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Today’s Agenda

Probabilistic Circuits

1. Motivation
2. Building Blocks
3. Structural Properties for Tractability
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Have the cake and eat it too

- Be as expressive as possible
— Express arbitrary distributions

- Be as efficient as possible in inferencing/answering
queries

- For exact (not just approximative) answering




Tractable Prbabilistic Inference

A class of queries O is tractable on a family of probabilistic
models M iff for any query g € 0 and model m €
M exactly computing g(m) runs in time O (poly(|m]|)).

Often poly will in fact be linear

Note: if M and Q are compact in the number of random
variables X, i.e.,, |m|, |q| € O(poly(|X|)), then query
time is O(poly(|X])).
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Why exact inference?

1. No need for approximations when we can be exact

2. We can do exact inference in approximate models
(e.g., Dechter et al. 2002)

3. Approximations shall come with guarantees

Approximate inference (even with guarantees) can
mislead learners (Kulesza/Pereira 2007)

5. Approximations can be intractable as well
(Dagum/Luby1993)




Complete Evidence (EVI)

e q5: What s the probability that today is a
Monday at 12.00 and there is a traffic jam only
on 5th Avenue?

) X pr—
{Day' Timel]amSthi]amStTZJ = r]amStTN}

e q3(m) =p, (X ={Mon,12.00,1,0, ...,0})

© fineartamerica.com

- Fundamental in maximum likelihood learning

O * = argmaxg(Ixeppm (x; 0))
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Marginal (MAR) and Conditional (CON) queries

e qq: Whatis the probability that today is a
Mondayat72-06 and there is a traffic Jam-only
on 5th Avenue?

e q1(m) =pu(Day = Mon,Jams,, = 1)

« General:

pm(e) = fpm(e»H)dH

© fineartamerica.com

- With this can answer conditional queries too
Pm(q, €)

pm(e)

pm(q le) =
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Maximum A Posteriori (MAP) (aka Most Probable Explanation (MPE))

e qs: Which combination of roads is most likely to
be jammed on Monday at 9am?

e qs(m) =
argmaxjpm (ji,j2, - | Day = Mon,Time = 9)

- General: argmaxg, py(q | e)
whereQUE =X

© fineartamerica.com
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Maximum A Posteriori (MAP) (aka Most Probable Explanation (MPE))

e (s: Which combination of roads is most likely to
be jammed on Monday at 9am?

... Intractable for latent variable models

mC?Xpm(q le) = mgxz rm(q,z | e)
Z

© fineartamerica.com

== E max p,,(q,z | e)
q
yA
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Marginal MAP (MMAP) (aka Bayesian network MAP)

* (¢ Which combination of roads is most likely to

be jammed on-Monday-at 9am?

¢ qes(m) =
argmax; pm(1,jz, - |, Time = 9)

- General: argmaxg, py(q | e)
= armaxq Zppm(q, h | e)

Where Q U H U E — X © fineartamerica.com

« NPPP-complete (Park/Darwiche)
« NP-hard for trees (Campos 2011)
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Advanced Queries (ADV)

e ¢,:Which day is most likely to have a traffic jam
on my route to work?

¢ q(m) =

argmaxg pm(Day = d,A Vieroute JaMstri)
— => Marginals + MAP + logical events

e ¢;:What s the probability of seeing more
traffic jams in Uptown than Midtown?
— =>counts + group comparison

© fineartamerica.com

« And more
— expected classification agreement  (Oztok et al. 2016)
— Expected predictions (Khosravi et al. 2019b)
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OK, fully factorized models have broadest tractability spectrum, but ...

A completely disconnected graph. Example: Product of Bernoullis (PoBs)
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Complete evidence, marginals and MAP, MMAP inference is linear!

but definitely not expressive...

=

(no dependencies represetable)




Expressiveness and efficiency

- Expressiveness: Ability to represent rich and effective
classes of functions

« Mixture of Gaussians can approximate any distribution!
— See (Cohen et al. 15)

- Expressive efficiency (succinctness) Ability to represent
rich and effective classes of functions compactly

- = but how many components does a Gaussian mixture
need?’
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larger tractable bands
Fully factorized X
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smaller tractable bands

Less expressive efficient
More expressive efficient

probabilistic circuits are at the “sweet spot”
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BUILDING BLOCKS
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A probabilistic circuit C over variables X is a
computational graph encoding a (possibly unnormalized)
probability distribution p(X).

