
PROBABILISTIC AND
DIFFERENTIABLE PROGRAMMING

V13: ROUND-UP

Özgür L. Özçep

Universität zu Lübeck

Institut für Informationssysteme

What this course was about

2

Differentiable Programming and

Probabilistic Programming for

Machine Learning

What this lecture V13 is about

3

Nearly the same as V1, but even shorter

4

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

Getting deep systems that
know when they do not know

and, hence, recognise new
situations and adapt to them

The third wave of
differentiable programming

Probabilities

Shallow

1970

Deep

2010

now

„

ph“1)

Now you should understand this – if this was not already the case before

Gradient Descent

• Total loss

𝐿 = −$
!,# ∈%

𝑙(𝑔(𝑥, 𝜃), 𝑦)

for some loss function l, dataset D

and model g with parameters θ

• Define how many passes (epochs) over
the data to make

• learning rate η

• Gradient Descent: update θ by gradient
in each epoch θ ← θ − η∇θL

5

V2

Sample
labeled data

(batch)

Forward it
through the
network, get
predictions

Back-
propagate
the errors

Update the
network
weights

Backpropagation idea
• Generate error signal that measures difference between predictions and

target values

• Use error signal to change the weights and get more
accurate predictions backwards

• Underlying mathematics: chain rule

Backprop: efficient implementation of gradient descent

(for

𝑑ℎ
𝑑𝑥

=
𝑑𝑓
𝑑𝑔

𝑑𝑔
𝑑𝑥

ℎ 𝑥 = 𝑓(𝑔(𝑥)))

Chain rule (1-dim)

Baydin, Pearlmutter, Radul, and Siskind

!a) Forward pass

x!

x2

E!y3$ t)

y2

@E=@y2

!b) Backward pass

w4

@E=@w4

w!

@E=@w!

w2

w3

y!

y3

@E=@y3

w5

w6

@E=@w6

@E=@E
@E=@w3

@E=@y!
@E=@w5

@E=@w2

Figure 1: Overview of backpropagation. (a) Training inputs xi are fed forward, generating
corresponding activations yi. An error E between the actual output y3 and the
target output t is computed. (b) The error adjoint is propagated backward,

giving the gradient with respect to the weights rwiE =
⇣

@E
@w1

, . . . ,
@E
@w6

⌘
, which is

subsequently used in a gradient-descent procedure. The gradient with respect to
inputs rxiE can be also computed in the same backward pass.

2.1 AD Is Not Numerical Di↵erentiation

Numerical di↵erentiation is the finite di↵erence approximation of derivatives using values of
the original function evaluated at some sample points (Burden and Faires, 2001) (Figure 2,
lower right). In its simplest form, it is based on the limit definition of a derivative. For
example, for a multivariate function f : Rn ! R, one can approximate the gradient rf =⇣

@f
@x1

, . . . ,
@f
@xn

⌘
using

@f(x)

@xi
⇡ f(x+ hei)� f(x)

h
, (1)

where ei is the i-th unit vector and h > 0 is a small step size. This has the advantage of
being uncomplicated to implement, but the disadvantages of performing O(n) evaluations
of f for a gradient in n dimensions and requiring careful consideration in selecting the step
size h.

Numerical approximations of derivatives are inherently ill-conditioned and unstable,5

with the exception of complex variable methods that are applicable to a limited set of
holomorphic functions (Fornberg, 1981). This is due to the introduction of truncation6 and

5. Using the limit definition of the derivative for finite di↵erence approximation commits both cardinal sins
of numerical analysis: “thou shalt not add small numbers to big numbers”, and “thou shalt not subtract
numbers which are approximately equal”.

6. Truncation error is the error of approximation, or inaccuracy, one gets from h not actually being zero.
It is proportional to a power of h.

4

V2

7https://www.asimovinstitute.org/neural-network-zoo/

V4

V3

V3

V4

V6

V6

(V3)

(V8)

8

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

xcat

xon

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer

V-dim

V-dim

N-dim

V-dim

𝑊
/×1
2
×𝑥345 = 𝑣345

𝑊/×
12 ×𝑥7

8
= 𝑣7

8

+ 9𝑣 =
𝑣!"# + 𝑣$%

2

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

×

0

1

0

0

0

0

0

0

…

0

𝑊/×1
2 ×𝑥345 = 𝑣345

2.4

2.6

…

…

1.8

=

V6

Man

Uncle

Aunt

Queen

Woman

r

r

King

r

Word embedding a la
word2vec

Knowledge graph embedding

Automatic Differentiation (AD)

• AD is a mix of
– symbolic differentiation (SD) (rules s.a. chain rule,

product rule)

– numerical differentiation (ND): use
+,
+-
≈ /,

/-

9

<(= ! >?(!))
<!

= < = !
<!

𝑔 𝑥 + < ? !
<!

