PROBABILISTIC AND DIFFERENTIABLE PROGRAMMING V10: Probabilistic Circuits I

Özgür L. Özçep Universität zu Lübeck Institut für Informationssysteme

Probabilistic Circuits

- 1. Motivation
- 2. Building Blocks
- 3. Structural Properties for Tractability

MOTIVATION

Have the cake and eat it too

- Be as expressive as possible
 - Express arbitrary distributions
- Be as efficient as possible in inferencing/answering queries
- For exact (not just approximative) answering

Tractable Prbabilistic Inference

A class of queries Q is tractable on a family of probabilistic models M iff for any query $q \in Q$ and model $m \in$ M exactly computing q(m) runs in time O(poly(|m|)).

- Often poly will in fact be linear
- Note: if *M* and *Q* are compact in the number of random variables *X*, i.e., |m|, |q| ∈ O(poly(|X|)), then query time is O(poly(|X|)).

Why exact inference?

- 1. No need for approximations when we can be exact
- 2. We can do exact inference in approximate models (e.g., Dechter et al. 2002)
- 3. Approximations shall come with guarantees
- 4. Approximate inference (even with guarantees) can mislead learners (Kulesza/Pereira 2007)
- Approximations can be intractable as well (Dagum/Luby1993)

Complete Evidence (EVI)

- q₃: What is the probability that today is a Monday at 12.00 and there is a traffic jam only on 5th Avenue?
- $X = \{Day, Time, Jam_{5th}, Jam_{Str2}, \dots, Jam_{StrN}\}$
- $q_3(m) = p_m(X = \{Mon, 12.00, 1, 0, \dots, 0\})$

© fineartamerica.com

• Fundamental in maximum likelihood learning $\theta_m^{MLE} = argmax_{\theta}(\Pi_{x \in D} p_m(x; \theta))$

Marginal (MAR) and Conditional (CON) queries

- q₁: What is the probability that today is a Monday at 12.00 and there is a traffic jam only on 5th Avenue?
- $q_1(m) = p_m(Day = Mon, Jam_{5th} = 1)$
- General:

$$p_m(e) = \int p_m(e, \mathbf{H}) d\mathbf{H}$$

With this can answer conditional queries too

$$p_m(q \mid \boldsymbol{e}) = \frac{p_m(q, \boldsymbol{e})}{p_m(\boldsymbol{e})}$$

Maximum A Posteriori (MAP) (aka Most Probable Explanation (MPE))

- q₅: Which combination of roads is most likely to be jammed on Monday at 9am?
- $q_5(m) = argmax_j p_m(j_1, j_2, ... | Day = Mon, Time = 9)$
- General: $argmax_{q} p_{m}(q \mid e)$

where $\boldsymbol{Q} \cup \boldsymbol{E} = \boldsymbol{X}$

 \bigcirc fineartamerica.com

Maximum A Posteriori (MAP) (aka Most Probable Explanation (MPE))

- q₅: Which combination of roads is most likely to be jammed on Monday at 9am?
- ... Intractable for latent variable models

$$\max_{q} p_m(\boldsymbol{q} \mid \boldsymbol{e}) = \max_{\boldsymbol{q}} \sum_{\boldsymbol{z}} p_m(\boldsymbol{q}, \boldsymbol{z} \mid \boldsymbol{e})$$
$$\neq \sum_{\boldsymbol{z}} \max_{\boldsymbol{q}} p_m(\boldsymbol{q}, \boldsymbol{z} \mid \boldsymbol{e})$$

 \bigcirc fineartamerica.com

Marginal MAP (MMAP) (aka Bayesian network MAP)

- q_6 : Which combination of roads is most likely to be jammed on Monday at 9am?
- $q_6(m) = argmax_i p_m(j_1, j_2, ... |, Time = 9)$
- General: $argmax_{q} p_{m}(q \mid e)$ = $armax_{q} \Sigma_{h}p_{m}(q, h \mid e)$

where $Q \cup H \cup E = X$

© fineartamerica.com

- NP^{PP}-complete (Park/Darwiche)
- NP-hard for trees (Campos 2011)

Advanced Queries (ADV)

- q_2 : Which day is most likely to have a traffic jam on my route to work?
- $q_2(m) =$
 - $argmax_d p_m(Day = d, \land \lor_{i \in route} Jam_{Stri})$
 - => Marginals + MAP + logical events
- q_7 : What is the probability of seeing more traffic jams in Uptown than Midtown?
 - => counts + group comparison

 $[\]texttt{C}\texttt{fineartamerica.com}$

- And more
 - expected classification agreement
 - Expected predictions

(Oztok et al. 2016) (Khosravi et al. 2019b)

tractable bands

1) (Kobyzev et al. 19)

OK, fully factorized models have broadest tractability spectrum, but ...

