
PROBABILISTIC AND
DIFFERENTIABLE PROGRAMMING

V10: Probabilistic Circuits I

Özgür L. Özçep

Universität zu Lübeck

Institut für Informationssysteme

Today‘s Agenda

1. Motivation

2. Building Blocks

3. Structural Properties for Tractability

2

Probabilistic Circuits

MOTIVATION

3

Have the cake and eat it too

• Be as expressive as possible
– Express arbitrary distributions

• Be as efficient as possible in inferencing/answering
queries

• For exact (not just approximative) answering

4

Tractable Prbabilistic Inference

A class of queries 𝑄 is tractable on a family of probabilistic
models 𝑀 iff for any query 𝑞 ∈ 𝑄 and model 𝑚 ∈
𝑀 exactly computing 𝑞(𝑚) runs in time 𝑂(𝑝𝑜𝑙𝑦(|𝑚|)).

5

• Often poly will in fact be linear

• Note: if 𝑀 and 𝑄 are compact in the number of random
variables 𝑿, i.e., |m|, |q| ∈ O(poly(|𝐗|)), then query
time is O(poly(|X|)).

Why exact inference?

1. No need for approximations when we can be exact

2. We can do exact inference in approximate models
(e.g., Dechter et al. 2002)

3. Approximations shall come with guarantees

4. Approximate inference (even with guarantees) can
mislead learners (Kulesza/Pereira 2007)

5. Approximations can be intractable as well
(Dagum/Luby1993)

6

Complete Evidence (EVI)

• 𝑞;: What is the probability that today is a
Monday at 12.00 and there is a traffic jam only
on 5th Avenue?

• 𝑋 =
{𝐷𝑎𝑦, 𝑇𝑖𝑚𝑒, 𝐽𝑎𝑚EFG, 𝐽𝑎𝑚HFIJ, . . . , 𝐽𝑎𝑚HFIK}

• 𝑞; 𝑚 = 𝑝M 𝑋 = 𝑀𝑜𝑛, 12.00,1,0, … , 0

• Fundamental in maximum likelihood learning
𝜃MTUV = 𝑎𝑟𝑔𝑚𝑎𝑥Z Π\∈]𝑝M(𝑥; 𝜃)

7

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on 5th Avenue?

© 7BM2�`i�K2`B+�X+QK

9/158

Marginal (MAR) and Conditional (CON) queries

• 𝑞_: What is the probability that today is a
Monday at 12.00 and there is a traffic jam only
on 5th Avenue?

• 𝑞_ 𝑚 = 𝑝M 𝐷𝑎𝑦 = 𝑀𝑜𝑛, 𝐽𝑎𝑚EFG = 1

• General:

𝑝M 𝑒 = `𝑝M 𝑒,𝑯 𝑑𝑯

• With this can answer conditional queries too

𝑝M 𝑞 ∣ 𝒆 =
𝑝M(𝑞, 𝒆)
𝑝M(𝒆)

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on 5th Avenue?

© 7BM2�`i�K2`B+�X+QK

9/158

8

Maximum A Posteriori (MAP) (aka Most Probable Explanation (MPE))

• 𝑞E: Which combination of roads is most likely to
be jammed on Monday at 9am?

• 𝑞E 𝑚 =
𝑎𝑟𝑔𝑚𝑎𝑥𝒋𝑝M(𝑗_, 𝑗J, … ∣ 𝐷𝑎𝑦 = 𝑀𝑜𝑛, 𝑇𝑖𝑚𝑒 = 9)

• General: 𝑎𝑟𝑔𝑚𝑎𝑥𝒒 𝑝M 𝒒 ∣ 𝒆
where 𝑸 ∪ 𝑬 = 𝑿

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on 5th Avenue?

© 7BM2�`i�K2`B+�X+QK

9/158

9

Maximum A Posteriori (MAP) (aka Most Probable Explanation (MPE))

• 𝑞E: Which combination of roads is most likely to
be jammed on Monday at 9am?

