three possible values of class C = {1,2,3} (hidden, no observations given)
- We use a Naive Bayes classifier with hidden variable C

Model \rightarrow Probabilitie P(C) $P(X_1|C)$ $P(X_2|C)$ $P(X_3|C)$ $P(X_4|C)$

IM FOCUS DAS LEBEN

?

?

?

9

Reminder: EM: General Idea

- The algorithm starts from "invented" (e.g., randomly generated) information to solve the learning problem, i.e.
 - Determine the network parameters (CPT in Bayesian networks)

- It then refines this initial guess by cycling through two basic steps
 - Expectation (E): update the data with predictions generated via the current model
 - Maximization (M): given the updated data, update the model parameters using the Maximum Likelihood (ML) approach

✓ This is the same step that is used for learning parameters for fully observable networks
IM FOCUS DAS LEBEN

IM FOCUS DAS LEBEN

Learning Rules/Structures

Information Extraction in NELL

Recently-Learned Facts twitter			Refresh
instance	iteration da	te learned	confidence
kelly_andrews is a female	826 29-	-mar-2014	98.7 🗳 ኛ
investment_next_year is an economic sector	829 10	-apr-2014	95.3 🏖 ኛ
shibenik is a geopolitical entity that is an organization	829 10	-apr-2014	97.2 🖓 ኛ
quality_web_design_work is a character trait	826 29-	-mar-2014	91.0 🏖 ኛ
mercedes_benz_cls_by_carlsson is an automobile manufacturer	829 10	-apr-2014	95.2 🕼 ኛ
social work is an academic program at the university rutgers university	827 02	-apr-2014	93.8 🖓 ኛ
dante wrote the book the divine comedy	826 29-	-mar-2014	93.8 🗳 ኛ
willie_aames was born in the city los_angeles	831 16	-apr-2014	100.0 🏠 🖑
kitt_peak is a mountain in the state or province arizona	831 16	-apr-2014	96.9 🗳 ኛ
greenwich is a park in the city london	831 16	-apr-2014	100.0 🏖 ኛ
A			
nstances for many different relations		degr	ee of certa

NELL: http://rtw.ml.cmu.edu/rtw/

ProbFOIL

- Upgrade rule-learning to a probabilistic setting within a relational learning / inductive logic programming setting
 - Works with a probabilistic logic program instead of a deterministic one.
- Introduce ProbFOIL, an adaption of Quinlan's FOIL
- Apply to probabilistic databases like NELL

Example in Pro Log

```
surfing(X) := not rain(X), windOK(X). %H
surfing(X) := not rain(X), sunshine(X).
rain(el). %B
windOK(el).
sunshine(el).
?- surfing(el). % Query
No % Answer no, because surfing(el) does not follow from H u B
```


Example in ProbLog

```
pl :: surfing(X) := not rain(X), windOK(X). % H
p2 ::surfing(X) := not rain(X), sunshine(X).
0.2 :: rain(el). % B
0.7 :: windOK(el).
0.6 :: Sunshine(el).
?- P(surfing(el)). % Query
% gives asnwer probability P(B U H |= e) =
% (1-0.2) x 0.7 x pl + (1-0.2) x 0.6 x (1-0.7) x p2
% no rain x windok x pl + no rain x sunshine x not windOk x p2
```

Note: probabilities p_1 , p_2 in front of rules are syntactic sugar.

Classical FOIL (Quinlan)

- Input
 - Prolog program (or any FOL theory)
 - Observed sequence of facts E (such as surfing(e1))
 - Space of hypotheses *L*
- Output: Hypothesis set $H \subseteq L$ (rules) s.t. $B \cup H \models E$
- Hypothesis space contains all admissible rules over the language up to some complexity
- Various heuristics

Inductive Probabilistic Logic Programming

- Input
 - a set of example facts $e \in E$ together with the probability p that they hold
 - a background theory *B* in ProbLog

(note: *B* may contain facts and rules, which we know to hold)

- a hypothesis space *L* (a set of clauses)
- Output

$$argmin_{H} loss(H, B, E) = arming_{H} \sum_{e_{i} \in E} |P_{s}(B \cup H \models e_{i}) - p_{i}|$$

with optimal probabilities for rules.