* Note that we have an operational semantics here

* By constraining the graph one can make inference
tractable
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Distributions as computational graphs

Base case: a single node encoding a distribution

@ ©

X - X

e.g., a Gaussian PDF continuous variable e.g., indicators for X or —.X for
Boolean RVs
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x —)@—)px(x)

X

Simple distributions are tractable ,black boxes” for
* EVI: output p(x) (density or mass)

 MAR: output 1 (hormalized) or Z (unnormalized)
 MAP: output the mode
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Simple distributions are tractable ,black boxes” for
* EVI: output p(x) (density or mass)

 MAR: output 1 (hormalized) or Z (unnormalized)
 MAP: output the mode
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Reminder: Partition function Z

1
P(X, .. X,) = 21_[ b (X1 . Xp)
j

e Bottleneck: Summing out variables

e E.g.: Partition function

Sum of exponentially many products

2= 11

J
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Factorizations as product nodes

(Divide and Conquer complexity)

p(X1,X2,X3) — P(Xl) 'p(X2) 'p(X3)

3.0 @

2.5

2.0

15

OO
05 X4 X2 X3
0.0

1 2 3

e.g. modeling a multivariate Gaussian with diagonal covariance matrix
by a product node of univariate Gaussians
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Factorizations as product nodes

(Divide and Conquer complexity)

(21,72, 23) = p(71) - p(22) - P(T3)

X
X5
X3

X1 Xy X

3.0

5 1N
i ®@ O O

0.5 Xl X2 X3
0.0

Feed forward evaluation
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Mixtures as sum nodes

(enhance expressiveness)

0.251 I/‘\
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—> e.g. modeling a mixture of Gaussians...

% INSTITUT FUR INFORMATIONSSYSTEME



Mixtures as sum nodes

(enhance expressiveness)

() = 0.2:p1(2)+0.8-p2 ()

—> ..asweighted sum node over Gaussian input distributions
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Mixtures as sum nodes

(enhance expressiveness)

O% yg p(z) =0.2-pi1(2)+0.8-p2(x)

—> by stacking them we increase expressive efficiency

IM FOCUS DAS LEBEN 28



A grammar for tractable models

(Recursive Semantics for probabilistic circuits)
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Probabilistic Circuits are not PGMs

They are probabilistic and graphical, however ...

PGMs Circuits
Nodes: random variables unit of computations
Edges. dependencies order of execution
Inference:  gm onditioning B feedforward pass
B elimination B backward pass

B message passing

—> they are computational graphs, more like neural networks

30



Control on the graph
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* We do not arbitraly compose the building bl ocks as in neural networks

* But define structural constraints for tractability
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Side note: Compare this with desriptive complexity

Correspondence of
logics and complexity classes
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co—r.e. Arithmetic Hierarchy r.e.
W co-r.e. FO(N) r.e. complete
FOV(N) Recursive FOEM)
Primitive Recursive

so™"] EXPTIME SO(LFP)
Fo[2" Om] som %" PSPACE  FO(PFP) SO(TC)
co—NP Polynomial-Time Hierarchy NP

1 SO
complete co—NP NP complete
SOV S04
NP [1 co-NP
FO(LFP)
FO[n o) 1 P
"truly feasible" SO-Homn
FO[(log m) "] NC
NC?
log(CFL) sAC’
FO(TC) NSPACE[log n] SO-Krom
FO(DTC) DSPACE[log n]
_— - V/chular%r . NC1
FOM) - ThC’
" Fo Logarithmic-Time Hierarchy ACO .

The Descriptive World
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STRUCTURAL PROPERTIES FOR
TRACTABILITY
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Decomposability

A product node is decomposable if its children depend on
disjoint sets of variables (just like in factorization)

X X
W W W W W W
X1 Xo X3 X1 X1 X3

decomposable circuit non-decomposable circuit

(Darwiche/Marquis 01)
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S mOOth NEeSsSS (akaas completeness)

A sum node is smooth iff its children depend on the same
variable sets (otherwise not accounting for some variables)

smooth circuit non-smooth circuit

(Darwiche/Marquis 01)
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Smoothness + decomposability = tractable MAR

Computing arbitrary integrations (or summations)
—> linear in circuit size!