• ... Intractable for latent variable models

max
n
𝑝M 𝒒 𝒆 = max

𝒒
o
𝒛

𝑝M 𝒒, 𝒛 ∣ 𝒆

≠o
𝒛

max
𝒒
𝑝M(𝒒, 𝒛 ∣ 𝒆)

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on 5th Avenue?

© 7BM2�`i�K2`B+�X+QK

9/158

10

Marginal MAP (MMAP) (aka Bayesian network MAP)

• 𝑞r: Which combination of roads is most likely to
be jammed on Monday at 9am?

• 𝑞r 𝑚 =
𝑎𝑟𝑔𝑚𝑎𝑥𝒋 𝑝M(𝑗_, 𝑗J, … ∣, 𝑇𝑖𝑚𝑒 = 9)

• General: 𝑎𝑟𝑔𝑚𝑎𝑥𝒒 𝑝M 𝒒 ∣ 𝒆
= 𝑎𝑟𝑚𝑎𝑥𝒒 ΣG𝑝M(𝒒, 𝒉 ∣ 𝒆)

where 𝑸 ∪ 𝑯 ∪ 𝑬 = 𝑿

• NPPP-complete (Park/Darwiche)

• NP-hard for trees (Campos 2011)

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on 5th Avenue?

© 7BM2�`i�K2`B+�X+QK

9/158

11

Advanced Queries (ADV)

• 𝑞J: Which day is most likely to have a traffic jam
on my route to work?

• 𝑞J 𝑚 =
𝑎𝑟𝑔𝑚𝑎𝑥u 𝑝M(𝐷𝑎𝑦 = 𝑑,∧ ∨x∈IyzF{ 𝐽𝑎𝑚HFIx)
– => Marginals + MAP + logical events

• 𝑞|: What is the probability of seeing more
traffic jams in Uptown than Midtown?

– => counts + group comparison

• And more

– expected classification agreement

– Expected predictions

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on 5th Avenue?

© 7BM2�`i�K2`B+�X+QK

9/158

12

(Oztok et al. 2016)

(Khosravi et al. 2019b)

Q: EVI MAR CON MAP MMAP ADV

M
GANs

VAEs

Flows I
I
I

Trees

Mixtures

Factorized I I

tractable bands

1) (Kobyzev et al. 19)

1)

Fully factorized models

A completely disconnected graph. Example: Product of Bernoullis (PoBs)

X1 X3

X5X2 X4

Complete evidence, marginals and MAP, MMAP inference is linear!

but definitely not expressive…

(no dependencies represetable)
⇒

𝑝 𝑥 = ~
x�_

�

𝑝(𝑥x)

OK, fully factorized models have broadest tractability spectrum, but ...

Expressiveness and efficiency

• Expressiveness: Ability to represent rich and effective
classes of functions

• Mixture of Gaussians can approximate any distribution!
– See (Cohen et al. 15)

• Expressive efficiency (succinctness) Ability to represent
rich and effective classes of functions compactly

• ⇒ but how many components does a Gaussian mixture
need?

15

Q: EVI MAR CON MAP MMAP ADV

M
GANs

VAEs

Flows I
I
I

Trees

Mixtures

Factorized I I

tractable bands

Use these as
building blocks

„Eat the cake and have it“

larger tractable bands

LTM XFully factorized
Trees

NB Mixtures
Polytrees

TJT

NADEs BNs

NFs
MNs

VAEs
GANs

smaller tractable bands

probabilistic circuits are at the “sweet spot”

Le
ss

ex
p

re
ss

iv
e

ef
fic

ie
nt

M
or

e
ex

p
re

ss
iv

e
ef

fic
ie

nt

BUILDING BLOCKS

18

A probabilistic circuit 𝐶 over variables 𝑿 is a
computational graph encoding a (possibly unnormalized)
probability distribution 𝑝(𝑿).

