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Probabilistic Circuits



MOTIVATION
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Have the cake and eat it too

• Be as expressive as possible
– Express arbitrary distributions

• Be as efficient as possible in inferencing/answering
queries

• For exact (not just approximative) answering
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Tractable Prbabilistic Inference

A class of queries 𝑄 is tractable on a family of probabilistic
models 𝑀 iff for any query 𝑞 ∈ 𝑄 and model 𝑚 ∈
𝑀 exactly computing 𝑞(𝑚) runs in time 𝑂(𝑝𝑜𝑙𝑦(|𝑚|)).
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• Often poly will in fact be linear

• Note: if 𝑀 and 𝑄 are compact in the number of random
variables 𝑿, i.e.,  |m|, |q| ∈ O(poly(|𝐗|)), then query
time is O(poly(|X|)). 



Why exact inference?

1. No need for approximations when we can be exact

2. We can do exact inference in approximate models
(e.g., Dechter et al. 2002) 

3. Approximations shall come with guarantees

4. Approximate inference (even with guarantees) can
mislead learners (Kulesza/Pereira 2007) 

5. Approximations can be intractable as well
(Dagum/Luby1993)
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Complete Evidence (EVI)

• 𝑞;: What is the probability that today is a 
Monday at 12.00 and there is a traffic jam only
on 5th Avenue?

• 𝑋 =
{𝐷𝑎𝑦, 𝑇𝑖𝑚𝑒, 𝐽𝑎𝑚EFG, 𝐽𝑎𝑚HFIJ, . . . , 𝐽𝑎𝑚HFIK}

• 𝑞; 𝑚 = 𝑝M 𝑋 = 𝑀𝑜𝑛, 12.00,1,0, … , 0

• Fundamental in maximum likelihood learning
𝜃MTUV = 𝑎𝑟𝑔𝑚𝑎𝑥Z Π\∈]𝑝M(𝑥; 𝜃)
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Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on 5th Avenue?

© 7BM2�`i�K2`B+�X+QK

9/158



Marginal (MAR) and Conditional (CON) queries

• 𝑞_: What is the probability that today is a 
Monday at 12.00 and there is a traffic jam only
on 5th Avenue?

• 𝑞_ 𝑚 = 𝑝M 𝐷𝑎𝑦 = 𝑀𝑜𝑛, 𝐽𝑎𝑚EFG = 1

• General:

𝑝M 𝑒 = `𝑝M 𝑒,𝑯 𝑑𝑯

• With this can answer conditional queries too

𝑝M 𝑞 ∣ 𝒆 =
𝑝M(𝑞, 𝒆)
𝑝M(𝒆)

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on 5th Avenue?

© 7BM2�`i�K2`B+�X+QK

9/158
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Maximum A Posteriori (MAP) (aka Most Probable Explanation (MPE))

• 𝑞E: Which combination of roads is most likely to 
be jammed on Monday at 9am?

• 𝑞E 𝑚 =
𝑎𝑟𝑔𝑚𝑎𝑥𝒋𝑝M(𝑗_, 𝑗J, … ∣ 𝐷𝑎𝑦 = 𝑀𝑜𝑛, 𝑇𝑖𝑚𝑒 = 9)

• General:    𝑎𝑟𝑔𝑚𝑎𝑥𝒒 𝑝M 𝒒 ∣ 𝒆
where 𝑸 ∪ 𝑬 = 𝑿

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on 5th Avenue?

© 7BM2�`i�K2`B+�X+QK

9/158
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Maximum A Posteriori (MAP) (aka Most Probable Explanation (MPE))

• 𝑞E: Which combination of roads is most likely to 
be jammed on Monday at 9am?

• ... Intractable for latent variable models

max
n
𝑝M 𝒒 𝒆 = max

𝒒
o
𝒛

𝑝M 𝒒, 𝒛 ∣ 𝒆

≠o
𝒛

max
𝒒
𝑝M(𝒒, 𝒛 ∣ 𝒆)

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on 5th Avenue?

© 7BM2�`i�K2`B+�X+QK

9/158
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Marginal MAP (MMAP) (aka Bayesian network MAP)

• 𝑞r: Which combination of roads is most likely to 
be jammed on Monday at 9am?

