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What this course is about

2
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1) Yes, this is a footnote on a slide, believe it or not.  The three lines summarizing the topic of the course is the optimal outcome w.r.t my subjective
measure - using a non-gradient optimziation procedure starting from the original course name: Probabilistic Differential Programming -> 
Probabilistic and Differential Programming -> Probabilistic and Differentiable Programming ->Differentiable and Probabilistic Programming



What this lecture V1 is about

3

Differentiable Programming and

Probabilistic Programming for

Machine Learning1)

1) Yes, this is a footnote on a slide, believe it or not.  The three lines summarizing the topic of the course is the optimal outcome w.r.t my subjective
measure - using a non-gradient optimziation procedure starting from the original course name: Probabilistic Differential Programming -> 
Probabilistic and Differential Programming -> Probabilistic and Differentiable Programming ->Differentiable and Probabilistic Programming

Agenda

1.

2.

3.

Pointers to lectures in this fancy format. 



MACHINE LEARNING
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What We Mean by “Learning”
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Machine learning (ML) is programming algorithms for 
• optimizing a performance criterion 
• using example (training) data
• by constructing general(izable) models 
• that are good approximations of the data

Role of Mathematics
• Building mathematical 

model
• core task is inference

from a sample

Role of CS: Efficient algorithms
• solve the optimization

problem
• represent and evaluate the

model for inference



Differentiable Programming
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Machine learning (ML) is programming algorithms for 
• optimizing a performance criterion 
• using example (training) data
• by constructing general(izable) models 
• that are good approximations of the data

Role of Mathematics
• Programming 

differentiable model
• core task is inference

from a sample

Role of CS: Efficient algorithms
• solve the optimization

problem
• represent and evaluate the

model for inference



Probabilistic Programming
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Machine learning (ML) is programming algorithms for 
• optimizing a performance criterion 
• using example (training) data
• by constructing general(izable) models 
• that are good approximations of the data

Role of Mathematics
• Programming 

probabilistic model
• core task is inference

from a sample

Role of CS: Efficient algorithms
• solve the optimization

problem
• represent and evaluate the

model for inference



Types of learning (classically)

• Supervised Learning       
learn to predict an output
for input vector after 
training with labelled data

• Unsupervised Learning 
discover a good internal 
representation of the input

• Reinforcement Learning 
learn to select an action to
maximize the expectation of
future rewards (payoff) 
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Unsupervised Learning
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Reinforcement Learning

Reference: Wikipedia

https://simple.wikipedia.org/wiki/Reinforcement_learning
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Subtypes of unsupervised l. (in Deep Learning context)

• Self-supervised (Self-taught) 
Learning - learn with targets
induced by a prior on the
unlabelled training data

• Semi-supervised Learning 
learn with few labelled
examples and many
unlabelled ones
(same distribution for
labelled & non-labelled data)
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Generative vs. Discriminative/descriptive

• Many unsupervised and self-supervised models can
be classed as ‘generative models’. 
– Given unlabelled data X, a unsupervised generative 

model learns full joint probability distribution P(X,Y). 
– These are characterised by an ability to ‘sample’ the

model to ‘create’ new data
• In contrast: Discriminative models learn P(Y|X)   

(which can be calculated in a generative model, too, 
using Bayes‘s rule but not vice versa)

(X: observations, data, Y: categories, classes, non-observed)
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Example Supervised Learning: Classification

• Class C of a “family car”
– Prediction: Is car x a family car?

– Knowledge extraction: What do people expect from a 
family car?

• Output: 
Positive (+) and negative (–) examples

• Input representation by two features: 

x1: price, x2: engine power
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Training set X  
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𝑋 = { 𝑥! , 𝑟! }!"#$

r= (
1, 𝑥 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
0, 𝑥 𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑥 = (𝑥#, 𝑥%)

Labelled
Data

Labels

Feature 
vector



Class C
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(𝑝#≤ 𝑝𝑟𝑖𝑐𝑒 ≤ 𝑝%) 𝐴𝑁𝐷 (𝑒# ≤ 𝑒𝑛𝑔𝑖𝑛𝑒 𝑝𝑜𝑤𝑒𝑟 ≤ 𝑒%)



Hypothesis class H

ℎ&'#,&'%,)'#,)'%(x)= (
1, ℎ 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑠 𝑥 𝑎𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
0, ℎ 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑠 𝑥 𝑎𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

Error of h on X

𝐸(ℎ|𝑋) = (1/𝑁) 4
!"#

$

ℎ(𝑥!) ≠ 𝑦!