𝑓 𝑥 (Product rule)

– ℎ(𝑥) ∶ = 𝑔(𝑥) 6 𝑓(𝑥)

– +8(-)
+-

and ℎ have two components in common

– This may also be the case for 𝑓.

– Symbollicaly calculating 𝑓 won‘t profit from common

parts of 𝑓 and
+9(-)
+-

V7

Automatic Differentiation in Machine Learning: a Survey

l1 = x

ln+1 = 4ln(1� ln)

f(x) = l4 = 64x(1�x)(1�2x)2(1�8x+8x2)2

f
0(x) = 128x(1 � x)(�8 + 16x)(1 � 2x)2(1 �

8x+8x2)+64(1�x)(1�2x)2(1�8x+8x2)2�
64x(1� 2x)2(1� 8x+8x2)2� 256x(1�x)(1�
2x)(1� 8x+ 8x2)2

f(x):
v = x
for i = 1 to 3

v = 4*v*(1 - v)
return v

or, in closed-form,

f(x):
return 64*x*(1-x)*((1-2*x)^2)

*(1-8*x+8*x*x)^2

f’(x):
return 128*x*(1 - x)*(-8 + 16*x)

*((1 - 2*x)^2)*(1 - 8*x + 8*x*x)
+ 64*(1 - x)*((1 - 2*x)^2)*((1
- 8*x + 8*x*x)^2) - (64*x*(1 -
2*x)^2)*(1 - 8*x + 8*x*x)^2 -
256*x*(1 - x)*(1 - 2*x)*(1 - 8*x
+ 8*x*x)^2

f’(x0) = f
0(x0)
Exact

f’(x):
(v,dv) = (x,1)
for i = 1 to 3

(v,dv) = (4*v*(1-v), 4*dv-8*v*dv)
return (v,dv)

f’(x0) = f
0(x0)
Exact

f’(x):
h = 0.000001
return (f(x + h) - f(x)) / h

f’(x0) ⇡ f
0(x0)

Approximate

Manual
Di↵erentiation

Symbolic
Di↵erentiation

of the Closed-form

Coding Coding

Numerical
Di↵erentiation

Automatic
Di↵erentiation

Figure 2: The range of approaches for di↵erentiating mathematical expressions and com-
puter code, looking at the example of a truncated logistic map (upper left). Sym-
bolic di↵erentiation (center right) gives exact results but requires closed-form in-
put and su↵ers from expression swell; numerical di↵erentiation (lower right) has
problems of accuracy due to round-o↵ and truncation errors; automatic di↵eren-
tiation (lower left) is as accurate as symbolic di↵erentiation with only a constant
factor of overhead and support for control flow.

5

10

V7

Comparison

11

Ex: F. Wood: Probabilistic Programming, PPAML Summer School, Portland 2016

V8/9

Probabilistic Programming Example

12
infinitely many hidden units is equivalent to a Gaussian process44. Note
that the above non-parametric components should be thought of again
as building blocks, which can be composed into more complex models
as described earlier. The next section describes an even more power-
ful way of composing models — through probabilistic programming.

Probabilistic programming
The basic idea in probabilistic programming is to use computer pro-
grams to represent probabilistic models (http://probabilistic-program-
ming.org)45–47. One way to do this is for the computer program to define
a generator for data from the probabilistic model, that is, a simulator
(Fig. 2). This simulator makes calls to a random number generator in
such a way that repeated runs from the simulator would sample different
possible data sets from the model. This simulation framework is more
general than the graphical model framework described previously since
computer programs can allow constructs such as recursion (functions
calling themselves) and control flow statements (for example, ‘if ’ state-
ments that result in multiple paths a program can follow), which are
difficult or impossible to represent in a finite graph. In fact, for many
of the recent probabilistic programming languages that are based on
extending Turing-complete languages (a class that includes almost all
commonly used languages), it is possible to represent any computable
probability distribution as a probabilistic program48.

The full potential of probabilistic programming comes from automat-
ing the process of inferring unobserved variables in the model condi-
tioned on the observed data (Box 1). Conceptually, conditioning needs
to compute input states of the program that generate data matching the
observed data. Whereas normally we think of programs running from
inputs to outputs, conditioning involves solving the inverse problem of
inferring the inputs (in particular the random number calls) that match
a certain program output. Such conditioning is performed by a ‘univer-
sal inference engine’, usually implemented by Monte Carlo sampling
over possible executions of the simulator program that are consistent
with the observed data. The fact that defining such universal inference
algorithms for computer programs is even possible is somewhat surpris-
ing, but it is related to the generality of certain key ideas from sampling
such as rejection sampling, sequential Monte Carlo methods25 and
‘approximate Bayesian computation’49.