E.g., suppose we want to compute Z:

IM FOCUS DAS LEBEN 36



Smoothness + decomposability = tractable MAR

If p(x) = >, w;p;(x), (smoothness):

[ pexiax= [ 3 wipitxjax -
=3 w / ps(x)dx

—> integrals are “pushed down” to children

37



Smoothness + decomposability = tractable MAR

If p(x,y,2z) = p(x)p(y)p(2), (decomposability):

/// (x,y.2)dxdydz =
/// 2)dxdydz —
— [ poix [ ()dy/ (2)dz

—> integrals decompose into easier ones

38



Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR /ei\

—> linear in circuit size! @ @ @ @
—_— P

E.g. to compute p(x2, T4): / \Xl
| leaves over X and X3 output Z; = [ p(x;)dz; @/a @\?
2

—> for normalized leaf distributions:

B feedforward evaluation (bottom-up) @ ? @ @
4 3

3

N leaves over X, and X, output | 4/

Analogously one can show:
Smoothness + decomposability = tractable CON

Note: Nodes with the same RV-label may have different probabilities associated with
them. Hence, e.g., the left bottom X, may get a different value than the right bottom X,

IM FOCUS DAS LEBEN 39



Smoothness + decomposability # tractable MAP

We cannot decompose bottom-up a MAP query:

argmax p(q | e)
q

since for a sum node we are marginalizing out a latent variable

q

q

argmax » w;p;(q,e) = argmax Zp(q, z,e) % Z argmax p(q, z, €)
1 g Z z

—> MAP for latent variable models is intractable [Conaty et al. 2017]
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DeterminiSm (aka selectivity)

A sum node is deterministic if the output of only one of its
children is non zero for any input (e.qg. if their distributions
have disjoint support)

&
. w1 w2
w1 w2
(X (X (X (X
@ W © O @ @ W
X1 < 0 Xz X1 > 0 X2 X1 X2 X1 XQ

deterministic circuit non-deterministic circuit
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Determinism + decomposability = tractable MAP

Computing maximization with arbitrary evidence e
—> linear in circuit size!

E.g., suppose we want to compute:

maxp(a | )

42



Determinism + decomposability = tractable MAP

fp(q,e) =), w;pi(q,e) = max; w;p;(q, e),
(deterministic sum node):

max p(q,e) = max Y w;p;(q,e
ax p(q, €) = me EZ: ii(q, e)

= max max w;p;(q, e)
q 1

= max max w;p;(q, e)
i g

—> one non-zero child term, thus sum is max X3 4

43



Determinism + decomposability = tractable MAP

f p(d, e) = p(dx, ex, Ay, €y) = P(dx, €x)P(qy; ey)
(decomposable product node):

mgxp(q |e) = mgxp(qa e) -1/p(e)

= max p(Qx, ex,dy,ey) - 1/p(e)

dx,dy

= maxp(qx, ex), rrcllaxp(qy, ey) -1/p(e)
Yy

qx

—> solving optimization independently

44



Determinism + decomposability = tractable MAP

Evaluating the circuit twice:

bottom-up and top-down  —>  gj/ jinear in circuit size!

E.g., for argmax,, .. p(71, 73 | T2, 74):

1. turn sum into max nodes and
distributions into max distributions

45



Determinism + decomposability = tractable MAP

Evaluating the circuit twice:

bottom-up and top-down  —>  «jj/ jinear in circuit size!

E.g., for argmax, .. p(T1, 23 | T2, 74):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x, x4) bottom-up

46



Determinism + decomposability = tractable MAP

Evaluating the circuit twice: /@\
bottom-up and top-down  —> tjj| jinear in circuit size! o0 OO

, Xl/ ] \X1
E.g., for argmax,, . p(21, %3 | T2, 14):

1. turn sum into max nodes and

X2/ A A \X2
distributions into max distributions @ @ @ @

2. evaluate p(x3, x4) bottom-up I W >< |

3. retrieve max activations top-down @ @ @ @

IM FOCUS DAS LEBEN 47




Determinism + decomposability = tractable MAP

Evaluating the circuit twice: @
bottom-up and top-down  —>  jjj jinear in circuit size! o-0 0O—©
E.g., for argmax,, ,. p(21, %3 | T2, 74):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(xs, x4) bottom-up

3. retrieve max activations top-down

X; X4 X3 X
4. compute BYEVEIEICH for X and X35 at leaves ’ ! ’ !

IM FOCUS DAS LEBEN 48



MAP inference: image segmentation

Input Image Multiscale Unary Potential Multiscale sum-product Superpixel-based refine
network : )

Semantic segmentation is MAP over joint pixel and label space

Even approximate MAP for non-deterministic circuits (SPNs) delivers good performances.

Rathke et al., “Locally adaptive probabilistic models for global segmentation of pathological oct
scans”, 2017

Yuan et al., “Modeling spatial layout for scene image understanding via a novel multiscale
sum-product network”, 2016

Friesen et al., “"Submodular Sum-product Networks for Scene Understanding”, 2016

& UNIVERSITAT ZU LUBECK
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Determinism + decomposability # tractable MMAP

We cannot decompose a MMAP query!

argmax p(q,z | e)
q Z

we still have latent variables to marginalize...