19

• Note that we have an operational semantics here

• By constraining the graph one can make inference
tractable

Distributions as computational graphs

Distributions as computational graphs

X

Base case: a single node encoding a distribution
⇒ e.g., Gaussian PDF continuous random variable

56/158

Distributions as computational graphs

¬X

Base case: a single node encoding a distribution
⇒ e.g., indicators forX or ¬X for Boolean random variable

56/158

20

Base case: a single node encoding a distribution

e.g., a Gaussian PDF continuous variable e.g., indicators for 𝑋 or¬𝑋 for
Boolean RVs

Distributions as computational graphs

x

X

pX(x)

Simple distributions are tractable “black boxes” for:

EVI: output p(x) (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode

56/158

21

Simple distributions are tractable „black boxes“ for
• EVI: output p(x) (density or mass)
• MAR: output 1 (normalized) or Z (unnormalized)
• MAP: output the mode

22

Simple distributions are tractable „black boxes“ for
• EVI: output p(x) (density or mass)
• MAR: output 1 (normalized) or Z (unnormalized)
• MAP: output the mode

Distributions as computational graphs

1.3

X

.33

Simple distributions are tractable “black boxes” for:

EVI: output p(x) (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode

56/158

<=

l Bottleneck: Summing out variables

l E.g.: Partition function

Sum of exponentially many products

Reminder: Partition function Z

23

𝑃 𝑋1, … 𝑋� =
1
𝑍
~
�

𝜙𝑗 (𝑋1, … 𝑋�)

𝑍 = o
\
~
�

𝜙𝑗

Factorizations as product nodes
(Divide and Conquer complexity)

24

Factorizations as product nodes
Divide and conquer complexity

p(X1, X2, X3) = p(X1) · p(X2) · p(X3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 ⇥

X1 X2 X3

⇒ …with a product node over some univariate Gaussian distribution
57/158

e.g. modeling a multivariate Gaussian with diagonal covariance matrix
by a product node of univariate Gaussians

Factorizations as product nodes
(Divide and Conquer complexity)

25

Feed forward evaluation

Factorizations as product nodes
Divide and conquer complexity

p(x1, x2, x3) = p(x1) · p(x2) · p(x3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 .36

0.8

X1

0.5

X2

0.9

X3

⇒ feedforward evaluation
57/158

Mixtures as sum nodes
(enhance expressiveness)

26

Mixtures as sum nodes
Enhance expressiveness

�10 �5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1·p1(X)+w2·p2(X)

⇒ e.g. modeling a mixture of Gaussians…

58/158

Mixtures as sum nodes
(enhance expressiveness)

27

Mixtures as sum nodes
Enhance expressiveness

X1 X1

w1 w2

p(x) = 0.2·p1(x)+0.8·p2(x)

⇒ …as weighted a sum node over Gaussian input distributions

58/158

Mixtures as sum nodes
Enhance expressiveness

X1 X1

w1 w2

p(x) = 0.2·p1(x)+0.8·p2(x)

⇒ …as weighted a sum node over Gaussian input distributions

58/158

Mixtures as sum nodes
(enhance expressiveness)

28

Mixtures as sum nodes
Enhance expressiveness

.44

0.2

X1

0.5

X1

0.2 0.8

p(x) = 0.2·p1(x)+0.8·p2(x)

⇒ by stacking them we increase expressive efficiency

58/158

A grammar for tractable models
(Recursive Semantics for probabilistic circuits)

29

A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

⇥

X1 X2

⇥

X1 X2

⇥

X1 X2

w1 w2

⇥ ⇥

⇥ ⇥⇥ ⇥

X1

X2

X1

X2

X3 X4 X3 X4

59/158

Probabilistic Circuits are not PGMs

30

Probabilistic circuits are not PGMs!

