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What this course is about

Differentiable Programming and
Probabilistic Programming for
Machine LearningV

1) Yes, this is a footnote on a slide, believe it or not. The three lines summarizing the topic of the course is the optimal outcome w.r.t my subjective
measure - using a non-gradient optimziation procedure starting from the original course name: Probabilistic Differential Programming ->
Probabilistic and Differential Programming -> Probabilistic and Differentiable Programming ->Differentiable and Probabilistic Programming
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What this lecture V, is about

Agenda

2. Differentiable Programming and
3. Probabilistic Programming for
1. Machine Learning"

Pointers to lectures in [(EREILNS BRI EL

1) Yes, this is a footnote on a slide, believe it or not. The three lines summarizing the topic of the course is the optimal outcome w.r.t my subjective
measure - using a non-gradient optimziation procedure starting from the original course name: Probabilistic Differential Programming ->
Probabilistic and Differential Programming -> Probabilistic and Differentiable Programming ->Differentiable and Probabilistic Programming
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What We Mean by “Learning”

Machine learning (ML) is programming algorithms for
* optimizing a performance criterion
* using example (training) data
* by constructing general(izable) models
* that are good approximations of the data

Role of Mathematics Role of CS: Efficient algorithms
« Building mathematical  * solve the optimization
model problem

* represent and evaluate the

e core taskis inference )
model for inference

from a sample
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Differentiable Programming

Machine learning (ML) is programming algorithms for
e optimizing a performance criterion
e using example (training) data
* by constructing general(izable) models
« that are good approximations of the data

Role of Mathematics Role of CS: Efficient algorithms
° Programming i SOIVe the Optimization
differentiable model problem

* represent and evaluate the

e core taskis inference )
model for inference

from a sample
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Probabilistic Programming

Machine learning (ML) is programming algorithms for
e optimizing a performance criterion
e using example (training) data
* by constructing general(izable) models
« that are good approximations of the data

Role of Mathematics Role of CS: Efficient algorithms
° Programming ¢ SO|Ve the OptimizatiOn
probabilistic model problem

* represent and evaluate the

e core taskis inference )
model for inference

from a sample
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Types of learning (classically)

. Supervised Learning
learn to predict an output
for input vector after
training with labelled data

. Unsupervised Learning
discover a good internal
representation of the input

. Reinforcement Learning
learn to select an action to
maximize the expectation of
future rewards (payoff)




Subtypes of unsupervised |. (in Deep Learning context)

L ht liianweng.github.ioflil-log/20 1/10/self-supervised-learinghtm y-self-supervised-leaming
« Self-supervised (Self-taught e
A ConvNet Maximize prob.
X,y=0) > i model )
e [ ] egrees . ) Predict 0 degrees rotation (y=0)
Learning - learn with targets
[ , ConvNet imize prob.
o ° glX.) my F(. Fi(x'
| Rotate 90 degrees x Predict 90 degrees rotation (y=1)
,L Rotated image: X'
[ ) (] ] . _ o ConvNet . ize prob.
unlabelled training data el < RE
g Image X Rotate 180 degrees R m © Predict 180 degrees rotation (y=2)
ota .

. Semi-supervised Learning iy R
learn with few labelled
examples and many
unlabelled ones
(same distribution for
labelled & non-labelled data)
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Generative vs. Discriminative/descriptive

e Many unsupervised and self-supervised models can
be classed as ‘generative models’.

— Given unlabelled data X, a unsupervised generative
model learns full joint probability distribution P(X,Y).

— These are characterised by an ability to ‘sample’ the
model to ‘create’ new data

e |n contrast: Discriminative models learn P(Y | X)
(which can be calculated in a generative model, too,
using Bayes’s rule but not vice versa)

(X: observations, data, Y: categories, classes, non-observed)

RSI
GERSIZ,

E
555280 ¢ INSTITUT FUR INFORMATIONSSYSTEME

10



Example Supervised Learning: Classification

. Class C of a “family car”
— Prediction: Is car x a family car?

— Knowledge extraction: What do people expect from a
family car?