Optimization

𝑎𝑟𝑔𝑚𝑖𝑛𝑝#'𝑝%' 𝑒#'𝑒%'𝐸(ℎ|𝑋)

But how to find optimum? 



Example Supervised Learning: Regression
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Price of a used car
𝑥 :    car attribute
𝑦 :   price
@𝑦=  g (x | θ ):  hypothesis
𝑔( ): linear model            

𝑔 𝑥 = 𝑤1𝑥 + 𝑤0
𝜃: parameters

(here w1, w2)



Example Supervised Learning: Regression
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Price of a used car
𝑥 :    car attribute
𝑦 :   price
@𝑦= 𝑔 (𝑥 | 𝜃 ): hypothesis
𝑔 ( ):  quadratic model            

𝑔(𝑥) = 𝑤2𝑥2 + 𝑤1𝑥 + 𝑤0
θ: parameters

(here 𝑤0, 𝑤1, 𝑤2)



Optimization:
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Example Supervised Learning: Regression

Calculating the gradient ∇𝐸
analytically NOT feasible for
thousands of parameters
- > Differentiable programming

𝑋 = { 𝑥! , 𝑟! }!"#$

Mean squared error
for general and linear hypothesis g

𝑟! = 𝑓 𝑥! ∈ ℝ

𝐸(𝑔|𝑋) = (1/𝑁) ∑!"#$ 𝑔(𝑥!) − 𝑟! 2

𝐸(𝑤1, 𝑤0|𝑋) = (1/𝑁) ∑!"#$ 𝑤1𝑥! + 𝑤0) − 𝑟! 2

𝑤1 =
∑! 𝑥!𝑟! − 𝑥𝑟𝑁
∑!(𝑥!)% − 𝑁 𝑥̅2

𝑤0 = 𝑟̅ − 𝑤1 𝑥̅

∇𝐸 =
𝜕𝐸
𝜕𝑤0

,
𝜕𝐸
𝜕𝑤1

= (0,0)



DIFFERENTIABLE PROGRAMMING
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What is Differentiable Programming (DP)?
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„Yeah, Differentiable Programming is little more than a rebranding of the modern 
collection Deep Learning techniques, the same way Deep Learning was a 
rebranding of the modern incarnations of neural nets with more than two layers. 
The important point is that people are now building a new kind of software by
assembling networks of parameterized functional blocks and by training them
from examples using some form of gradient-based optimization….It’s really very
much like a regular program, except it’s parameterized, automatically
differentiated, and trainable/optimizable. ...

(Part of a post of Yann Lecun, somewhere in Facebook, found at 
https://gist.github.com/halhenke/872708ccea42ee8cafd950c6c2069814)



DP is a significant generalization of DL!
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„Yeah, Differentiable Programming is little more than a rebranding of the modern 
collection Deep Learning techniques, the same way Deep Learning was a 
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What is Deep Learning (DL)?

• Deep learning is based on function composition
– Feedforward networks:  y = f (g (x , θg ), θf )

Often with relatively simple functions
(e.g. f (x, θf ) = σ(x⊤θf ))

– Recurrent networks:
yt = f(yt−1,xt,θ) = f(f(yt−2,xt−1,θ),xt,θ) = ... 

• In early days focus of DL on functions for classification

• Nowadays the functions are much more general in 
their inputs and outputs. 