They are probabilistic and graphical, however …

PGMs Circuits

Nodes: random variables unit of computations
Edges: dependencies order of execution

Inference: conditioning

elimination

message passing

feedforward pass

backward pass

⇒ they are computational graphs, more like neural networks

60/158

Control on the graph

31

Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

just arbitrarily compose them like a neural network!
61/158

• We do not arbitraly compose the building bl ocks as in neural networks

• But define structural constraints for tractability

Side note: Compare this with desriptive complexity

32

U

sAC
1

0

1

Recursive

Primitive Recursive

EXPTIME

PSPACE

DSPACE[log n]FO(DTC)

ACFO Logarithmic−Time Hierarchy

NSPACE[log n]

0

Regular

"truly feasible"

ThC

NC

FO(TC)

FO(M)

O(1)
FO[(log n)] NC

SO−Krom

SO

SO

SO(LFP)
O(1)

n
SO[2]

SO(TC)FO(PFP)O(1)
SO[n]

O(1)
n

FO[2]

E

SOA

SO−Horn

FO(LFP)
O(1)

FO[n]

log(CFL)

2NC

P

co−NP

NP co−NP
complete

co−NP

complete

NPPolynomial−Time Hierarchy

co−r.e. r.e. complete

r.e.

(N)

A

FO (N)

E

FO

(N)FO

Arithmetic Hierarchy

complete

co−r.e.

NP

The Descriptive World

ACM SIGACT News 5 September 2003 Vol. 34, No. 3

Correspondence of
logics and complexity classes

STRUCTURAL PROPERTIES FOR
TRACTABILITY

33

Decomposability

A product node is decomposable if its children depend on
disjoint sets of variables (just like in factorization)

34

Decomposability

A product node is decomposable if its children depend on disjoint sets of variables
⇒ just like in factorization!

⇥

X1 X2 X3

decomposable circuit

⇥

X1 X1 X3

non-decomposable circuit

Darwiche et al., “A knowledge compilation map”, 2002 63/158

(Darwiche/Marquis 01)

Smoothness (aka as completeness)

A sum node is smooth iff its children depend on the same
variable sets (otherwise not accounting for some variables)

35

(Darwiche/Marquis 01)

Smoothness
aka completeness

A sum node is smooth if its children depend of the same variable sets
⇒ otherwise not accounting for some variables

X1 X1

w1 w2

smooth circuit

X1 X2

w1 w2

non-smooth circuit

⇒ smoothness can be easily enforced [Shih et al. 2019]

Darwiche et al., “A knowledge compilation map”, 2002 64/158

Smoothness + decomposability = tractable MAR

36

Smoothness + decomposability = tractable MAR

Computing arbitrary integrations (or summations)
⇒ linear in circuit size!

E.g., suppose we want to compute Z:
∫

p(x)dx

65/158

Smoothness + decomposability = tractable MAR

37

Smoothness + decomposability = tractable MAR

If p(x) =
∑

i wipi(x), (smoothness):

∫
p(x)dx =

∫ ∑

i

wipi(x)dx =

=
∑

i

wi

∫
pi(x)dx

⇒ integrals are “pushed down” to children

⇥ ⇥

⇥ ⇥⇥ ⇥

X1

X2

X1

X2

X3 X4 X3 X4

65/158

Smoothness + decomposability = tractable MAR

38

Smoothness + decomposability = tractable MAR

If p(x,y, z) = p(x)p(y)p(z), (decomposability):

∫ ∫ ∫
p(x,y, z)dxdydz =

=

∫ ∫ ∫
p(x)p(y)p(z)dxdydz =

=

∫
p(x)dx

∫
p(y)dy

∫
p(z)dz

⇒ integrals decompose into easier ones

⇥ ⇥

⇥ ⇥⇥ ⇥

X1

X2

X1

X2

X3 X4 X3 X4

65/158

Smoothness + decomposability = tractable MAR

39

Analogously one can show:
Smoothness + decomposability = tractable CON

Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR
⇒ linear in circuit size!