• 𝑞r 𝑚 =
𝑎𝑟𝑔𝑚𝑎𝑥𝒋 𝑝M(𝑗_, 𝑗J, … ∣, 𝑇𝑖𝑚𝑒 = 9)

• General:    𝑎𝑟𝑔𝑚𝑎𝑥𝒒 𝑝M 𝒒 ∣ 𝒆
= 𝑎𝑟𝑚𝑎𝑥𝒒 ΣG𝑝M(𝒒, 𝒉 ∣ 𝒆)

where 𝑸 ∪ 𝑯 ∪ 𝑬 = 𝑿

• NPPP-complete (Park/Darwiche)

• NP-hard for trees (Campos 2011)

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on 5th Avenue?

© 7BM2�`i�K2`B+�X+QK

9/158
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Advanced Queries (ADV)

• 𝑞J: Which day is most likely to have a traffic jam 
on my route to work?

• 𝑞J 𝑚 =
𝑎𝑟𝑔𝑚𝑎𝑥u 𝑝M(𝐷𝑎𝑦 = 𝑑,∧ ∨x∈IyzF{ 𝐽𝑎𝑚HFIx)
– => Marginals + MAP + logical events

• 𝑞|: What is the probability of seeing more
traffic jams in Uptown than Midtown? 

– => counts + group comparison

• And more

– expected classification agreement

– Expected predictions

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on 5th Avenue?

© 7BM2�`i�K2`B+�X+QK

9/158
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(Oztok et al. 2016)

(Khosravi et al. 2019b)



Q: EVI MAR CON MAP MMAP ADV

M
GANs

VAEs

Flows I
I
I

Trees

Mixtures

Factorized I I

tractable bands

1) (Kobyzev et al. 19)

1)



Fully factorized models

A completely disconnected graph. Example: Product of Bernoullis (PoBs)

X1 X3

X5X2 X4

Complete evidence, marginals and MAP, MMAP inference is linear!

but definitely not expressive…

(no dependencies represetable)
⇒

𝑝 𝑥 = ~
x�_

�

𝑝(𝑥x)

OK, fully factorized models have broadest tractability spectrum, but ... 



Expressiveness and efficiency

• Expressiveness: Ability to represent rich and effective
classes of functions

• Mixture of Gaussians can approximate any distribution! 
– See (Cohen et al. 15)

• Expressive efficiency (succinctness) Ability to represent
rich and effective classes of functions compactly

• ⇒ but how many components does a Gaussian mixture
need? 
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Q: EVI MAR CON MAP MMAP ADV

M
GANs

VAEs

Flows I
I
I

Trees

Mixtures

Factorized I I

tractable bands

Use these as
building blocks

„Eat the cake and have it“       



larger tractable bands

LTM XFully factorized
Trees

NB Mixtures
Polytrees

TJT

NADEs BNs

NFs
MNs

VAEs
GANs

smaller tractable bands

probabilistic circuits are at the “sweet spot”
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BUILDING BLOCKS
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A probabilistic circuit 𝐶 over variables 𝑿 is a 
computational graph encoding a (possibly unnormalized) 
probability distribution 𝑝(𝑿). 
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• Note that we have an operational semantics here

• By constraining the graph one can make inference
tractable



Distributions as computational graphs

Distributions as computational graphs

X

Base case: a single node encoding a distribution
⇒ e.g., Gaussian PDF continuous random variable

56/158

Distributions as computational graphs

¬X

Base case: a single node encoding a distribution
⇒ e.g., indicators forX or ¬X for Boolean random variable

56/158
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Base case: a single node encoding a distribution

e.g., a Gaussian PDF continuous variable e.g., indicators for 𝑋 or¬𝑋 for
Boolean RVs



Distributions as computational graphs

x

X

pX(x)

Simple distributions are tractable “black boxes” for:

EVI: output p(x) (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode

56/158
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Simple distributions are tractable „black boxes“ for
• EVI:  output p(x) (density or mass)
• MAR: output 1 (normalized) or Z (unnormalized)
• MAP:  output the mode
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Simple distributions are tractable „black boxes“ for
• EVI:  output p(x) (density or mass)  
• MAR: output 1 (normalized) or Z (unnormalized)
• MAP:  output the mode