21
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Network view of composed functions
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x h y‘

w(2)
ij

x1

x2

x3

x4

w(1)
ij

Input layer Hidden layer(s) Output layer

y‘1

y‘2

y‘ = f (g (x ; W (1) ,b1); W (2) ,b2) = 𝛔2 (W(2) 𝛔 1(W(1) x +b1 ) + b2) 
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o2

h1

h2

h3

h4

h5
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bi: Bias in i
W(i): weight matrix

in i
𝛔 i: activation

function in i
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Functions
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Deep networks
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DP follows the gradient! 
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„Yeah, Differentiable Programming is little more than a rebranding of the modern 
collection Deep Learning techniques, the same way Deep Learning was a 
rebranding of the modern incarnations of neural nets with more than two layers. 
The important point is that people are now building a new kind of software by
assembling networks of parameterized functional blocks and by training them
from examples using some form of gradient-based optimization….It’s really very
much like a regular program, except it’s parameterized, automatically
differentiated, and trainable/optimizable. ...

(Part of a post of Yann Lecun, somewhere in Facebook, found at 
https://gist.github.com/halhenke/872708ccea42ee8cafd950c6c2069814)



Gradient Descent

• Total loss

𝐿 = −4
O,P ∈R

𝑙(𝑔(𝑥, 𝜃), 𝑦)

for some loss function l, dataset D   

and model g with parameters θ

• Define how many passes (epochs) over
the data to make

• learning rate η

• Gradient Descent: update θ by gradient
in each epoch θ ← θ − η∇θL 

25
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Pros and Cons

• Gradient Descent has good statistical properties (very
low variance) 

• But is very data inefficient (particularly when data has
many similarities) 

• Doesn’t scale to effectively infinite data (e.g. with
augmentation) 

26



Stochastic Gradient Descent (SGD)

• Define loss function l, dataset D and model g with
learnable parameters θ. 

• Define how many passes over the data to make (each
one known as an Epoch) 

• Define a learning rate η 

• Stochastic Gradient Descent updates the parameters θ 
by moving them in the direction of the negative 
gradient with respect to the loss of a single item l by the
learning rate η multiplied by the gradient: 

• for each Epoch:
for each (x,y)∈D: 

• θ ← θ − η∇θl 
27



Sample 
labeled data

(batch)

Forward it 
through the 
network, get 
predictions

Back-
propagate
the errors

Update the 
network 
weights

Backpropagation idea
• Generate error signal that measures difference between predictions and 

target values

• Use error signal to change the weights and get more 
accurate predictions backwards

• Underlying mathematics: chain rule 

Backprop: efficient implementation of gradient descent

( for

𝑑ℎ
𝑑𝑥

=
𝑑𝑓
𝑑𝑔

𝑑𝑔
𝑑𝑥

ℎ 𝑥 = 𝑓(𝑔(𝑥)) )

Chain rule (1-dim)

Baydin, Pearlmutter, Radul, and Siskind

!a) Forward pass

x!

x2

E!y3$ t)

y2

@E=@y2

!b) Backward pass

w4

@E=@w4

w!

@E=@w!

w2

w3

y!

y3

@E=@y3

w5

w6

@E=@w6

@E=@E
@E=@w3

@E=@y!
@E=@w5

@E=@w2

Figure 1: Overview of backpropagation. (a) Training inputs xi are fed forward, generating
corresponding activations yi. An error E between the actual output y3 and the
target output t is computed. (b) The error adjoint is propagated backward,

giving the gradient with respect to the weights rwiE =
⇣

@E
@w1

, . . . ,
@E
@w6

⌘
, which is

subsequently used in a gradient-descent procedure. The gradient with respect to
inputs rxiE can be also computed in the same backward pass.

2.1 AD Is Not Numerical Di↵erentiation

Numerical di↵erentiation is the finite di↵erence approximation of derivatives using values of
the original function evaluated at some sample points (Burden and Faires, 2001) (Figure 2,
lower right). In its simplest form, it is based on the limit definition of a derivative. For
example, for a multivariate function f : Rn ! R, one can approximate the gradient rf =⇣

@f
@x1

, . . . ,
@f
@xn

⌘
using

@f(x)

@xi
⇡ f(x+ hei)� f(x)

h
, (1)

where ei is the i-th unit vector and h > 0 is a small step size. This has the advantage of
being uncomplicated to implement, but the disadvantages of performing O(n) evaluations
of f for a gradient in n dimensions and requiring careful consideration in selecting the step
size h.