A completely disconnected graph. Example: Product of Bernoullis (PoBs)

 (X_{r})

Complete evidence, marginals and MAP, MMAP inference is **linear**!

 (X_3)

 (χ_4)

 (X_1)

 (χ_2)

but definitely not expressive...

 $p(x) = \prod_{i} p(x_i)$

(no dependencies represetable)

Expressiveness and efficiency

- Expressiveness: Ability to represent rich and effective classes of functions
- Mixture of Gaussians can approximate any distribution!
 - See (Cohen et al. 15)
- Expressive efficiency (succinctness) Ability to represent rich and effective classes of functions compactly
- ⇒ but how many components does a Gaussian mixture need?

"Eat the cake and have it"

tractable bands

probabilistic circuits are at the "sweet spot"

BUILDING BLOCKS

A probabilistic circuit *C* over variables *X* is a computational graph encoding a (possibly unnormalized) probability distribution p(X).

- Note that we have an operational semantics here
- By constraining the graph one can make inference tractable

Distributions as computational graphs

Base case: a single node encoding a distribution

e.g., a Gaussian PDF continuous variable

e.g., indicators for X or $\neg X$ for Boolean RVs

Simple distributions are tractable "black boxes" for

- EVI: output p(x) (density or mass)
- MAR: output 1 (normalized) or Z (unnormalized)
- MAP: output the mode

Simple distributions are tractable "black boxes" for

- EVI: output p(x) (density or mass)
- MAR: output 1 (normalized) or Z (unnormalized)
- MAP: output the mode

<=

Reminder: Partition function Z

$$P(X_1, ..., X_n) = \frac{1}{Z} \prod_{j} \phi_j(X_1, ..., X_n)$$

- Bottleneck: Summing out variables
- E.g.: Partition function

Sum of exponentially many products

$$Z = \sum_{x} \prod_{j} \phi_{j}$$

Factorizations as product nodes

(Divide and Conquer complexity)

$$p(X_1, X_2, X_3) = p(X_1) \cdot p(X_2) \cdot p(X_3)$$

e.g. modeling a multivariate Gaussian with diagonal covariance matrix by a product node of univariate Gaussians

Factorizations as product nodes

(Divide and Conquer complexity)

$$p(x_1, x_2, x_3) = p(x_1) \cdot p(x_2) \cdot p(x_3)$$

Feed forward evaluation

Mixtures as sum nodes

(enhance expressiveness)

$$\mathbf{p}(X) = w_1 \cdot \mathbf{p}_1(X) + w_2 \cdot \mathbf{p}_2(X)$$

Mixtures as sum nodes

(enhance expressiveness)

$$p(x) = 0.2 \cdot p_1(x) + 0.8 \cdot p_2(x)$$

 \Rightarrow ...as weighted sum node over Gaussian input distributions

Mixtures as sum nodes

(enhance expressiveness)

 \Rightarrow

$$p(x) = 0.2 \cdot p_1(x) + 0.8 \cdot p_2(x)$$

by **stacking** them we increase expressive efficiency

A grammar for tractable models

(Recursive Semantics for probabilistic circuits)

Probabilistic Circuits are not PGMs

They are *probabilistic* and *graphical*, however ...

	PGMs	Circuits			
Nodes: Edges:	random variables dependencies	unit of computations order of execution			
Inference:	conditioningeliminationmessage passing	feedforward passbackward pass			

they are **computational graphs**, more like neural networks

Control on the graph

- We do not arbitraly compose the building bl ocks as in neural networks
- But define structural constraints for tractability

Side note: Compare this with desriptive complexity

STRUCTURAL PROPERTIES FOR TRACTABILITY

A product node is decomposable if its children depend on disjoint sets of variables (*just like in factorization*)

decomposable circuit

non-decomposable circuit

(Darwiche/Marquis 01)

Smoothness (aka as completeness)

A sum node is smooth iff its children depend on the same variable sets (*otherwise not accounting for some variables*)

smooth circuit

(Darwiche/Marquis 01)

non-smooth circuit

Computing arbitrary integrations (or summations)

 \Rightarrow linear in circuit size!