« Qutput:
Positive (+) and negative (-) examples
. Input representation by two features:
X;: price, x;: engine power
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Training set X
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X

b 3 Price

Labelled X ={(xt,r) I,
Data )

1, x is positive

Labels r= . ;

0, x is negative
Feature x = (x1,%3)
vector
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Class C

5 A (p1< price < p,) AND (e, < engine power < e,)
2
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2
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Hypothesis class H

_ |1, hclassifies x as positive
~ |0, hclassifies x as negative

Error of h on X

N
E(hIX) = (1/N) ) (h(x%) # )
t=1

Optimization

argminp, o E(R]X)

1D2€16;

5 A hpll,plz,ell,elz (X)
§
?__T ha
:’%’ False positive
;'.N h @ e /C o
e, - alse negative
) = /
- <)
o D S
£
P =
e, —
_ S o
S/
©
S
1 1 1 1 >

) ),

Pi P2 > % Price
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Example Supervised Learning: Regression

Price of a used car

X : car attribute

y: price

y= g(x| 8): hypothesis

g(): linear model
g(x) = wix + wy

0: parameters

(here wq, w,)
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Example Supervised Learning: Regression

Price of a used car

X: car attribute

Y. price

=g (x| 8): hypothesis

g (): quadratic model
g(x) = wyxt+wix + wy

O: parameters

(here wy, wq, wy)
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Example Supervised Learning: Regression

X={(tLrH}., r*f =fxHeR

Mean squared error
for general and linear hypothesis g

E(glX) = (1/N) Zi=1(g(xt) — 1)

E(wq, wolX) = (1/N) thv=1(W1xt + wp) — rt)?

Optimization:

;x: nnlage; I I I .‘ll VE . ( a E a E ) _ O 0
B GWO' 0W1 B ( ’ )
Calculf:\tlng the gradlgnt VE 5, xtrt — %N
analytically NOT feasible for Wy = NZ_ N 22
thousands of parameters 2(x")* = Nx

- > Differentiable programming S = 17
SR 0 - o 1



DIFFERENTIABLE PROGRAMMING
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What is Differentiable Programming (DP)?

., Yeah, Differentiable Programming is little more than a rebranding of the modern
collection Deep Learning techniques, the same way Deep Learning was a
rebranding of the modern incarnations of neural nets with more than two layers.
The important point is that people are now building a new kind of software by
assembling networks of parameterized functional blocks and by training them
from examples using some form of gradient-based optimization....It’s really very
much like a reqular program, except it’s parameterized, automatically
differentiated, and trainable/optimizable. ...

(Part of a post of Yann Lecun, somewhere in Facebook, found at
https.//qgist.github.com/halhenke/872708ccea42ee8cafd950c6c2069814)
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DP is a significant generalization of DL!

, Yeah, Differentiable Programming is little more than a rebranding of the modern
collection Deep Learning techniques, the same way Deep Learning was a

]

rebranding of the modern incarnations of neural nets with more than two layers.
The important point is that people are now building a new kind of software by
assembling networks of parameterized functional blocks and by training them
from examples using some form of gradient-based optimization....It’s really very

much like a reqular program, except it’s parameterized, automatically
differentiated, and trainable/optimizable. ...

(Part of a post of Yann Lecun, somewhere in Facebook, found at
https.//qgist.github.com/halhenke/872708ccea42ee8cafd950c6c2069814)
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What is Deep Learning (DL)?

- Deep learning is based on function composition

— Feedforward networks: y = (g (x,6,), 6¢)
Often with relatively simple functions
(e.g.f(x,0¢) = o(x"6;))

— Recurrent networks:
Yt - f(yt—thle) — f(f(yt_z,Xt_1,e),Xt,e) — e

- In early days focus of DL on functions for classification

- Nowadays the functions are much more general in
their inputs and outputs.

s
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Network view of composed functions

Input layer Hidden layer(s) Output layer
2)
Wmij » hy s W .
X P b:
'R 7 ha ~—\ , W
& 4 ‘ ¥ O Y .
X2 € '\"‘7’ £ » h3 _ o '
: N < O i
P > 5 O 1
X3 & a L AN : » h4 y - 2 Yo
v >
5
X h y’
g f

layer i
Bias in i
weight matrix
ini

activation
functionin i

,States”

Functions
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Deep networks

Input layer Hidden layer(s) Output layer
(n)..
WS, w2,
1,
o
13
%)
|4 o—
B
X h k I
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DP follows the gradient!

» Yeah, Differentiable Programming is little more than a rebranding of the modern
collection Deep Learning techniques, the same way Deep Learning was a
rebranding of the modern incarnations of neural nets with more than two layers.
The important point is that people are now building a new kind of software by
assembling networks of parameterized functional blocks and by trajning them

[from examples using some form of gradient-based optimization....It’s really very
much Tike a regular program, except It’s parameterized, automatically
differentiated, and trainable/optimizable. ...