Numerical approximations of derivatives are inherently ill-conditioned and unstable,5

with the exception of complex variable methods that are applicable to a limited set of
holomorphic functions (Fornberg, 1981). This is due to the introduction of truncation6 and

5. Using the limit definition of the derivative for finite di↵erence approximation commits both cardinal sins
of numerical analysis: “thou shalt not add small numbers to big numbers”, and “thou shalt not subtract
numbers which are approximately equal”.

6. Truncation error is the error of approximation, or inaccuracy, one gets from h not actually being zero.
It is proportional to a power of h.

4
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Deep networks
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Problem: Many, many parameters, no structure



What is Deep Learning?

• Deep learning systems are neural network models
similar to those popular in the ’80s and ’90s, with: 
1. some architectural and algorithmic innovations (e.g. 

many layers, ReLUs, dropout, LSTMs) 

2. vastly larger data sets (web-scale) 

3. vastly larger-scale compute resources (GPU, cloud) 

4. much better software tools (Theano, Torch, TensorFlow) 

5. vastly increased industry investment and media hype

30
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Adapted from https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png

Classical Machine Learning

Deep Learning

Example family car: 
we presumed features
price and mileage

Deep Learning (ad 1.) V3



http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Example: Convolutional Neural Networks (CNN)

• More structure: local receptive fields
• Less parameters: weight tying, pooling

Input matrix

Convolutional 
3x3 filter

Deep Learning (also ad 1.) V3
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https://www.asimovinstitute.org/neural-network-zoo/

Why care about DL and
study those structures?

Amazing performance
on many benchmark tasks

V4



34

„Yeah, Differentiable Programming is little more than a rebranding of the modern 
collection Deep Learning techniques, the same way Deep Learning was a 
rebranding of the modern incarnations of neural nets with more than two layers. 
The important point is that people are now building a new kind of software by
assembling networks of parameterized functional blocks and by training them
from examples using some form of gradient-based optimization….It’s really very
much like a regular program, except it’s parameterized, automatically
differentiated, and trainable/optimizable. ...

(Part of a post of Yann Lecun, somewhere in Facebook, found at 
https://gist.github.com/halhenke/872708ccea42ee8cafd950c6c2069814)

DP uses automatic differentation (AD) V5/6



Automatic Differentiation (AD)

• AD is a mix of
– symbolic differentiation (SD) (rules s.a. chain rule, 

product rule)

– numerical differentiation (ND): use
!"
!#
≈ $"

$#

35

W(X O YZ(O))
WO

= W X O
WO

𝑔 𝑥 + W Z O
WO

𝑓 𝑥 (Product rule)

– ℎ(𝑥) ∶ = 𝑔(𝑥) Y 𝑓(𝑥)

– !%(#)
!#

and ℎ have two components in common

– This may also be the case for 𝑓. 

– Symbollicaly calculating 𝑓 won‘t profit from common

parts of 𝑓 and
!((#)
!#

V5/6



Automatic Differentiation in Machine Learning: a Survey

l1 = x

ln+1 = 4ln(1� ln)

f(x) = l4 = 64x(1�x)(1�2x)2(1�8x+8x2)2

f
0(x) = 128x(1 � x)(�8 + 16x)(1 � 2x)2(1 �

8x+8x2)+64(1�x)(1�2x)2(1�8x+8x2)2�
64x(1� 2x)2(1� 8x+8x2)2� 256x(1�x)(1�
2x)(1� 8x+ 8x2)2

f(x):
v = x
for i = 1 to 3

v = 4*v*(1 - v)
return v

or, in closed-form,

f(x):
return 64*x*(1-x)*((1-2*x)^2)

*(1-8*x+8*x*x)^2

f’(x):
return 128*x*(1 - x)*(-8 + 16*x)

*((1 - 2*x)^2)*(1 - 8*x + 8*x*x)
+ 64*(1 - x)*((1 - 2*x)^2)*((1
- 8*x + 8*x*x)^2) - (64*x*(1 -
2*x)^2)*(1 - 8*x + 8*x*x)^2 -
256*x*(1 - x)*(1 - 2*x)*(1 - 8*x
+ 8*x*x)^2

f’(x0) = f
0(x0)
Exact

f’(x):
(v,dv) = (x,1)
for i = 1 to 3

(v,dv) = (4*v*(1-v), 4*dv-8*v*dv)
return (v,dv)

f’(x0) = f
0(x0)
Exact

f’(x):
h = 0.000001
return (f(x + h) - f(x)) / h

f’(x0) ⇡ f
0(x0)