E.g. to compute p(x2, x4):

leafs overX1 andX3 outputZi =
∫
p(xi)dxi

⇒ for normalized leaf distributions: 1.0

leafs overX2 andX4 output EVI

feedforward evaluation (bottom-up)

.35 .64

.49

.58 .77

.58 .77.58 .77

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4

65/158

leaves

leaves

Note: Nodes with the same RV-label may have different probabilities associated with
them. Hence, e.g., the left bottom 𝑋� may get a different value than the right bottom 𝑋�

Smoothness + decomposability≠ tractable MAP

40

Smoothness + decomposability = tractable MAP

We cannot decompose bottom-up a MAP query:

argmax
q

p(q | e)

since for a sum node we are marginalizing out a latent variable

argmax
q

∑

i

wipi(q, e) = argmax
q

∑

z

p(q, z, e) ̸=
∑

z

argmax
q

p(q, z, e)

⇒ MAP for latent variable models is intractable [Conaty et al. 2017]

69/158

Determinism (aka selectivity)

A sum node is deterministic if the output of only one of its
children is non zero for any input (e.g. if their distributions
have disjoint support)

41

Determinism
aka selectivity

A sum node is deterministic if the output of only one children is non zero for any input
⇒ e.g. if their distributions have disjoint support

⇥

X1  ✓ X2

⇥

X1 > ✓ X2

w1 w2

deterministic circuit

⇥

X1 X2

⇥

X1 X2

w1 w2

non-deterministic circuit 70/158

Determinism + decomposability = tractable MAP

42

Determinism + decomposability = tractable MAP

Computing maximization with arbitrary evidence e
⇒ linear in circuit size!

E.g., suppose we want to compute:

max
q

p(q | e)

⇥ ⇥

⇥ ⇥⇥ ⇥

X1

X2

X1

X2

X3 X4 X3 X4

71/158

Determinism + decomposability = tractable MAP

43

Determinism + decomposability = tractable MAP

If p(q, e) =
∑

i wipi(q, e) = maxi wipi(q, e),
(deterministic sum node):

max
q

p(q, e) = max
q

∑

i

wipi(q, e)

= max
q

max
i

wipi(q, e)

= max
i

max
q

wipi(q, e)

⇒ one non-zero child term, thus sum is max

⇥ ⇥

⇥ ⇥⇥ ⇥

X1

X2

X1

X2

X3 X4 X3 X4

71/158

Determinism + decomposability = tractable MAP

44

Determinism + decomposability = tractable MAP

If p(q, e) = p(qx, ex,qy, ey) = p(qx, ex)p(qy, ey)
(decomposable product node):

max
q

p(q | e) = max
q

p(q, e)

= max
qx,qy

p(qx, ex,qy, ey)

= max
qx

p(qx, ex),max
qy

p(qy, ey)

⇒ solving optimization independently

⇥ ⇥

⇥ ⇥⇥ ⇥

X1

X2

X1

X2

X3 X4 X3 X4

71/158

⋅ 1/𝑝(𝒆)

⋅ 1/𝑝(𝒆)

⋅ 1/𝑝(𝒆)

Determinism + decomposability = tractable MAP

45

Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

× ×

max

max max

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

71/158

Determinism + decomposability = tractable MAP

46

Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

× ×

max

max max

× ×× ×

Xee

X1

XeR

X2

Xk

X1

X3j

X2

RXk

X3

X83

X4

RX3

X3

Xdd

X4

71/158

Determinism + decomposability = tractable MAP

47

Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

.35 .64

.49

.58 .77

.58 .77.58 .77

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

71/158

Determinism + decomposability = tractable MAP

48

Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

.35 .64

.49

.58 .77

.58 .77.58 .77

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

71/158

MAP inference: image segmentationMAP inference : image segmentation

Semantic segmentation is MAP over joint pixel and label space

Even approximate MAP for non-deterministic circuits (SPNs) delivers good performances.
Rathke et al., “Locally adaptive probabilistic models for global segmentation of pathological oct
scans”, 2017
Yuan et al., “Modeling spatial layout for scene image understanding via a novel multiscale
sum-product network”, 2016
Friesen et al., “Submodular Sum-product Networks for Scene Understanding”, 2016 72/158

49

Determinism + decomposability≠ tractable MMAP
Determinism + decomposability = tractable MMAP

We cannot decompose a MMAP query!

argmax
q

∑

z

p(q, z | e)

we still have latent variables to marginalize…

⇒ The final part of this tutorial will talk more about advanced queries and
their tractability properties.