Distributions as computational graphs

1.3

X

.33

Simple distributions are tractable “black boxes” for:

EVI: output p(x) (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode

56/158
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l Bottleneck: Summing out variables

l E.g.: Partition function

Sum of exponentially many products

Reminder: Partition function Z

23

𝑃 𝑋1, … 𝑋� =
1
𝑍
~
�

𝜙𝑗 (𝑋1, … 𝑋�)

𝑍 = o
\
~
�
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Factorizations as product nodes
(Divide and Conquer complexity)
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Factorizations as product nodes
Divide and conquer complexity

p(X1, X2, X3) = p(X1) · p(X2) · p(X3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 ⇥

X1 X2 X3

⇒ …with a product node over some univariate Gaussian distribution
57/158

e.g. modeling a multivariate Gaussian with diagonal covariance matrix
by a product node of univariate Gaussians



Factorizations as product nodes
(Divide and Conquer complexity)

25

Feed forward evaluation

Factorizations as product nodes
Divide and conquer complexity

p(x1, x2, x3) = p(x1) · p(x2) · p(x3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 .36

0.8

X1

0.5

X2

0.9

X3

⇒ feedforward evaluation
57/158



Mixtures as sum nodes
(enhance expressiveness)
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Mixtures as sum nodes
Enhance expressiveness

�10 �5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1·p1(X)+w2·p2(X)

⇒ e.g. modeling a mixture of Gaussians…

58/158



Mixtures as sum nodes
(enhance expressiveness)
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Mixtures as sum nodes
Enhance expressiveness

X1 X1

w1 w2

p(x) = 0.2·p1(x)+0.8·p2(x)

⇒ …as weighted a sum node over Gaussian input distributions

58/158

Mixtures as sum nodes
Enhance expressiveness

X1 X1

w1 w2

p(x) = 0.2·p1(x)+0.8·p2(x)

⇒ …as weighted a sum node over Gaussian input distributions

58/158



Mixtures as sum nodes
(enhance expressiveness)
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Mixtures as sum nodes
Enhance expressiveness

.44

0.2

X1

0.5

X1

0.2 0.8

p(x) = 0.2·p1(x)+0.8·p2(x)

⇒ by stacking them we increase expressive efficiency

58/158



A grammar for tractable models
(Recursive Semantics for probabilistic circuits)
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A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

⇥

X1 X2

⇥

X1 X2

⇥

X1 X2

w1 w2

⇥ ⇥

⇥ ⇥⇥ ⇥

X1

X2

X1

X2

X3 X4 X3 X4

59/158



Probabilistic Circuits are not PGMs
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Probabilistic circuits are not PGMs!

They are probabilistic and graphical, however …

PGMs Circuits

Nodes: random variables unit of computations
Edges: dependencies order of execution

Inference: conditioning

elimination

message passing

feedforward pass

backward pass

⇒ they are computational graphs, more like neural networks

60/158



Control on the graph
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Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

just arbitrarily compose them like a neural network!
61/158

• We do not arbitraly compose the building bl ocks as in neural networks

• But define structural constraints for tractability



Side note: Compare this with desriptive complexity
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U

sAC
1

0

1

Recursive

Primitive Recursive

EXPTIME

PSPACE

DSPACE[log n]FO(DTC)

ACFO Logarithmic−Time Hierarchy

NSPACE[log n]

0

Regular

"truly feasible"

ThC

NC

FO(TC)

FO(M)

O(1)
FO[(log n)       ] NC

SO−Krom

SO

SO

SO(LFP)
O(1)

n
SO[2        ]

SO(TC)FO(PFP)O(1)
SO[n       ]

O(1)
n

FO[2        ]

E

SOA

SO−Horn

FO(LFP)
O(1)

FO[n       ]

log(CFL)

2NC

P

co−NP

NP co−NP
complete

co−NP

complete

NPPolynomial−Time Hierarchy

co−r.e. r.e. complete

r.e.

(N)

A

FO (N)

E

FO

(N)FO

Arithmetic Hierarchy

complete

co−r.e.