As an example, imagine you write a probabilistic program that simu-
lates a gene regulatory model that relates unmeasured transcription

factors to the expression levels of certain genes. Your uncertainty in each
part of the model would be represented by the probability distributions
used in the simulator. The universal inference engine can then condition
the output of this program on the measured expression levels, and auto-
matically infer the activity of the unmeasured transcription factors and
other uncertain model parameters. Another application of probabilistic
programming implements a computer vision system as the inverse of a
computer graphics program50.

There are several reasons why probabilistic programming could
prove to be revolutionary for machine intelligence and scientific mod-
elling (its potential has been noticed by US Defense Advanced Research
Projects Agency, which is currently funding a major programme called
Probabilistic Programming for Advancing Machine Learning). First,
the universal inference engine obviates the need to manually derive
inference methods for models. Since deriving and implementing
inference methods is generally the most rate-limiting and bug-prone
step in modelling, often taking months, automating this step so that
it takes minutes or seconds will greatly accelerate the deployment of
machine learning systems. Second, probabilistic programming could
be potentially transformative for the sciences, since it allows for rapid
prototyping and testing of different models of data. Probabilistic pro-
gramming languages create a very clear separation between the model
and the inference procedures, encouraging model-based thinking51.
There are a growing number of probabilistic programming languages.
BUGS52, Stan53, AutoBayes54 and Infer.NET55 allow only a restrictive
class of models to be represented compared with systems based on
Turing-complete languages. In return for this restriction, inference
in such languages can be much faster than for the more general lan-
guages56, such as IBAL57, BLOG58, Church59, Figaro60, Venture61, and
Anglican62. A major emphasis of recent work is on fast inference in
general languages (see for example ref. 63). Nearly all approaches to
probabilistic programming are Bayesian since it is hard to create other
coherent frameworks for automated reasoning about uncertainty.
Notable exceptions are systems such as Theano, which is not itself a
probabilistic programming language but uses symbolic differentia-
tion to speed up and automate optimization of parameters of neural
networks and other probabilistic models64.

Although parameter optimization is commonly used to improve
probabilistic models, in the next section I will describe recent work
on how probabilistic modelling can be used to improve optimization.

Figure 2 | Probabilistic programming. A probabilistic program in Julia
(left) defining a simple three-state hidden Markov model (HMM), inspired
by an example in ref. 62. The HMM is a widely used probabilistic model for
sequential and time-series data, which assumes the data were obtained by
transitioning stochastically between a discrete number of hidden states98.
The first four lines define the model parameters and the data. Here ‘trans’ is
the 3 × 3 state-transition matrix, ‘initial’ is the initial state distribution, and
‘statesmean’ are the mean observations for each of the three states; actual
observations are assumed to be noisy versions of this mean with Gaussian
noise. The function hmm starts the definition of the HMM, drawing the

sequence of states with the @assume statements, and conditioning on the
observed data with the @observe statements. Finally @predict states that we
wish to infer the states and data; this inference is done automatically by the
universal inference engine, which reasons over the configurations of this
computer program. It would be trivial to modify this program so that the
HMM parameters are unknown rather than fixed. A graphical model (right)
corresponding to the HMM probabilistic program showing dependencies
between the parameters (blue), hidden state variables (green) and observed
data (yellow). This graphical model highlights the compositional nature of
probabilistic models.

statesmean = [-1, 1, 0] # Emission parameters.
initial = Categorical([1.0/3, 1.0/3, 1.0/3]) # Prob distr of state[1].
trans = [Categorical([0.1, 0.5, 0.4]), Categorical([0.2, 0.2, 0.6]),
 Categorical([0.15, 0.15, 0.7])] # Trans distr for each state.
data = [Nil, 0.9, 0.8, 0.7, 0, -0.025, -5, -2, -0.1, 0, 0.13]

@model hmm begin # Define a model hmm.
 states = Array(Int, length(data))
 @assume(states[1] ~ initial)
 for i = 2:length(data)
 @assume(states[i] ~ trans[states[i-1]])
 @observe(data[i] ~ Normal(statesmean[states[i]], 0.4))
 end
 @predict states
end

states[1] states[2] states[3] …

…data[1] data[2] data[3]

initial trans

statesmean

2 8 M A Y 2 0 1 5 | V O L 5 2 1 | N A T U R E | 4 5 5

REVIEW INSIGHT

© 2015 Macmillan Publishers Limited. All rights reserved

Hidden markov model in Julia

V8/9

Q: EVI MAR CON MAP MMAP ADV

M
GANs

VAEs

Flows I
I
I

Trees

Mixtures

Factorized I I

tractable bands

Use these as
building blocks

„Eat the cake and have it“

V10-12

(Sum-node)

(Product Node)

m
or
e
ex
pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t
more tractable queries

less tractable queries

SPNs

PSDDs

CNets

BNs

NFs

ACsAoGs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

tractability vs expressive efficiency
77/158

14

V10-12

Use of structural
constraints

Can use efficiency also in learning

15

Thanks for your interest!