74/158

50

This will be discussed in lecture V12 (when considering advanced queries)

m
or
e
ex
pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t
more tractable queries

less tractable queries

SPNs

PSDDs

CNets

BNs

NFs

ACsAoGs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

tractability vs expressive efficiency
77/158

51

How expressive are probabilistic circuits?
How expressive are probabilistic circuits?

Measuring average test set log-likelihood on 20 density estimation benchmarks

Comparing against intractable models:

Bayesian networks (BN) [Chickering 2002] with sophisticated context-specific CPDs

MADEs [Germain et al. 2015]

VAEs [Kingma et al. 2014] (IWAE ELBO [Burda et al. 2015])

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013
Peharz et al., “Random sum-product networks: A simple but effective approach to probabilistic
deep learning”, 2019 78/158

52

How expressive are probabilistic circuits?
Density estimation benchmarksHow expressive are probabilistic circuits?
density estimation benchmarks

dataset best circuit BN MADE VAE dataset best circuit BN MADE VAE

nltcs -5.99 -6.02 -6.04 -5.99 dna -79.88 -80.65 -82.77 -94.56
msnbc -6.04 -6.04 -6.06 -6.09 kosarek -10.52 -10.83 - -10.64
kdd -2.12 -2.19 -2.07 -2.12 msweb -9.62 -9.70 -9.59 -9.73
plants -11.84 -12.65 -12.32 -12.34 book -33.82 -36.41 -33.95 -33.19
audio -39.39 -40.50 -38.95 -38.67 movie -50.34 -54.37 -48.7 -47.43
jester -51.29 -51.07 -52.23 -51.54 webkb -149.20 -157.43 -149.59 -146.9
netflix -55.71 -57.02 -55.16 -54.73 cr52 -81.87 -87.56 -82.80 -81.33
accidents -26.89 -26.32 -26.42 -29.11 c20ng -151.02 -158.95 -153.18 -146.9
retail -10.72 -10.87 -10.81 -10.83 bbc -229.21 -257.86 -242.40 -240.94
pumbs* -22.15 -21.72 -22.3 -25.16 ad -14.00 -18.35 -13.65 -18.81

79/158

53

(Best negative log-likelihoods in bold)

APPENDIX
Uhhh, a lecture with a hopefully useful

54

Probability theory basics reminder

Random variable (RV)

• possible worlds defined by assignment of
values to random variables.

• Boolean random variables
e.g., Cavity (do I have a cavity?).

Domain is < true , false >

• Discrete random variables
e.g., possible value of Weather is one of

< sunny, rainy, cloudy, snow >

• Domain values must be exhaustive and
mutually exclusive

• Elementary propositions are constructed by
assignment of a value to a
random variable: e.g.,

– Cavity = false (abbreviated as ¬cavity)
– Cavity = true (abbreviated as cavity)

• (Complex) propositions formed from
elementary propositions and standard logical
connectives, e.g., Weather = sunny Ú Cavity =
false

Probabilities
• Axioms (for propositions 𝑎, 𝑏, ⊤ = (𝑎 ∨ ¬𝑎), and

⊥ = ¬ ⊤):

– 0 ≤ 𝑃 𝑎 ≤ 1; 𝑃(⊤) = 1; 𝑃(⊥) = 0
– (𝑃(𝑎 ∨ 𝑏) = 𝑃(𝑎) + 𝑃(𝑏) − 𝑃(𝑎 ∧ 𝑏)

• Joint probability distribution of 𝐗 = {𝑋_,… , 𝑋�}
– 𝑷 𝑋_,… ,𝑋�
– gives the probability of every atomic event on 𝑿

• Conditional probability
𝑃(𝑎 | 𝑏) = 𝑃(𝑎 ∧ 𝑏) / 𝑃(𝑏) 𝑖𝑓 𝑃(𝑏) > 0

• Chain rule

𝑷 𝑋_,… , 𝑋� = ~
x�_

�
𝑷(𝑋x|𝑋_,… , 𝑋x�_)