NP 

The Descriptive World

ACM SIGACT News 5 September 2003 Vol. 34, No. 3

Correspondence of
logics and complexity classes



STRUCTURAL PROPERTIES FOR
TRACTABILITY
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Decomposability

A product node is decomposable if its children depend on 
disjoint sets of variables (just like in factorization)
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Decomposability

A product node is decomposable if its children depend on disjoint sets of variables
⇒ just like in factorization!

⇥

X1 X2 X3

decomposable circuit

⇥

X1 X1 X3

non-decomposable circuit

Darwiche et al., “A knowledge compilation map”, 2002 63/158

(Darwiche/Marquis 01)



Smoothness (aka as completeness)

A sum node is smooth iff its children depend on the same 
variable sets (otherwise not accounting for some variables)

35

(Darwiche/Marquis 01)

Smoothness
aka completeness

A sum node is smooth if its children depend of the same variable sets
⇒ otherwise not accounting for some variables

X1 X1

w1 w2

smooth circuit

X1 X2

w1 w2

non-smooth circuit

⇒ smoothness can be easily enforced [Shih et al. 2019]

Darwiche et al., “A knowledge compilation map”, 2002 64/158



Smoothness + decomposability = tractable MAR
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Smoothness + decomposability = tractable MAR

Computing arbitrary integrations (or summations)
⇒ linear in circuit size!

E.g., suppose we want to compute Z:
∫

p(x)dx

65/158



Smoothness + decomposability = tractable MAR
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Smoothness + decomposability = tractable MAR

If p(x) =
∑

i wipi(x), (smoothness):

∫
p(x)dx =

∫ ∑

i

wipi(x)dx =

=
∑

i

wi

∫
pi(x)dx

⇒ integrals are “pushed down” to children

⇥ ⇥

⇥ ⇥⇥ ⇥

X1

X2

X1

X2

X3 X4 X3 X4

65/158



Smoothness + decomposability = tractable MAR
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Smoothness + decomposability = tractable MAR

If p(x,y, z) = p(x)p(y)p(z), (decomposability):

∫ ∫ ∫
p(x,y, z)dxdydz =

=

∫ ∫ ∫
p(x)p(y)p(z)dxdydz =

=

∫
p(x)dx

∫
p(y)dy

∫
p(z)dz

⇒ integrals decompose into easier ones

⇥ ⇥

⇥ ⇥⇥ ⇥

X1

X2

X1

X2

X3 X4 X3 X4

65/158



Smoothness + decomposability = tractable MAR
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Analogously one can show: 
Smoothness + decomposability = tractable CON

Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR
⇒ linear in circuit size!

E.g. to compute p(x2, x4):

leafs overX1 andX3 outputZi =
∫
p(xi)dxi

⇒ for normalized leaf distributions: 1.0

leafs overX2 andX4 output EVI

feedforward evaluation (bottom-up)

.35 .64

.49

.58 .77

.58 .77.58 .77

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4

65/158

leaves

leaves

Note: Nodes with the same RV-label may have different probabilities associated with
them. Hence, e.g., the left bottom 𝑋� may get a different value than the right bottom 𝑋�



Smoothness + decomposability≠ tractable MAP
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Smoothness + decomposability = tractable MAP

We cannot decompose bottom-up a MAP query:

argmax
q

p(q | e)

since for a sum node we are marginalizing out a latent variable

argmax
q

∑

i

wipi(q, e) = argmax
q

∑

z

p(q, z, e) ̸=
∑

z

argmax
q

p(q, z, e)

⇒ MAP for latent variable models is intractable [Conaty et al. 2017]

69/158



Determinism (aka selectivity)

A sum node is deterministic if the output of only one of its
children is non zero for any input (e.g. if their distributions
have disjoint support)

41

Determinism
aka selectivity

A sum node is deterministic if the output of only one children is non zero for any input
⇒ e.g. if their distributions have disjoint support

⇥

X1  ✓ X2

⇥

X1 > ✓ X2

w1 w2

deterministic circuit

⇥

X1 X2

⇥

X1 X2

w1 w2

non-deterministic circuit 70/158



Determinism + decomposability = tractable MAP
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Determinism + decomposability = tractable MAP

Computing maximization with arbitrary evidence e
⇒ linear in circuit size!