Approximate

Manual
Di↵erentiation

Symbolic
Di↵erentiation

of the Closed-form

Coding Coding

Numerical
Di↵erentiation

Automatic
Di↵erentiation

Figure 2: The range of approaches for di↵erentiating mathematical expressions and com-
puter code, looking at the example of a truncated logistic map (upper left). Sym-
bolic di↵erentiation (center right) gives exact results but requires closed-form in-
put and su↵ers from expression swell; numerical di↵erentiation (lower right) has
problems of accuracy due to round-o↵ and truncation errors; automatic di↵eren-
tiation (lower left) is as accurate as symbolic di↵erentiation with only a constant
factor of overhead and support for control flow.

5
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PROBABILITIES

37



38

Kristian Kersting  - Sum-Product Networks: The Third Wave of Differentiable Programming

Getting deep systems that
know when they do not know

and, hence, recognise new
situations and adapt to them

The third wave of
differentiable programming

Probabilities

Shallow

1970

Deep

2010

now

„

ph“

1) Yes, a slide, quoting a slide

1)



Problems with deep (neural) networks (Ghahramani)

• Very data hungry (e.g. often millions of examples) 

• Very compute-intensive to train and deploy (cloud GPU 
resources) 

• Poor at representing uncertainty

• Easily fooled by adversarial examples

• Finicky to optimise: non-convex + choice of
architecture, learning procedure, initialisation, etc, 
require expert knowledge and experimentation

• Uninterpretable black-boxes, lacking in trasparency, 
difficult to trust

39



Bayes rule to rule them all ...

• If we use the mathematics of probability theory to
express all forms of uncertainty and noise associated
with our model... 

• ...then inverse probability (i.e. Bayes rule) allows us to
infer unknown quantities, adapt our models, make
predictions and learn from data. 

40

𝑃 𝐻 𝐷 =
𝑃(𝐷|𝐻) Y 𝑃(𝐻)

𝑃(𝐷)
=

𝑃(𝐷|𝐻) Y 𝑃(𝐻)
∑` 𝑃 𝐷|ℎ 𝑃(ℎ)

H = hypothesis, model

D = data, observation Bayes Rule

V7



Probabilistic graphical models

Encode efficiently full joint
probabilities

• Directed graphs

(Bayesian networks, 

Hidden Markov models ...)

• undirected graphs

(Markov networks... )

• Mixed models

• Factor graphs

41

A J ϕ(a,j)

F F 20

F T 1

T F 0.1

T T 0.4

x x

x x

Requires Normalization

𝑃 𝐵 = 𝑏, 𝐸 = 𝑒, 𝐴 = 𝑎, 𝑗, 𝑚 =
1
𝑧
𝜙𝐽𝐴 𝑎, 𝑗 𝜙𝑀𝐴 𝑎,𝑚 𝜙𝐴𝐵 𝑎, 𝑏 , 𝜙𝐴𝐸 𝑎, 𝑒 𝜙𝐵 𝑏

𝑍 = 4
O
j
k

𝜙𝑗

V7

Partition function



PROBABILISTIC PROGRAMMING
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Why then not stick to probabilities

• Problem 1: Probabilistic model development and the
derivation of inference algorithms is time-consuming
and error-prone. 

• Problem 2: Exact (and approximate inference) hard due 
to normalization: partition function Z)

• Solution to 1 
– Develop Probabilistic Programming Languages for

expressing probabilistic models as computer programs
that generate data (i.e. simulators). 

– Derive Universal Inference Engines for these languages
that do inference over program traces given observed
data (Bayes rule on computer programs). 

43
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Comparison

44

Ex: F. Wood: Probabilistic Programming, PPAML Summer School, Portland 2016 

V8



Probabilistic Programming Example

45
infinitely many hidden units is equivalent to a Gaussian process44. Note 
that the above non-parametric components should be thought of again 
as building blocks, which can be composed into more complex models 
as described earlier. The next section describes an even more power-
ful way of composing models — through probabilistic programming.