E.g., suppose we want to compute Z:

 $\int \boldsymbol{p}(\mathbf{x}) d\mathbf{x}$

If $oldsymbol{p}(\mathbf{x}) = \sum_i w_i oldsymbol{p}_i(\mathbf{x})$, (smoothness):

$$\int \mathbf{p}(\mathbf{x}) d\mathbf{x} = \int \sum_{i} w_{i} \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x} =$$
$$= \sum_{i} w_{i} \int \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x}$$

 \implies integrals are "pushed down" to children

If $p(\mathbf{x},\mathbf{y},\mathbf{z}) = p(\mathbf{x})p(\mathbf{y})p(\mathbf{z})$, (decomposability):

$$\int \int \int \mathbf{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$
$$= \int \int \int \int \mathbf{p}(\mathbf{x}) \mathbf{p}(\mathbf{y}) \mathbf{p}(\mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$
$$= \int \mathbf{p}(\mathbf{x}) d\mathbf{x} \int \mathbf{p}(\mathbf{y}) d\mathbf{y} \int \mathbf{p}(\mathbf{z}) d\mathbf{z}$$

 \Rightarrow integrals decompose into easier ones

Analogously one can show: Smoothness + decomposability = tractable CON

Note: Nodes with the same RV-label may have different probabilities associated with them. Hence, e.g., the left bottom X_4 may get a different value than the right bottom X_4

We *cannot* decompose bottom-up a MAP query:

 $\operatorname*{argmax}_{\mathbf{q}} p(\mathbf{q} \mid \mathbf{e})$

since for a sum node we are marginalizing out a latent variable

$$\operatorname{argmax}_{\mathbf{q}} \sum_{i} w_{i} p_{i}(\mathbf{q}, \mathbf{e}) = \operatorname{argmax}_{\mathbf{q}} \sum_{\mathbf{z}} p(\mathbf{q}, \mathbf{z}, \mathbf{e}) \neq \sum_{\mathbf{z}} \operatorname{argmax}_{\mathbf{q}} p(\mathbf{q}, \mathbf{z}, \mathbf{e})$$
$$\implies \text{MAP for latent variable models is intractable [Conaty et al. 2017]}$$

Determinism (aka selectivity)

A sum node is deterministic if the output of only one of its children is non zero for any input *(e.g. if their distributions have disjoint support*)

deterministic circuit

non-deterministic circuit

Computing maximization with arbitrary evidence e \implies *linear in circuit size!*

E.g., suppose we want to compute:

$$\max_{\mathbf{q}} p(\mathbf{q} \mid \mathbf{e})$$

If
$$\mathbf{p}(\mathbf{q}, \mathbf{e}) = \sum_{i} w_i \mathbf{p}_i(\mathbf{q}, \mathbf{e}) = \max_i w_i \mathbf{p}_i(\mathbf{q}, \mathbf{e})$$
,
(*deterministic* sum node):

$$\max_{\mathbf{q}} \mathbf{p}(\mathbf{q}, \mathbf{e}) = \max_{\mathbf{q}} \sum_{i} w_{i} \mathbf{p}_{i}(\mathbf{q}, \mathbf{e})$$
$$= \max_{\mathbf{q}} \max_{i} w_{i} \mathbf{p}_{i}(\mathbf{q}, \mathbf{e})$$
$$= \max_{i} \max_{\mathbf{q}} w_{i} \mathbf{p}_{i}(\mathbf{q}, \mathbf{e})$$