E.g., suppose we want to compute:

max
q

p(q | e)

⇥ ⇥

⇥ ⇥⇥ ⇥

X1

X2

X1

X2

X3 X4 X3 X4

71/158



Determinism + decomposability = tractable MAP
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Determinism + decomposability = tractable MAP

If p(q, e) =
∑

i wipi(q, e) = maxi wipi(q, e),
(deterministic sum node):

max
q

p(q, e) = max
q

∑

i

wipi(q, e)

= max
q

max
i

wipi(q, e)

= max
i

max
q

wipi(q, e)

⇒ one non-zero child term, thus sum is max

⇥ ⇥

⇥ ⇥⇥ ⇥

X1

X2

X1

X2

X3 X4 X3 X4

71/158



Determinism + decomposability = tractable MAP
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Determinism + decomposability = tractable MAP

If p(q, e) = p(qx, ex,qy, ey) = p(qx, ex)p(qy, ey)
(decomposable product node):

max
q

p(q | e) = max
q

p(q, e)

= max
qx,qy

p(qx, ex,qy, ey)

= max
qx

p(qx, ex),max
qy

p(qy, ey)

⇒ solving optimization independently

⇥ ⇥

⇥ ⇥⇥ ⇥

X1

X2

X1

X2

X3 X4 X3 X4

71/158

⋅ 1/𝑝(𝒆)

⋅ 1/𝑝(𝒆)

⋅ 1/𝑝(𝒆)



Determinism + decomposability = tractable MAP
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Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

× ×

max

max max

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

71/158



Determinism + decomposability = tractable MAP

46

Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

× ×

max

max max

× ×× ×

Xee

X1

XeR

X2

Xk

X1

X3j

X2

RXk

X3

X83

X4

RX3

X3

Xdd

X4

71/158



Determinism + decomposability = tractable MAP
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Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

.35 .64

.49

.58 .77

.58 .77.58 .77

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

71/158



Determinism + decomposability = tractable MAP
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Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

.35 .64

.49

.58 .77

.58 .77.58 .77

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

71/158



MAP inference: image segmentationMAP inference : image segmentation

Semantic segmentation is MAP over joint pixel and label space

Even approximate MAP for non-deterministic circuits (SPNs) delivers good performances.
Rathke et al., “Locally adaptive probabilistic models for global segmentation of pathological oct
scans”, 2017
Yuan et al., “Modeling spatial layout for scene image understanding via a novel multiscale
sum-product network”, 2016
Friesen et al., “Submodular Sum-product Networks for Scene Understanding”, 2016 72/158
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Determinism + decomposability≠ tractable MMAP
Determinism + decomposability = tractable MMAP

We cannot decompose a MMAP query!

argmax
q

∑

z

p(q, z | e)

we still have latent variables to marginalize…

⇒ The final part of this tutorial will talk more about advanced queries and
their tractability properties.

74/158
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This will be discussed in lecture V12 (when considering advanced queries)



m
or
e
ex
pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t
more tractable queries

less tractable queries

SPNs

PSDDs

CNets

BNs

NFs

ACsAoGs
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How expressive are probabilistic circuits?
How expressive are probabilistic circuits?

Measuring average test set log-likelihood on 20 density estimation benchmarks

Comparing against intractable models:

Bayesian networks (BN) [Chickering 2002] with sophisticated context-specific CPDs

MADEs [Germain et al. 2015]

VAEs [Kingma et al. 2014] (IWAE ELBO [Burda et al. 2015])

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013
Peharz et al., “Random sum-product networks: A simple but effective approach to probabilistic
deep learning”, 2019 78/158
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How expressive are probabilistic circuits? 
Density estimation benchmarksHow expressive are probabilistic circuits?
density estimation benchmarks

