
PROBABILISTIC AND
DIFFERENTIABLE PROGRAMMING

V1: INTRODUCTION

Özgür L. Özçep

Universität zu Lübeck

Institut für Informationssysteme

What this course is about

2

Differentiable Programming and

Probabilistic Programming for

Machine Learning1)

1) Yes, this is a footnote on a slide, believe it or not. The three lines summarizing the topic of the course is the optimal outcome w.r.t my subjective
measure - using a non-gradient optimziation procedure starting from the original course name: Probabilistic Differential Programming ->
Probabilistic and Differential Programming -> Probabilistic and Differentiable Programming ->Differentiable and Probabilistic Programming

What this lecture V1 is about

3

Differentiable Programming and

Probabilistic Programming for

Machine Learning1)

1) Yes, this is a footnote on a slide, believe it or not. The three lines summarizing the topic of the course is the optimal outcome w.r.t my subjective
measure - using a non-gradient optimziation procedure starting from the original course name: Probabilistic Differential Programming ->
Probabilistic and Differential Programming -> Probabilistic and Differentiable Programming ->Differentiable and Probabilistic Programming

Agenda

1.

2.

3.

Pointers to lectures in this fancy format.

MACHINE LEARNING

4

What We Mean by “Learning”

5

Machine learning (ML) is programming algorithms for
• optimizing a performance criterion
• using example (training) data
• by constructing general(izable) models
• that are good approximations of the data

Role of Mathematics
• Building mathematical

model
• core task is inference

from a sample

Role of CS: Efficient algorithms
• solve the optimization

problem
• represent and evaluate the

model for inference

Differentiable Programming

6

Machine learning (ML) is programming algorithms for
• optimizing a performance criterion
• using example (training) data
• by constructing general(izable) models
• that are good approximations of the data

Role of Mathematics
• Programming

differentiable model
• core task is inference

from a sample

Role of CS: Efficient algorithms
• solve the optimization

problem
• represent and evaluate the

model for inference

Probabilistic Programming

7

Machine learning (ML) is programming algorithms for
• optimizing a performance criterion
• using example (training) data
• by constructing general(izable) models
• that are good approximations of the data

Role of Mathematics
• Programming

probabilistic model
• core task is inference

from a sample

Role of CS: Efficient algorithms
• solve the optimization

problem
• represent and evaluate the

model for inference

Types of learning (classically)

• Supervised Learning
learn to predict an output
for input vector after
training with labelled data

• Unsupervised Learning
discover a good internal
representation of the input

• Reinforcement Learning
learn to select an action to
maximize the expectation of
future rewards (payoff)

8

Unsupervised Learning

Jonathon Hare COMP6248 Deep Learning 5 / 28

Reinforcement Learning

Reference: Wikipedia

https://simple.wikipedia.org/wiki/Reinforcement_learning
Jonathon Hare COMP6248 Deep Learning 6 / 28

Unsupervised Learning

Jonathon Hare COMP6248 Deep Learning 5 / 28

Reinforcement Learning

Reference: Wikipedia

https://simple.wikipedia.org/wiki/Reinforcement_learning
Jonathon Hare COMP6248 Deep Learning 6 / 28

Subtypes of unsupervised l. (in Deep Learning context)

• Self-supervised (Self-taught)
Learning - learn with targets
induced by a prior on the
unlabelled training data

• Semi-supervised Learning
learn with few labelled
examples and many
unlabelled ones
(same distribution for
labelled & non-labelled data)

9

Generative vs. Discriminative/descriptive

• Many unsupervised and self-supervised models can
be classed as ‘generative models’.
– Given unlabelled data X, a unsupervised generative

model learns full joint probability distribution P(X,Y).
– These are characterised by an ability to ‘sample’ the

model to ‘create’ new data
• In contrast: Discriminative models learn P(Y|X)

(which can be calculated in a generative model, too,
using Bayes‘s rule but not vice versa)

(X: observations, data, Y: categories, classes, non-observed)

10

Example Supervised Learning: Classification

• Class C of a “family car”
– Prediction: Is car x a family car?

– Knowledge extraction: What do people expect from a
family car?