• Marginalization: 𝑷 𝑌 = ∑�∈� 𝑷(𝑌, 𝑧)
• Conditioning on 𝑍:

– 𝑷 𝑌 = ∑�∈� 𝑷 𝑌 𝑧 𝑷(𝑧) (discrete)

– 𝑷 𝑌 = ∫𝑷 𝑌 𝑧 𝑷 𝑧 𝑑𝑧 (continuous)
= 𝔼𝒛∼�(�)P(Y|z) (expected value

notation)

• Bayes‘ Rule

𝑃 𝐻 𝐷 =
𝑃(𝐷|𝐻) � 𝑃(𝐻)

𝑃(𝐷) =
𝑃(𝐷|𝐻) � 𝑃(𝐻)
∑G 𝑃 𝐷|ℎ 𝑃(ℎ)

55

Color Convention in this Course

• Formulae, when occurring inline

• Newly introduced terminology and definitions

• Important results (observations, theorems) as well as
emphasizing some aspects

• Examples are given with standard orange with possibly
light orange frame

• Comments and notes in nearly opaque post-it

• Algorithms and program code

• Reminders (in the grey fog of your memory)

56

Today‘s lecture is based on the following

• A. Vergari, Y. Choi, R. Peharz, G. van den Broeck: Probabilistic Circuits,
Tutorial at AAAI 2020, pp.1 – 80,
http://starai.cs.ucla.edu/slides/AAAI20.pdf

57

http://starai.cs.ucla.edu/slides/AAAI20.pdf
http://starai.cs.ucla.edu/slides/AAAI20.pdf

References

• R. Dechter, K. Kask, and R. Mateescu. Iterative Join-Graph Propagation. arXiv e-prints, page arXiv:1301.0564, Dec. 2012.
• A. Kulesza and F. C. Pereira. Structured learning with approximate inference. In NIPS, 2007.
• Dagum, Luby: Approximating probabilistic inference in Bayesian belief networks is NP-hard, In Artificial Intelligence 60.1,

pp. 141-153, 1993.
• J. D. Park and A. Darwiche. Complexity results and approximation strategies for map explanations. J. Artif. Int. Res.,

21(1):101–133, Feb. 2004.
• C. de Campos. New complexity results for map in bayesian networks. In IJCAI 2011, vol. 11, pp. 2100–2106
• U. Oztok, A. Choi, and A. Darwiche. Solving pppp-complete problems using knowledge compilation. In Proceedings of

KR’16, pp 94–103, 2016.
• P. Khosravi, Y. Liang, Y. Choi, and G. Van den Broeck. What to Expect of Classifiers? Reasoning about Logistic Regression

with Missing Features. arXiv e-prints, page arXiv:1903.01620, Mar. 2019.
• N. Cohen, O. Sharir, and A. Shashua. On the Expressive Power of Deep Learning: A Tensor Analysis. arXiv e-prints, page

arXiv:1509.05009, Sept. 2015.
• I. Kobyzev, S. J. D. Prince, and M. A. Brubaker. Normalizing Flows: An Introduction and Review of Current Methods. arXiv e-

prints, page arXiv:1908.09257, Aug. 2019.
• A. Darwiche and P. Marquis. A Knowledge Compilation Map. arXiv e-prints, page arXiv:1106.1819, June 2011.
• D. Conaty, D. D. Maua, and C. P. de Campos. Approximation Complexity of Maximum A Posteriori Inference in Sum-

Product Networks. arXiv e-prints, page arXiv:1703.06045, Mar. 2017.
• R. Gens and D. Pedro. Learning the structure of sum-product networks. In, volume 28 of Proceedings of Machine Learning

Research, pages 873–880, 2013
• R. Peharz, A. Vergari, K. Stelzner, A. Molina, X. Shao, M. Trapp, K. Kersting, and Z. Ghahramani. Random sum-product

networks: A simple and effective approach to probabilistic deep learning. In volume 115 of Proceedings of Machine
Learning Research, pages 334–344, 2020.

58