 $\begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & &$

one non-zero child term, thus sum is max

If $p(q, e) = p(q_x, e_x, q_y, e_y) = p(q_x, e_x)p(q_y, e_y)$ (*decomposable* product node):

$$\max_{\mathbf{q}} p(\mathbf{q} \mid \mathbf{e}) = \max_{\mathbf{q}} p(\mathbf{q}, \mathbf{e}) \cdot 1/p(\mathbf{e})$$
$$= \max_{\mathbf{q},\mathbf{q},\mathbf{q},\mathbf{y}} p(\mathbf{q}, \mathbf{e}, \mathbf{q}, \mathbf{q}, \mathbf{q}$$

solving optimization independently

4. compute **MAP states** for X_1 and X_3 at leaves

- 3. retrieve max activations top-down
- 4. compute **MAP states** for X_1 and X_3 at leaves

 X_1

.83

 X_2

 X_4

4. compute **MAP states** for X_1 and X_3 at leaves

MAP inference: image segmentation

Semantic segmentation is MAP over joint pixel and label space

Even approximate MAP for non-deterministic circuits (SPNs) delivers good performances.

Rathke et al., "Locally adaptive probabilistic models for global segmentation of pathological oct scans", 2017

Yuan et al., "Modeling spatial layout for scene image understanding via a novel multiscale sum-product network", 2016

Friesen et al., "Submodular Sum-product Networks for Scene Understanding", 2016

We *cannot* decompose a MMAP query!

$$\operatorname*{argmax}_{\mathbf{q}} \sum_{\mathbf{z}} p(\mathbf{q}, \mathbf{z} \mid \mathbf{e})$$

we still have latent variables to marginalize...

This will be discussed in lecture V12 (when considering advanced queries)

tractability vs expressive efficiency

How expressive are probabilistic circuits?

Measuring average test set log-likelihood on 20 density estimation benchmarks

Comparing against intractable models:

Bayesian networks (BN) [Chickering 2002] with sophisticated context-specific CPDs

- MADEs [Germain et al. 2015]
- VAEs [Kingma et al. 2014] (IWAE ELBO [Burda et al. 2015])

Gens et al., "Learning the Structure of Sum-Product Networks", 2013 Peharz et al., "Random sum-product networks: A simple but effective approach to probabilistic deep learning", 2019

How expressive are probabilistic circuits?

Density estimation benchmarks

dataset	best circuit	BN	MADE	VAE	dataset	best circuit	BN	MADE	VAE
nltcs	-5.99	-6.02	-6.04	-5.99	dna	-79.88	-80.65	-82.77	-94.56
msnbc	-6.04	-6.04	-6.06	-6.09	<u>kosarek</u>	-10.52	-10.83	-	-10.64
kdd	-2.12	-2.19	-2.07	-2.12	msweb	-9.62	-9.70	-9.59	-9.73
plants	-11.84	-12.65	-12.32	-12.34	book	-33.82	-36.41	-33.95	-33.19
audio	-39.39	-40.50	-38.95	-38.67	movie	-50.34	-54.37	-48.7	-47.43
jester	-51.29	-51.07	-52.23	-51.54	webkb	-149.20	-157.43	-149.59	-146.9
netflix	-55.71	-57.02	-55.16	-54.73	cr52	-81.87	-87.56	-82.80	-81.33
accidents	-26.89	-26.32	-26.42	-29.11	c20 ng	-151.02	-158.95	-153.18	-146.9
retail	-10.72	-10.87	-10.81	-10.83	bbc	-229.21	-257.86	-242.40	-240.94
pumbs*	-22.15	-21.72	-22.3	-25.16	ad	-14.00	-18.35	-13.65	-18.81

(Best negative log-likelihoods in bold)

Uhhh, a lecture with a hopefully useful

APPENDIX

Probability theory basics reminder

Random variable (RV)

- possible worlds defined by assignment of values to random variables.
- Boolean random variables

 e.g., Cavity (do I have a cavity?).
 Domain is < true , false >
- Discrete random variables
 - e.g., possible value of Weather is one of < sunny, rainy, cloudy, snow >
- Domain values must be exhaustive and mutually exclusive
- Elementary propositions are constructed by assignment of a value to a random variable: e.g.,
 - Cavity = false (abbreviated as ¬cavity)
 - Cavity = true (abbreviated as cavity)
- (Complex) propositions formed from elementary propositions and standard logical connectives, e.g., Weather = sunny \vee Cavity = false