Probabilistic programming
The basic idea in probabilistic programming is to use computer pro-
grams to represent probabilistic models (http://probabilistic-program-
ming.org)45–47. One way to do this is for the computer program to define 
a generator for data from the probabilistic model, that is, a simulator 
(Fig. 2). This simulator makes calls to a random number generator in 
such a way that repeated runs from the simulator would sample different 
possible data sets from the model. This simulation framework is more 
general than the graphical model framework described previously since 
computer programs can allow constructs such as recursion (functions 
calling themselves) and control flow statements (for example, ‘if ’ state-
ments that result in multiple paths a program can follow), which are 
difficult or impossible to represent in a finite graph. In fact, for many 
of the recent probabilistic programming languages that are based on 
extending Turing-complete languages (a class that includes almost all 
commonly used languages), it is possible to represent any computable 
probability distribution as a probabilistic program48.

The full potential of probabilistic programming comes from automat-
ing the process of inferring unobserved variables in the model condi-
tioned on the observed data (Box 1). Conceptually, conditioning needs 
to compute input states of the program that generate data matching the 
observed data. Whereas normally we think of programs running from 
inputs to outputs, conditioning involves solving the inverse problem of 
inferring the inputs (in particular the random number calls) that match 
a certain program output. Such conditioning is performed by a ‘univer-
sal inference engine’, usually implemented by Monte Carlo sampling 
over possible executions of the simulator program that are consistent 
with the observed data. The fact that defining such universal inference 
algorithms for computer programs is even possible is somewhat surpris-
ing, but it is related to the generality of certain key ideas from sampling 
such as rejection sampling, sequential Monte Carlo methods25 and 
‘approximate Bayesian computation’49.

As an example, imagine you write a probabilistic program that simu-
lates a gene regulatory model that relates unmeasured transcription 

factors to the expression levels of certain genes. Your uncertainty in each 
part of the model would be represented by the probability distributions 
used in the simulator. The universal inference engine can then condition 
the output of this program on the measured expression levels, and auto-
matically infer the activity of the unmeasured transcription factors and 
other uncertain model parameters. Another application of probabilistic 
programming implements a computer vision system as the inverse of a 
computer graphics program50. 

There are several reasons why probabilistic programming could 
prove to be revolutionary for machine intelligence and scientific mod-
elling (its potential has been noticed by US Defense Advanced Research 
Projects Agency, which is currently funding a major programme called 
Probabilistic Programming for Advancing Machine Learning). First, 
the universal inference engine obviates the need to manually derive 
inference methods for models. Since deriving and implementing 
inference methods is generally the most rate-limiting and bug-prone 
step in modelling, often taking months, automating this step so that 
it takes minutes or seconds will greatly accelerate the deployment of 
machine learning systems. Second, probabilistic programming could 
be potentially transformative for the sciences, since it allows for rapid 
prototyping and testing of different models of data. Probabilistic pro-
gramming languages create a very clear separation between the model 
and the inference procedures, encouraging model-based thinking51. 
There are a growing number of probabilistic programming languages. 
BUGS52, Stan53, AutoBayes54 and Infer.NET55 allow only a restrictive 
class of models to be represented compared with systems based on 
Turing-complete languages. In return for this restriction, inference 
in such languages can be much faster than for the more general lan-
guages56, such as IBAL57, BLOG58, Church59, Figaro60, Venture61, and 
Anglican62. A major emphasis of recent work is on fast inference in 
general languages (see for example ref. 63). Nearly all approaches to 
probabilistic programming are Bayesian since it is hard to create other 
coherent frameworks for automated reasoning about uncertainty. 
Notable exceptions are systems such as Theano, which is not itself a 
probabilistic programming language but uses symbolic differentia-
tion to speed up and automate optimization of parameters of neural 
networks and other probabilistic models64. 

Although parameter optimization is commonly used to improve 
probabilistic models, in the next section I will describe recent work 
on how probabilistic modelling can be used to improve optimization. 