• Output:
Positive (+) and negative (–) examples

• Input representation by two features:

x1: price, x2: engine power

11

Training set X

12

𝑋 = { 𝑥! , 𝑟! }!"#$

r= (
1, 𝑥 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
0, 𝑥 𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑥 = (𝑥#, 𝑥%)

Labelled
Data

Labels

Feature
vector

Class C

13

(𝑝#≤ 𝑝𝑟𝑖𝑐𝑒 ≤ 𝑝%) 𝐴𝑁𝐷 (𝑒# ≤ 𝑒𝑛𝑔𝑖𝑛𝑒 𝑝𝑜𝑤𝑒𝑟 ≤ 𝑒%)

Hypothesis class H

ℎ&'#,&'%,)'#,)'%(x)= (
1, ℎ 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑠 𝑥 𝑎𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
0, ℎ 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑠 𝑥 𝑎𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

Error of h on X

𝐸(ℎ|𝑋) = (1/𝑁) 4
!"#

$

ℎ(𝑥!) ≠ 𝑦!

Optimization

𝑎𝑟𝑔𝑚𝑖𝑛𝑝#'𝑝%' 𝑒#'𝑒%'𝐸(ℎ|𝑋)

But how to find optimum?

Example Supervised Learning: Regression

15

Price of a used car
𝑥 : car attribute
𝑦 : price
@𝑦= g (x | θ): hypothesis
𝑔(): linear model

𝑔 𝑥 = 𝑤1𝑥 + 𝑤0
𝜃: parameters

(here w1, w2)

Example Supervised Learning: Regression

16

Price of a used car
𝑥 : car attribute
𝑦 : price
@𝑦= 𝑔 (𝑥 | 𝜃): hypothesis
𝑔 (): quadratic model

𝑔(𝑥) = 𝑤2𝑥2 + 𝑤1𝑥 + 𝑤0
θ: parameters

(here 𝑤0, 𝑤1, 𝑤2)

Optimization:

17

Example Supervised Learning: Regression

Calculating the gradient ∇𝐸
analytically NOT feasible for
thousands of parameters
- > Differentiable programming

𝑋 = { 𝑥! , 𝑟! }!"#$

Mean squared error
for general and linear hypothesis g

𝑟! = 𝑓 𝑥! ∈ ℝ

𝐸(𝑔|𝑋) = (1/𝑁) ∑!"#$ 𝑔(𝑥!) − 𝑟! 2

𝐸(𝑤1, 𝑤0|𝑋) = (1/𝑁) ∑!"#$ 𝑤1𝑥! + 𝑤0) − 𝑟! 2

𝑤1 =
∑! 𝑥!𝑟! − 𝑥𝑟𝑁
∑!(𝑥!)% − 𝑁 �̅�2

𝑤0 = �̅� − 𝑤1 �̅�

∇𝐸 =
𝜕𝐸
𝜕𝑤0

,
𝜕𝐸
𝜕𝑤1

= (0,0)

DIFFERENTIABLE PROGRAMMING

18

What is Differentiable Programming (DP)?

19

„Yeah, Differentiable Programming is little more than a rebranding of the modern
collection Deep Learning techniques, the same way Deep Learning was a
rebranding of the modern incarnations of neural nets with more than two layers.
The important point is that people are now building a new kind of software by
assembling networks of parameterized functional blocks and by training them
from examples using some form of gradient-based optimization….It’s really very
much like a regular program, except it’s parameterized, automatically
differentiated, and trainable/optimizable. ...

(Part of a post of Yann Lecun, somewhere in Facebook, found at
https://gist.github.com/halhenke/872708ccea42ee8cafd950c6c2069814)

DP is a significant generalization of DL!

20

„Yeah, Differentiable Programming is little more than a rebranding of the modern
collection Deep Learning techniques, the same way Deep Learning was a
rebranding of the modern incarnations of neural nets with more than two layers.
The important point is that people are now building a new kind of software by
assembling networks of parameterized functional blocks and by training them
from examples using some form of gradient-based optimization….It’s really very
much like a regular program, except it’s parameterized, automatically
differentiated, and trainable/optimizable. ...

(Part of a post of Yann Lecun, somewhere in Facebook, found at
https://gist.github.com/halhenke/872708ccea42ee8cafd950c6c2069814)

What is Deep Learning (DL)?