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEMI

Next weeks

• More details on the efficient representation of probabilities and formula.

Uhhh, a lecture with a hopefully useful

APPENDIX

IM FOCUS DAS LEBEN 46

Probability theory basics reminder

Random variable (RV)

- possible worlds defined by assignment of values to random variables.
- Boolean random variables

 e.g., Cavity (do I have a cavity?).
 Domain is < true , false >
- Discrete random variables
 - e.g., possible value of Weather is one of < sunny, rainy, cloudy, snow >
- Domain values must be exhaustive and mutually exclusive
- Elementary propositions are constructed by assignment of a value to a random variable: e.g.,
 - Cavity = false (abbreviated as ¬cavity)
 - Cavity = true (abbreviated as cavity)
- (Complex) propositions formed from elementary propositions and standard logical connectives, e.g., Weather = sunny \vee Cavity = false

Probabilities

- Axioms (for propositions $a, b, T = (a \lor \neg a)$, and $\bot = \neg T$):
 - $0 \le P(a) \le 1; P(T) = 1; P(\bot) = 0$
 - $(P(a \lor b) = P(a) + P(b) P(a \land b)$
- Joint probability distribution of $\mathbf{X} = \{X_1, \dots, X_n\}$
 - $P(X_1, \ldots, X_n)$
 - gives the probability of every atomic event on X
- Conditional probability $P(a \mid b) = P(a \land b) / P(b) if P(b) > 0$
 - Chain rule $\boldsymbol{P}(X_1, \dots, X_n) = \prod_{i=1}^n \boldsymbol{P}(X_i | X_1, \dots, X_{i-1})$
- Marginalization: $P(Y) = \sum_{z \in Z} P(Y, z)$
- Conditioning on Z:
 - $P(Y) = \sum_{z \in Z} P(Y|z)P(z)$ (discrete)
 - $P(Y) = \int P(Y|z)P(z)dz$ (continuous) = $\mathbb{E}_{z \sim P(z)} P(Y|z)$ (expected value notation)
 - Bayes' Rule $P(H|D) = \frac{P(D|H) \cdot P(H)}{P(D)} = \frac{P(D|H) \cdot P(H)}{\sum_{h} P(D|h)P(h)}$

IM FOCUS DAS LEBEN 47

Color Convention in this Course

- Formulae, when occurring inline
- Newly introduced terminology and definitions
- Important results (observations, theorems) as well as emphasizing some aspects
- Examples are given with standard orange with possibly light orange frame
- Comments and notes in nearly opaque post-it
- Algorithms and program code
- Reminders (in the grey fog of your memory)

Today's lecture is based on the following

- Mainly
 - Luc de Raedt: Probabilistic Logic Programming and its Applications.
 Tutorial given at The Turing, London, September 11, 2017

https://logic-data-science.github.io/Slides/DeRaedt.pdf

- L. De Raedt and A. Kimmig. Probabilistic (logic) programming concepts. Machine Learning, 100(1):5–47, 2015.
- A little bit
 - Tutorial on

https://dtai.cs.kuleuven.be/problog/tutorial.html

- Book: L. D. Raedt. Logical and relational learning. Cognitive Technologies. Springer, 2008.

References

- T. Sato. A statistical learning method for logic programs with distribution semantics. In IN PROCEED- INGS OF THE 12TH INTERNATIONAL CONFERENCE ON LOGIC PROGRAMMING (ICLP'95, pages 715–729. MIT Press, 1995.
- [1] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about Systems. Cambridge University Press, 2000.
- M. Ben-Ari. Mathematical Logic for Computer Science. Springer, 2. edition, 2001.