Figure 2 | Probabilistic programming. A probabilistic program in Julia 
(left) defining a simple three-state hidden Markov model (HMM), inspired 
by an example in ref. 62. The HMM is a widely used probabilistic model for 
sequential and time-series data, which assumes the data were obtained by 
transitioning stochastically between a discrete number of hidden states98. 
The first four lines define the model parameters and the data. Here ‘trans’ is 
the 3 × 3 state-transition matrix, ‘initial’ is the initial state distribution, and 
‘statesmean’ are the mean observations for each of the three states; actual 
observations are assumed to be noisy versions of this mean with Gaussian 
noise. The function hmm starts the definition of the HMM, drawing the 

sequence of states with the @assume statements, and conditioning on the 
observed data with the @observe statements. Finally @predict states that we 
wish to infer the states and data; this inference is done automatically by the 
universal inference engine, which reasons over the configurations of this 
computer program. It would be trivial to modify this program so that the 
HMM parameters are unknown rather than fixed. A graphical model (right) 
corresponding to the HMM probabilistic program showing dependencies 
between the parameters (blue), hidden state variables (green) and observed 
data (yellow). This graphical model highlights the compositional nature of 
probabilistic models.  

statesmean = [-1, 1, 0]  # Emission parameters.
initial    = Categorical([1.0/3, 1.0/3, 1.0/3]) # Prob distr of state[1].
trans      = [Categorical([0.1, 0.5, 0.4]), Categorical([0.2, 0.2, 0.6]), 
              Categorical([0.15, 0.15, 0.7])]   # Trans distr for each state. 
data       = [Nil, 0.9, 0.8, 0.7, 0, -0.025, -5, -2, -0.1, 0, 0.13] 

@model hmm begin # Define a model hmm.
 states = Array(Int, length(data))
 @assume(states[1] ~ initial)
 for i = 2:length(data)
   @assume(states[i] ~ trans[states[i-1]])
   @observe(data[i]  ~ Normal(statesmean[states[i]], 0.4))
 end
 @predict states
end

states[1] states[2] states[3] …

…data[1] data[2] data[3]

initial trans

statesmean

2 8  M A Y  2 0 1 5  |  V O L  5 2 1  |  N A T U R E  |  4 5 5

REVIEW INSIGHT
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Hidden markov model in Julia 
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ADEQUATE DEEP STRUCTURES
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Problem 2 of probabilistic graphical models

• Exact (and even approxiate) inference not tractable for
general probabilistic models (problem: normalization
function Z). 

• Restricting the models in expressivity is possible (thin
junction trees and so on) - but not desirable

• Find a better compromise of expressivity and feasibility: 
sum-product networks/probabilisitc boolean circuits
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Programming with Adequate Deep Structures

48

Machine learning (ML) is programming algorithms for 
• optimizing a performance criterion 
• using example (training) data
• by constructing general(izable) models 
• that are good approximations of the data

Role of Mathematics
• Building mathematical 

model
• core task is inference

from a sample

Role of CS: Efficient algorithms
• solve the optimization

problem
• represent (expressively) and

evaluate (feasibily) the
model for inference



l Bottleneck: Summing out variables

l E.g.: Partition function

Sum of exponentially many products

Why Is Inference Hard?

49

𝑃 𝑋1, … 𝑋m =
1
𝑍
j
k

𝜙𝑗 (𝑋1, … 𝑋m)

𝑍 = 4
O
j
k

𝜙𝑗
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Alternative Representation

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

P(X) = 0.4 × X1 × X2

+ 0.2 × X1 × X2

+ 0.1 × X1 × X2

+ 0.3 × X1 × X2

¾

¾

¾ ¾
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Network Polynomial [Darwiche, 2003]
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Sum Out Variables

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

P(e) = 0.4 × X1 × X2

+ 0.2 × X1 × X2

+ 0.1 × X1 × X2

+ 0.3 × X1 × X2

¾

¾

¾ ¾

e: X1 = 1

Set X1 = 1, X1 = 0, X2 = 1, X2 = 1
¾ ¾

Easy: Set both indicators to 1

51
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Easy: Partition function: Set all 
indicators to 1



Graphical Representation

Ä

Å
0.4

Ä Ä Ä
0.2 0.1

0.3

¾
X1 X2X1

¾
X2

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3
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But in general may lead to exponentially large networks (e.g. parity). 
Solution: Make a deep dive (reuse computations) 
with Sum-Product networks