• Deep learning is based on function composition
– Feedforward networks: y = f (g (x , θg), θf)

Often with relatively simple functions
(e.g. f (x, θf) = σ(x⊤θf))

– Recurrent networks:
yt = f(yt−1,xt,θ) = f(f(yt−2,xt−1,θ),xt,θ) = ...

• In early days focus of DL on functions for classification

• Nowadays the functions are much more general in
their inputs and outputs.

21

V2

Network view of composed functions

22

x h y‘

w(2)
ij

x1

x2

x3

x4

w(1)
ij

Input layer Hidden layer(s) Output layer

y‘1

y‘2

y‘ = f (g (x ; W (1) ,b1); W (2) ,b2) = 𝛔2 (W(2) 𝛔 1(W(1) x +b1) + b2)

o1

o2

h1

h2

h3

h4

h5

i: layer i
bi: Bias in i
W(i): weight matrix

in i
𝛔 i: activation

function in i

fg

„States“

Functions

V2

Deep networks

23

x h

wij

x1

x2

x3

x4

wij

Input layer Hidden layer(s) Output layer

h1

h2

h3

h4

h5

k1

k2

k3

k4

k5

...

l

w(2)
ij

o1

o2

l1

l2

l3

l4

l5

w(n)
ij

k6

k

V2

DP follows the gradient!

24

„Yeah, Differentiable Programming is little more than a rebranding of the modern
collection Deep Learning techniques, the same way Deep Learning was a
rebranding of the modern incarnations of neural nets with more than two layers.
The important point is that people are now building a new kind of software by
assembling networks of parameterized functional blocks and by training them
from examples using some form of gradient-based optimization….It’s really very
much like a regular program, except it’s parameterized, automatically
differentiated, and trainable/optimizable. ...

(Part of a post of Yann Lecun, somewhere in Facebook, found at
https://gist.github.com/halhenke/872708ccea42ee8cafd950c6c2069814)

Gradient Descent

• Total loss

𝐿 = −4
O,P ∈R

𝑙(𝑔(𝑥, 𝜃), 𝑦)

for some loss function l, dataset D

and model g with parameters θ

• Define how many passes (epochs) over
the data to make

• learning rate η

• Gradient Descent: update θ by gradient
in each epoch θ ← θ − η∇θL

25

V2

Pros and Cons

• Gradient Descent has good statistical properties (very
low variance)

• But is very data inefficient (particularly when data has
many similarities)

• Doesn’t scale to effectively infinite data (e.g. with
augmentation)

26

Stochastic Gradient Descent (SGD)

• Define loss function l, dataset D and model g with
learnable parameters θ.

• Define how many passes over the data to make (each
one known as an Epoch)

• Define a learning rate η

• Stochastic Gradient Descent updates the parameters θ
by moving them in the direction of the negative
gradient with respect to the loss of a single item l by the
learning rate η multiplied by the gradient:

• for each Epoch:
for each (x,y)∈D:

• θ ← θ − η∇θl
27

Sample
labeled data

(batch)

Forward it
through the
network, get
predictions

Back-
propagate
the errors

Update the
network
weights

Backpropagation idea
• Generate error signal that measures difference between predictions and

target values

• Use error signal to change the weights and get more
accurate predictions backwards

• Underlying mathematics: chain rule

Backprop: efficient implementation of gradient descent

(for

𝑑ℎ
𝑑𝑥

=
𝑑𝑓
𝑑𝑔

𝑑𝑔
𝑑𝑥

ℎ 𝑥 = 𝑓(𝑔(𝑥)))

Chain rule (1-dim)

Baydin, Pearlmutter, Radul, and Siskind

!a) Forward pass

x!

x2

E!y3$ t)

y2

@E=@y2

!b) Backward pass

w4

@E=@w4

w!

@E=@w!

w2

w3

y!

y3

@E=@y3

w5

w6

@E=@w6

@E=@E
@E=@w3

@E=@y!
@E=@w5

@E=@w2

Figure 1: Overview of backpropagation. (a) Training inputs xi are fed forward, generating
corresponding activations yi. An error E between the actual output y3 and the
target output t is computed. (b) The error adjoint is propagated backward,

giving the gradient with respect to the weights rwiE =
⇣

@E
@w1

, . . . ,
@E
@w6

⌘
, which is

subsequently used in a gradient-descent procedure. The gradient with respect to
inputs rxiE can be also computed in the same backward pass.