(Part of a post of Yann Lecun, somewhere in Facebook, found at
https.//qgist.github.com/halhenke/872708ccea42ee8cafd950c6c2069814)
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Gradient Descent

Total loss

L==) (g6,
(x,y)eD

for some loss function |, dataset D o et

tangent line

and model g with parameters 6

- Define how many passes (epochs) over
the data to make &

. learning rate n

- Gradient Descent: update 6 by gradient \ )
in each epoch 6« 6 —nVyL R

S REUT S UNIVERSITAT ZU LUBECK
2550~  INSTITUT FUR INFORMATIONSSYSTEME
5



RSI
GERSIZ,

Pros and Cons

- Gradient Descent has good statistical properties (very

low variance)

. Butis very data inefficient (particularly when data has

many similarities)

- Doesn't scale to effectively infinite data (e.g. with

augmentation)
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Stochastic Gradient Descent (SGD)

. Define loss function |, dataset D and model g with
earnable parameters 0.

- Define how many passes over the data to make (each
one known as an Epoch)

- Define a learning rate n

. Stochastic Gradient Descent updates the parameters 0
by moving them in the direction of the negative
gradient with respect to the loss of a single item | by the
learning rate n multiplied by the gradient:

. for each Epoch:
for each (x,y)€D:

JJJJJJJ
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Backprop: efficient implementation of gradient descent

Forward it

Sample Back- Update the
through the
labeled data > ____, propagate —» network
network, get :
(batch) - the errors weights
predictions
t |

Backpropagation idea

* Generate error signal that measures difference between predictions and
target values

* Use error signal to change the weights and get more

(a) Forward pass

v

accurate predictions backwards
* Underlying mathematics: chain rule

Chain rule (1-dim)
dh B df dg
dx dg dx

(for h(x) = f(g(x)))
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Deep networks

Input layer Hidden layer(s)

Output layer
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What is Deep Learning?

« Deep learning systems are neural network models
similar to those popular in the ‘80s and '90s, with:

1.

ok N

2 LU
2SS INSTITUT FOR INF

some architectural and algorithmic innovations (e.qg.
many layers, ReLUs, dropout, LSTMs)

vastly larger data sets (web-scale)
vastly larger-scale compute resources (GPU, cloud)
much better software tools (Theano, Torch, TensorFlow)

vastly increased industry investment and media hype
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Deep Learning (ad 1.)

Example family car:
we presumed features
price and mileage

Classical Machine Learning

G - 5230

Input Feature extraction Classification Output

Deep Learning

Gip — SEGETEY

Input Feature extraction + Classification Output

UNERIRTLE S Adapted from https.//www.xenonstack.comy/blogy/static/public/uploads/media/machine-learning-vs-deep-learning.prig FOCUS DAS LEBEN



Deep Learning (also ad 1.)

Example: Convolutional Neural Networks (CNN)

* More structure: local receptive fields
* Less parameters: weight tying, pooling

1[1]1]0]o0 1/1)1/0]0
ol1[171]0 1[0 1 1O/ 1110] |4
0/o0/1 1 1 0|10 :I> SR EETE
et AOE olo[1[1]0

o/1/1 0/0 Convolutional P2 e
Input matrix 3x3 filter meee Feature

http.//deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Il & UNIVERSITAT ZU LUBECK
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5 Input Cell

O Backfed Input Cell

A Noisy Input Cell
. Hidden Cell
. Probablistic Hidden Cell
. Spiking Hidden Cell
. Capsule Cell

. Output Cell

. Match Input Output Cell
. Recurrent Cell

. Memory Cell

. Gated Memory Cell

\ Kernel

© Convolution or Pool

Markov Chain (MC) Hopfield Network (HN)  Boltzmann Machine (BM)  Restricted BM (RBM)

Deep Convolutional Network (DCN)

)

|\><\\'><|><|§<|f

)
NN

Generative Adversarial Network (GAN)

N\

Deep Residual Network (DRN)

e -

Capsule Network (CN)

XX

>
>
B

. e
a

IXIX]

[ ]

A mostly complete chart of

Neural Networks

©2019 Fjodor van Veen & Stefan Leijnen  asimovinstitute.org

Deep Feed Forward (DFF)

Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)

. The i

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)
o o Qo o o QA

e/ uell 5 et
oo s FERER

Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

Deep Belief Network (DBN)

(e} )
. O,

o

Y aYaYaY
A WAV AW A

(e}

Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

s G e
o/o\r >_< \/O\O O\/O\r—
oy ~E ~A—
\O/O\»\ ——>_<r~/o\o «o/o\»
2N P SO SO
~NoC CANGD O
~A— ~A— ~A—
ol X 0 ol

Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

Neural Turing Machine (NTM)

Differentiable Neural Computer (DNC)
Y-~

%X

A\

Attention Network (AN)

Kohonen Network (KN) %

https://www.asimovinstitute.org/neural-network-zoo/

Why care about DL and
study those structures?

Amazing performance

on many benchmark tasks

IM FOCUS DAS LEBEN
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DP uses automatic differentation (AD)

» Yeah, Differentiable Programming is little more than a rebranding of the modern
collection Deep Learning techniques, the same way Deep Learning was a
rebranding of the modern incarnations of neural nets with more than two layers.
The important point is that people are now building a new kind of software by
assembling networks of parameterized functional blocks and by training them

' ent- mizati s really very
much like a reqular program, except it’s parameterized, automatically

differentiated, and trainable/optimizable. ...

(Part of a post of Yann Lecun, somewhere in Facebook, found at
https.//qgist.github.com/halhenke/872708ccea42ee8cafd950c6c2069814)
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Automatic Differentiation (AD)

« ADis a mix of

— symbolic differentiation (SD) (rules s.a. chain rule,
product rule)

. . . . d A
— numerical differentiation (ND): use d_i, ~ A_Z

d(f(x)g(x) _ Lfcx)g(x) + d‘gix)f(x) (Product rule)

dx d
- h(x) := gx) - f(x)
dh(x)

— and h have two components in common

— This may also be the case for f.
— Symbollicaly calculating f won't profit from common

df (x
s parts of f and i)

Y
sﬁ%&ﬁ{’kf:

aI\h.&g,; UUUUUUUUUUUUUUUUUUU
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ll =X
Lng1 = 4l (1 — 1)

f(x) =1y = 64x(1 —2)(1—22)%(1 — 8z +822)?

\J

Manual
Differentiation

f(x):
V=X
fori=1to3
v =4*xvyx(1 - v)
return v

or, in closed-form,
f(x)

X):
return 64*x* (1-x)*((1-2%x) ~2)
* (1-8*x+8*x*x) "2

f'(z) = 1282(1 — z)(—8 + 16z)(1 — 2z)%(1 —
8z +812) +64(1—z)(1—2z)%(1— 8z +822)% —
64z (1 — 2x)%(1 — 8z +822)% — 256x(1 — z)(1 —
2z)(1 — 8z + 8x2)2

Coding

A 4

Symbolic
Differentiation
of the Closed-form

Automatic
Differentiation

v

Numerical
Differentiation

£2(x):
(v,dv) = (x,1)
fori=1to3
(v,dv) = (4xvx(1-v), 4*xdv-8*v*dv)
return (v,dv)

bl (Xo) = v/‘/(,(‘())
Exact

£2(x):
return 128*x* (1 — x)* (-8 + 16%*x)

*((1 - 2%x) "2)* (1 — 8*x + 8*x*Xx)
+64x(1 - x)*x((1 - 2xx)"2)*((1

- 8%x + 8%x*x)"2) - (64*xx*(1 -
2%x) "2)* (1 — 8%x + 8*x*x) "2 -
256*x* (1 - x)*(1 - 2*x)*(1 - 8*x
+ 8*x*x) "2

£7(x0) = (o)
Exact

£2(x):
h =0.000001
return (f(x+h) - f(x)) /h

£ (x0) = f'(wo)
Approximate

2}

s
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;7 The third wave of
differentiable programming

Getting deep systems that
know when they do not know
and, hence, recognise new
situations and adapt to them

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming n

1) Yes, a slide, quoting a slide

R AT Y N ormaTIONSSYSTEME IM FOCUS DAS LEBEN 38




Problems with deep (neural) networks (Ghahramani)

. Very data hungry (e.g. often millions of examples)

« Very compute-intensive to train and deploy (cloud GPU
resources)

- Poor at representing uncertainty
- Easily fooled by adversarial examples

- Finicky to optimise: non-convex + choice of
architecture, learning procedure, initialisation, etc,
require expert knowledge and experimentation

- Uninterpretable black-boxes, lacking in trasparency,
difficult to trust
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Bayes rule to rule them all ...