V9/10
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Sum-Product Networks (SPNs)

• Rooted DAG

• Nodes: Sum, product, 
input indicator

• Weights on edges from 
sum to children

• More general class: 
Probabilistic Boolean 
Circuits

Å

Ä

Å
0.7 0.3

¾
X1 X2

Å ÅÅ

Ä

0.80.30.1
0.20.70.90.4

0.6

X1
¾
X2
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NEARLY THE END
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Topic progress of course in short

• It‘s from discriminative to generative models

• It‘s from pure functions to algorithms to algorithms over
semi-declarative structures (and some logic)

• It‘s from non-probabilities to probabilities (and some
logic)
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APPENDIX
Uhhh, a lecture with a hoepfully useful
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Todays lecture is based on the following slides

• Jonathon Hare: Lecture 1,2  of course „COMP6248 Differentiable
Programming (and some Deep Learning“)  
http://comp6248.ecs.soton.ac.uk/

• Zoubin Ghahramani: Probabilistic Machine Learning and AI, Microsoft AI 
Summer School Cambridge 2017 
http://mlss.tuebingen.mpg.de/2017/speaker_slides/Zoubin1.pdf

• Hoifung Poon: Sum-Product Networks: A New Deep Architecture                              
https://www.microsoft.com/en-us/research/wp-
content/uploads/2017/05/spn11.pdf 

• E. Alpaydin: Course on machine learning, introductory slides, 
https://www.cmpe.boun.edu.tr/~ethem/i2ml2e/2e_v1-0/i2ml2e-chap1-
v1-0.pptx

• I. Lorentzou: Introduction to Deep Learnin, link

• F. Wood: Probabilistic Programming, PPAML Summer School, Portland 
2016, link

57

http://comp6248.ecs.soton.ac.uk/
http://mlss.tuebingen.mpg.de/2017/speaker_slides/Zoubin1.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/spn11.pdf
https://www.cmpe.boun.edu.tr/~ethem/i2ml2e/2e_v1-0/i2ml2e-chap1-v1-0.pptx
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj5wNC8_77sAhUj8uAKHXeABggQFjAAegQIAhAC&url=http%3A%2F%2Fwww2.cs.uh.edu%2F~ordonez%2Fppt%2Fdeepnet-lourentzou.ppt&usg=AOvVaw1PmZYVQDHrUsM6V85GRQXf
https://media.nips.cc/Conferences/2015/tutorialslides/wood-nips-probabilistic-programming-tutorial-2015.pdf


Color Convention in this course

• Formulae, when occurring inline

• Newly introduced terminology and definitions

• Important results (observations, theorems) as well as 
emphasizing some aspects 

• Examples are given with standard orange with possibly light 
orange frame 

• Comments and notes

• Algorithms
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Books for topics covered in this lecture (1)

• Nielsen: Neural Networks and Deep Learning. 
http://neuralnetworksanddeeplearning.com/

• Zhang et al.: Dive into Deep Learning              
https://d2l.ai/

• I. Goodfellow, Y. Bengio, and A. Courville. Deep
Learning. MIT Press, 2016.

• D. Koller and N. Friedman. Probabilistic Graphical
Models: Principles and Techniques - Adaptive Com-
putation and Machine Learning. The MIT Press, 2009.

• L. D. Raedt, K. Kersting, and S. Natarajan. Statistical 
Relational Artificial Intelligence: Logic, Probability, and
Computation. Morgan & Claypool Publishers, 2016.
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Books for topics covered in this lecture (2)

• J.-W. van de Meent, B. Paige, H. Yang, and F. Wood. An 
Introduction to Probabilistic Programming. arXiv e-
prints, arXiv:1809.10756, Sept. 2018.

• U. Naumann. The Art of Differentiating Computer 
Programms. Siam, 2012.

• K. Murphy. Machine Learning: A Probabilistic
Perspective. Adaptive Computation and Machine Learn-
ing series. MIT Press, 2012.

• S. J. Russell and P. Norvig. Artificial Intelligence – A 
Modern Approach. Prentice Hall, 1995.

60