dataset best circuit BN MADE VAE dataset best circuit BN MADE VAE

nltcs -5.99 -6.02 -6.04 -5.99 dna -79.88 -80.65 -82.77 -94.56
msnbc -6.04 -6.04 -6.06 -6.09 kosarek -10.52 -10.83 - -10.64
kdd -2.12 -2.19 -2.07 -2.12 msweb -9.62 -9.70 -9.59 -9.73
plants -11.84 -12.65 -12.32 -12.34 book -33.82 -36.41 -33.95 -33.19
audio -39.39 -40.50 -38.95 -38.67 movie -50.34 -54.37 -48.7 -47.43
jester -51.29 -51.07 -52.23 -51.54 webkb -149.20 -157.43 -149.59 -146.9
netflix -55.71 -57.02 -55.16 -54.73 cr52 -81.87 -87.56 -82.80 -81.33
accidents -26.89 -26.32 -26.42 -29.11 c20ng -151.02 -158.95 -153.18 -146.9
retail -10.72 -10.87 -10.81 -10.83 bbc -229.21 -257.86 -242.40 -240.94
pumbs* -22.15 -21.72 -22.3 -25.16 ad -14.00 -18.35 -13.65 -18.81
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(Best negative log-likelihoods in bold)



APPENDIX
Uhhh, a lecture with a hopefully useful
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Probability theory basics reminder

Random variable (RV)

• possible worlds defined by assignment of 
values to random variables.

• Boolean random variables
e.g., Cavity (do I have a cavity?).                

Domain is < true , false >

• Discrete random variables
e.g., possible value of  Weather is one of         

< sunny, rainy, cloudy, snow >

• Domain values must be exhaustive and 
mutually exclusive

• Elementary propositions are constructed by 
assignment of a value to a
random variable: e.g., 

– Cavity = false (abbreviated as ¬cavity)
– Cavity = true (abbreviated as cavity)

• (Complex) propositions formed from 
elementary propositions and standard logical 
connectives, e.g., Weather = sunny Ú Cavity = 
false

Probabilities
• Axioms (for propositions 𝑎, 𝑏, ⊤ = (𝑎 ∨ ¬𝑎), and

⊥ = ¬ ⊤):

– 0 ≤ 𝑃 𝑎 ≤ 1; 𝑃(⊤) = 1; 𝑃(⊥) = 0
– (𝑃(𝑎 ∨ 𝑏) = 𝑃(𝑎) + 𝑃(𝑏) − 𝑃(𝑎 ∧ 𝑏)

• Joint probability distribution of 𝐗 = {𝑋_,… , 𝑋�}
– 𝑷 𝑋_,… ,𝑋�
– gives the probability of every atomic event on 𝑿

• Conditional probability                                         
𝑃(𝑎 | 𝑏) = 𝑃(𝑎 ∧ 𝑏) / 𝑃(𝑏) 𝑖𝑓 𝑃(𝑏) > 0

• Chain rule 

𝑷 𝑋_,… , 𝑋� = ~
x�_

�
𝑷(𝑋x|𝑋_,… , 𝑋x�_)

• Marginalization: 𝑷 𝑌 = ∑�∈� 𝑷(𝑌, 𝑧)
• Conditioning on 𝑍: 

– 𝑷 𝑌 = ∑�∈� 𝑷 𝑌 𝑧 𝑷(𝑧) (discrete)

– 𝑷 𝑌 = ∫𝑷 𝑌 𝑧 𝑷 𝑧 𝑑𝑧 (continuous)
= 𝔼𝒛∼�(�)P(Y|z)    (expected value 

notation)

• Bayes‘ Rule

𝑃 𝐻 𝐷 =
𝑃(𝐷|𝐻) � 𝑃(𝐻)

𝑃(𝐷) =
𝑃(𝐷|𝐻) � 𝑃(𝐻)
∑G 𝑃 𝐷|ℎ 𝑃(ℎ)

55



Color Convention in this Course

• Formulae, when occurring inline

• Newly introduced terminology and definitions

• Important results (observations, theorems) as well as 
emphasizing some aspects 

• Examples are given with standard orange with possibly 
light orange frame 

• Comments and notes in nearly opaque post-it

• Algorithms and program code

• Reminders (in the grey fog of your memory)
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Today‘s lecture is based on the following

• A. Vergari, Y. Choi, R. Peharz, G. van den Broeck: Probabilistic Circuits, 
Tutorial at AAAI 2020, pp.1 – 80, 
http://starai.cs.ucla.edu/slides/AAAI20.pdf
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