Probabilities

- Axioms (for propositions $a, b, T = (a \lor \neg a)$, and $\bot = \neg T$):
 - $0 \le P(a) \le 1; P(T) = 1; P(\bot) = 0$
 - $(P(a \lor b) = P(a) + P(b) P(a \land b)$
- Joint probability distribution of $\mathbf{X} = \{X_1, \dots, X_n\}$
 - $P(X_1, \ldots, X_n)$
 - gives the probability of every atomic event on X
- Conditional probability $P(a \mid b) = P(a \land b) / P(b) if P(b) > 0$
 - Chain rule $\boldsymbol{P}(X_1, \dots, X_n) = \prod_{i=1}^n \boldsymbol{P}(X_i | X_1, \dots, X_{i-1})$
- Marginalization: $P(Y) = \sum_{z \in Z} P(Y, z)$
- Conditioning on Z:
 - $P(Y) = \sum_{z \in Z} P(Y|z)P(z)$ (discrete)
 - $P(Y) = \int P(Y|z)P(z)dz$ (continuous) = $\mathbb{E}_{z \sim P(z)} P(Y|z)$ (expected value notation)
 - Bayes' Rule $P(H|D) = \frac{P(D|H) \cdot P(H)}{P(D)} = \frac{P(D|H) \cdot P(H)}{\sum_{h} P(D|h)P(h)}$

Color Convention in this Course

- Formulae, when occurring inline
- Newly introduced terminology and definitions
- Important results (observations, theorems) as well as emphasizing some aspects
- Examples are given with standard orange with possibly light orange frame
- Comments and notes in nearly opaque post-it
- Algorithms and program code
- Reminders (in the grey fog of your memory)

Today's lecture is based on the following

 A. Vergari, Y. Choi, R. Peharz, G. van den Broeck: Probabilistic Circuits, Tutorial at AAAI 2020, pp.1 – 80, <u>http://starai.cs.ucla.edu/slides/AAAI20.pdf</u>

References

- R. Dechter, K. Kask, and R. Mateescu. Iterative Join-Graph Propagation. arXiv e-prints, page arXiv:1301.0564, Dec. 2012.
- A. Kulesza and F. C. Pereira. Structured learning with approximate inference. In NIPS, 2007.
- Dagum, Luby: Approximating probabilistic inference in Bayesian belief networks is NP-hard, In Artificial Intelligence 60.1, pp. 141-153, 1993.
- J. D. Park and A. Darwiche. Complexity results and approximation strategies for map explanations. J. Artif. Int. Res., 21(1):101–133, Feb. 2004.
- C. de Campos. New complexity results for map in bayesian networks. In IJCAI 2011, vol. 11, pp. 2100–2106
- U. Oztok, A. Choi, and A. Darwiche. Solving pppp-complete problems using knowledge compilation. In Proceedings of KR'16, pp 94–103, 2016.
- P. Khosravi, Y. Liang, Y. Choi, and G. Van den Broeck. What to Expect of Classifiers? Reasoning about Logistic Regression with Missing Features. arXiv e-prints, page arXiv:1903.01620, Mar. 2019.
- N. Cohen, O. Sharir, and A. Shashua. On the Expressive Power of Deep Learning: A Tensor Analysis. arXiv e-prints, page arXiv:1509.05009, Sept. 2015.
- I. Kobyzev, S. J. D. Prince, and M. A. Brubaker. Normalizing Flows: An Introduction and Review of Current Methods. arXiv eprints, page arXiv:1908.09257, Aug. 2019.
- A. Darwiche and P. Marquis. A Knowledge Compilation Map. arXiv e-prints, page arXiv:1106.1819, June 2011.
- D. Conaty, D. D. Maua, and C. P. de Campos. Approximation Complexity of Maximum A Posteriori Inference in Sum-Product Networks. arXiv e-prints, page arXiv:1703.06045, Mar. 2017.
- R. Gens and D. Pedro. Learning the structure of sum-product networks. In, volume 28 of Proceedings of Machine Learning Research, pages 873–880, 2013
- R. Peharz, A. Vergari, K. Stelzner, A. Molina, X. Shao, M. Trapp, K. Kersting, and Z. Ghahramani. Random sum-product networks: A simple and effective approach to probabilistic deep learning. In volume 115 of Proceedings of Machine Learning Research, pages 334–344, 2020.