. If we use the mathematics of probability theory to
express all forms of uncertainty and noise associated
with our model...

- ..theninverse probability (i.e. Bayes rule) allows us to
infer unknown gquantities, adapt our models, make
predictions and learn from data.

P(D|H)-P(H)  P(D|H) - P(H)

P(H|D) = P(D) Y, P(D|h)P(h)

H = hypothesis, model
D = data, observation Bayes Rule

RSI
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Probabilistic graphical models

Encode efficiently full joint Eron) oo o
probabilities _—
. Directed graphs FoT
(Bayesian networks, I : N
Hidden Markov models ...) £l o
- undirected graphs
(Markov networks...) Requires Normalization
« Mixed models . P(B=b,E=eA=a,jm)=
- Factor graphs ~¢ja(@, )Puala, m)$,s(a b), dar(a, e)Pph)

Z = z ‘ ‘ b, Partition function
X .
J

41




PROBABILISTIC PROGRAMMING
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Why then not stick to probabilities V8

- Problem 1: Probabilistic model development and the
derivation of inference algorithms is time-consuming
and error-prone.

- Problem 2: Exact (and approximate inference) hard due
to normalization: partition function Z)

« Solutionto 1

— Develop Probabilistic Programming Languages for
expressing probabilistic models as computer programs
that generate data (i.e. simulators).

— Derive Universal Inference Engines for these languages
that do inference over program traces given observed

data (Bayes rule on computer programs).

RSI
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Comparison E

INntuition

Inference

r

[ Parameters ] [ Parameters ] N p(X|y ) ]

\

Program Program p(y|x)p(x)

Output Observations y

CS Probabilistic Programming  Statistics

.. EX:F.Wood: Probabilistic Programming, PPAML Summer School, Portland 2016

BEN 44




Probabilistic Programming Example V8

statesmean = [-1, 1, @] # Emission parameters.

initial = Categorical([1.0/3, 1.0/3, 1.0/3]) # Prob distr of state[1].

trans = [Categorical([e.1, 0.5, 0.4]), Categorical([e.2, 0.2, 0.6]),
Categorical([@.15, ©.15, ©.7])] # Trans distr for each state.

data = [Nil, 0.9, 0.8, 0.7, @, -0.025, -5, -2, -0.1, 0, 0.13]

@model hmm begin # Define a model hmm.
states = Array(Int, length(data))
@assume(states[1] ~ initial)
for i = 2:length(data)
@assume(states[i] ~ trans[states[i-1]])
@observe(data[i] ~ Normal(statesmean[states[i]], ©.4))
end
@predict states

end

Hidden markov model in Julia

RST
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initial trans

states[1] —>  states[2] —>»  states[3] —>» -

statesmean

N

data[1] data[2] data[3]
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ADEQUATE DEEP STRUCTURES

NG, =
S UNIVERSITAT ZU LUBECK
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Problem 2 of probabilistic graphical models

- Exact (and even approxiate) inference not tractable for
general probabilistic models (problem: normalization
function Z).

. Restricting the models in expressivity is possible (thin
junction trees and so on) - but not desirable

- Find a better compromise of expressivity and feasibility:
sum-product networks/probabilisitc boolean circuits
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Programming with Adequate Deep Structures

Machine learning (ML) is programming algorithms for
e optimizing a performance criterion
e using example (training) data
* by constructing general(izable) models
« that are good approximations of the data

Role of Mathematics Role of CS: Efficient algorithms
« Building mathematical  * solve the optimization
model problem

* represent (expressively) and
evaluate (feasibily) the
model for inference

e core taskis inference
from a sample

48




Why Is Inference Hard?