This will be discussed in lecture V12 (when considering advanced queries)

50



more tractable queries

Fully factorized PSDDs
m Trees % CNets | AoGs | ACs

SPNs

NADEs - BNs
— N s

less tractable queries

Polytrees

less expressive
efficient
IN
more expressive
efficient

4

tractability vs expressive efficiency
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How expressive are probabilistic circuits?

Measuring average test set log-likelihood on 20 density estimation benchmarks

Comparing against intractable models:
B} Bayesian networks (BN) [Chickering 2002] with sophisticated context-specific CPDs
MADESs [Germain et al. 2015]
.] VAESs [Kingma et al. 2014] (IWAE ELBO [Burda et al. 2015])

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013

Peharz et al., “Random sum-product networks: A simple but effective approach to probabilistic
deep learning”, 2019
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How expressive are probabilistic circuits?

Density estimation benchmarks

dataset best circuit BN  MADE VAE dataset  best circuit BN MADE VAE
nltcs -5.99 -6.02 -6.04 -5.99 dna -79.88 -80.65 -82.77 -94.56
msnbc -6.04 -6.04 -6.06 -6.09  kosarek -10.52 -10.83 - -10.64
kdd -2.12 -2.19 -2.07 -2.12  msweb -9.62 -9.70 -9.59 -9.73
plants -11.84 -12.65 -12.32 -12.34 book -33.82 -36.41 -33.95 -33.19
audio -39.39 -40.50 -38.95 -38.67 movie -50.34 -54.37 -48.7 -47.43
jester -51.29 -51.07 -52.23 -51.54 webkb -149.20 -157.43 -149.59 -146.9
netflix -55.71 -57.02 -55.16 -54.73 cr52 -81.87 -87.56 -82.80 -81.33
accidents -26.89 -26.32 -26.42 -29.11 c20ng -151.02 -158.95 -153.18 -146.9
retail -10.72 -10.87 -10.81 -10.83 bbc -229.21 -257.86 -242.40 -240.94
pumbs* -22.15 -21.72 -22.3  -25.16  ad -14.00 -18.35 -13.65 -18.81

(Best negative log-likelihoods in bold)
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Probability theory basics reminder

Random variable (RV)

possible worlds defined by assignment of
values to random variables.

Boolean random variables

e.g., Cavity (do | have a cavity?).
Domain is < true, false >

Discrete random variables

e.g., possible value of Weather is one of
< sunny, rainy, cloudy, snow >

Domain values must be exhaustive and
mutually exclusive

Elementary propositions are constructed by
assignment of a value to a
random variable: e.g.,
— Cavity = false (abbreviated as —cavity)
— Cavity = true (abbreviated as cavity)

(Complex) propositions formed from
elementary propositions and standard logical
connectives, e.g., Weather = sunny v Cavity =
false

& UNIVERSITAT ZU LUBECK
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Probabilities

Axioms (for propositions a, b, T = (a VvV —a), and
1l ==T):

- 0<P@=s L, P(M=1PWL =0

- (P(avb) = P(a) + P(b) — P(aAb)
Joint probability distribution of X = {X;, ..., X,,}

- P(Xy, . Xp)
- gives the probability of every atomic event on X

Conditional probability
P(a|b) = P(an b)/P(b)if P(b) > 0
Chain rule

P(Xy, ..

n
_ 1P(Xi|X1» s Xj—1)
i=

P(Y) = Y,ez P(Y,2)

»Xn) =

Marginalization:
Conditioning on Z:

- P(Y)= ),c; P(Y|2)P(z) (discrete)
- P(Y)= [P(Y|z)P(z)dz (continuous)
=[E,-p)P(Y|2) (expected value

notation)

Bayes’ Rule
_ P(DIH)-P(H) _ P(D|H)-P(H)
PUEID)= P(D) Y, P(D|R)P(h)
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Color Convention in this Course

- Formulae, when occurring inline

- Newly introduced terminology and definitions

- Important results (observations, theorems) as well as
emphasizing some aspects

- Examples are given with standard orange with possibly
light orange frame

« Comments ano
. Algorithms anc

notes in nearly opaque post-it
program code

« Reminders (int

ne grey fog of your memory)
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Today’s lecture is based on the following

A.Vergari, Y. Choi, R. Peharz, G. van den Broeck: Probabilistic Circuits,
Tutorial at AAAI 2020, pp.1 - 80,
http://starai.cs.ucla.edu/slides/AAAI20.pdf
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