PROBABILISTIC AND DIFFERENTIABLE PROGRAMMING V13: ROUND-UP

Özgür L. Özçep
Universität zu Lübeck
Institut für Informationssysteme

What this course was about

Differentiable Programming and
Probabilistic Programming for
Machine Learning

What this lecture V_{13} is about

Nearly the same as V1, but even shorter

Now you should understand this - if this was not already the case before

// The third wave of differentiable programming

/1 1)

- Total loss

$$
L=-\sum_{(x, y) \in D} l(g(x, \theta), y)
$$

for some loss function I, dataset D and model g with parameters θ

- Define how many passes (epochs) over the data to make
- learning rate η
- Gradient Descent: update θ by gradient in each epoch $\theta \leftarrow \theta-\eta \nabla_{\theta} L$

Backprop: efficient implementation of gradient descent

Backpropagation idea

- Generate error signal that measures difference between predictions and target values
- Use error signal to change the weights and get more accurate predictions backwards
- Underlying mathematics: chain rule Chain rule (1-dim)

$$
\frac{d h}{d x}=\frac{d f}{d g} \frac{d g}{d x}
$$

$($ for $h(x)=f(g(x)))$

Automatic Differentiation (AD)

- $A D$ is a mix of
- symbolic differentiation (SD) (rules s.a. chain rule, product rule)
- numerical differentiation (ND): use $\frac{d y}{d x} \approx \frac{\Delta y}{\Delta x}$

$$
\begin{aligned}
& \frac{d(f(x) \cdot g(x))}{d x}=\frac{d f(x)}{d x} g(x)+\frac{d g(x)}{d x} f(x) \quad \text { (Product rule) } \\
& \quad-h(x):=g(x) \cdot f(x) \\
& \quad-\frac{d h(x)}{d x} \text { and } h \text { have two components in common }
\end{aligned}
$$

- This may also be the case for f.
- Symbollicaly calculating f won't profit from common parts of f and $\frac{d f(x)}{d x}$

Comparison

Intuition

Inference

CS Probabilistic Programming Statistics

Probabilistic Programming Example

```
statesmean = [-1, 1, 0] # Emission parameters.
initial = Categorical([1.0/3, 1.0/3, 1.0/3]) # Prob distr of state[1].
trans = [Categorical([0.1, 0.5, 0.4]), Categorical([0.2, 0.2, 0.6]),
    Categorical([0.15, 0.15, 0.7])] # Trans distr for each state.
data = [Nil, 0.9, 0.8, 0.7, 0, -0.025, -5, -2, -0.1, 0, 0.13]
```

@model hmm begin \# Define a model hmm.
states $=$ Array (Int, length(data))
@assume(states[1] ~ initial)
for $\mathbf{i}=2:$ length(data)
@assume(states[i] ~ trans[states[i-1]])
@observe(data[i] ~Normal(statesmean[states[i]], 0.4))
end
@predict states
end

Hidden markov model in Julia

tractability vs expressive efficiency

Can use efficiency also in learning