1
P(X, .. X,) = EH b (X Xp)
j

e Bottleneck: Summing out variables

e E.g.: Partition function

Sum of exponentially many products

qqqqqq
i
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Alternative Representation

X; | Xz | P(X)
1| 1] 04
1| 0] 02
0 | 1 | o1
0| 0| 03

PX)=04-X, - X,
+02-X;-X,
+0.1-X, - X,
+03-X, - X,

50



Sum QOut Variables

e. Xl =1
X1 | Xz | PX) Ple)=0.4-X, - X,
1| 1] 04 £02-X,-X,
1] 0| 02 —
0| 1 [ 01 +0.1 ')_(1'{2
00| 03 +0.3- X - X,

Set Xlz I,E:O,Xzz 1,)?2:1

Easy: Partition function: Set all

[ Easy: Set both indicators to 1 } [indicators to 1
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Graphical Representation

X; | Xz | P(X)
1| 1] 04
1| 0] 02
0 | 1 | o1
0| 0| 03

But in general may lead to exponentially large networks (e.g. parity).
Solution: Make a deep dive (reuse computations)
with Sum-Product networks
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Sum-Product Networks (SPNs)

« Rooted DAG

- Nodes: Sum, product,
input indicator

- Weights on edges from
sum to children

- More general class:
Probabilistic Boolean
Circuits
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NEARLY THE END
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Topic progress of course in short

It's from discriminative to generative models

. It's from pure functions to algorithms to algorithms over
semi-declarative structures (and some logic)

- It's from non-probabilities to probabilities (and some
logic)
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Uhhh, a lecture with a hoepfully useful

APPENDIX

UNIVERSITAT ZU LUBECK
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Todays lecture is based on the following slides

Jonathon Hare: Lecture 1,2 of course ,COMP6248 Differentiable
Programming (and some Deep Learning”)
http://comp6248.ecs.soton.ac.uk/

Zoubin Ghahramani: Probabilistic Machine Learning and Al, Microsoft Al
Summer School Cambridge 2017
http://mlss.tuebingen.mpg.de/2017/speaker_slides/Zoubin1.pdf

Hoifung Poon: Sum-Product Networks: A New Deep Architecture
https://www.microsoft.com/en-us/research/wp-
content/uploads/2017/05/spn11.pdf

E. Alpaydin: Course on machine learning, introductory slides,
https://www.cmpe.boun.edu.tr/~ethem/i2ml2e/2e v1-0/i2ml2e-chap1-
v1-0.pptx

l. Lorentzou: Introduction to Deep Learnin, link

F. Wood: Probabilistic Programming, PPAML Summer School, Portland
2016, link
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http://comp6248.ecs.soton.ac.uk/
http://mlss.tuebingen.mpg.de/2017/speaker_slides/Zoubin1.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/spn11.pdf
https://www.cmpe.boun.edu.tr/~ethem/i2ml2e/2e_v1-0/i2ml2e-chap1-v1-0.pptx
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj5wNC8_77sAhUj8uAKHXeABggQFjAAegQIAhAC&url=http%3A%2F%2Fwww2.cs.uh.edu%2F~ordonez%2Fppt%2Fdeepnet-lourentzou.ppt&usg=AOvVaw1PmZYVQDHrUsM6V85GRQXf
https://media.nips.cc/Conferences/2015/tutorialslides/wood-nips-probabilistic-programming-tutorial-2015.pdf

Color Convention in this course

- Formulae, when occurring inline
- Newly introduced terminology and definitions

- Important results (observations, theorems) as well as
emphasizing some aspects

- Examples are given with standard orange with possibly light
orange frame

« Comments and notes
 Algorithms
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Books for topics covered in this lecture (1)

Nielsen: Neural Networks and Deep Learning,.
http://neuralnetworksanddeeplearning.com/

- Zhang et al.: Dive into Deep Learning
https://d2l.ai/

l. Goodfellow, Y. Bengio, and A. Courville. Deep
Learning. MIT Press, 2016.

D. Koller and N. Friedman. Probabilistic Graphical
Models: Principles and Techniques - Adaptive Com-
putation and Machine Learning. The MIT Press, 20009.

L. D. Raedt, K. Kersting, and S. Natarajan. Statistical
Relational Artificial Intelligence: Logic, Probability, and
Computation. Morgan & Claypool Publishers, 2016.
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Books for topics covered in this lecture (2)

- J.-W.van de Meent, B. Paige, H. Yang, and F. Wood. An
Introduction to Probabilistic Programming. arXiv e-
prints, arXiv:1809.10756, Sept. 2018.

U. Naumann. The Art of Differentiating Computer
Programms. Siam, 201 2.

K. Murphy. Machine Learning: A Probabilistic

Perspective. Adaptive Computation and Machine Learn-
ing series. MIT Press, 2012.

S. J. Russell and P. Norvig. Artificial Intelligence - A
Modern Approach. Prentice Hall, 1995.
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