2.1 AD Is Not Numerical Di↵erentiation

Numerical di↵erentiation is the finite di↵erence approximation of derivatives using values of
the original function evaluated at some sample points (Burden and Faires, 2001) (Figure 2,
lower right). In its simplest form, it is based on the limit definition of a derivative. For
example, for a multivariate function f : Rn ! R, one can approximate the gradient rf =⇣

@f
@x1

, . . . ,
@f
@xn

⌘
using

@f(x)

@xi
⇡ f(x+ hei)� f(x)

h
, (1)

where ei is the i-th unit vector and h > 0 is a small step size. This has the advantage of
being uncomplicated to implement, but the disadvantages of performing O(n) evaluations
of f for a gradient in n dimensions and requiring careful consideration in selecting the step
size h.

Numerical approximations of derivatives are inherently ill-conditioned and unstable,5

with the exception of complex variable methods that are applicable to a limited set of
holomorphic functions (Fornberg, 1981). This is due to the introduction of truncation6 and

5. Using the limit definition of the derivative for finite di↵erence approximation commits both cardinal sins
of numerical analysis: “thou shalt not add small numbers to big numbers”, and “thou shalt not subtract
numbers which are approximately equal”.

6. Truncation error is the error of approximation, or inaccuracy, one gets from h not actually being zero.
It is proportional to a power of h.

4

V2

Deep networks

29

x h

wij

x1

x2

x3

x4

wij

Input layer Hidden layer(s) Output layer

h1

h2

h3

h4

h5

k1

k2

k3

k4

k5

...

l

o1

o2

l1

l2

l3

l4

l5

w(n)
ij

k6

k

Problem: Many, many parameters, no structure

What is Deep Learning?

• Deep learning systems are neural network models
similar to those popular in the ’80s and ’90s, with:
1. some architectural and algorithmic innovations (e.g.

many layers, ReLUs, dropout, LSTMs)

2. vastly larger data sets (web-scale)

3. vastly larger-scale compute resources (GPU, cloud)

4. much better software tools (Theano, Torch, TensorFlow)

5. vastly increased industry investment and media hype

30

V3

Adapted from https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png

Classical Machine Learning

Deep Learning

Example family car:
we presumed features
price and mileage

Deep Learning (ad 1.) V3

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Example: Convolutional Neural Networks (CNN)

• More structure: local receptive fields
• Less parameters: weight tying, pooling

Input matrix

Convolutional
3x3 filter

Deep Learning (also ad 1.) V3

33
https://www.asimovinstitute.org/neural-network-zoo/

Why care about DL and
study those structures?

Amazing performance
on many benchmark tasks

V4

34

„Yeah, Differentiable Programming is little more than a rebranding of the modern
collection Deep Learning techniques, the same way Deep Learning was a
rebranding of the modern incarnations of neural nets with more than two layers.
The important point is that people are now building a new kind of software by
assembling networks of parameterized functional blocks and by training them
from examples using some form of gradient-based optimization….It’s really very
much like a regular program, except it’s parameterized, automatically
differentiated, and trainable/optimizable. ...

(Part of a post of Yann Lecun, somewhere in Facebook, found at
https://gist.github.com/halhenke/872708ccea42ee8cafd950c6c2069814)

DP uses automatic differentation (AD) V5/6

Automatic Differentiation (AD)

• AD is a mix of
– symbolic differentiation (SD) (rules s.a. chain rule,

product rule)

– numerical differentiation (ND): use
!"
!#
≈ $"

$#

35

W(X O YZ(O))
WO

= W X O
WO

𝑔 𝑥 + W Z O
WO

𝑓 𝑥 (Product rule)

– ℎ(𝑥) ∶ = 𝑔(𝑥) Y 𝑓(𝑥)

– !%(#)
!#

and ℎ have two components in common

– This may also be the case for 𝑓.

– Symbollicaly calculating 𝑓 won‘t profit from common

parts of 𝑓 and
!((#)
!#

V5/6

Automatic Differentiation in Machine Learning: a Survey

l1 = x

ln+1 = 4ln(1� ln)

f(x) = l4 = 64x(1�x)(1�2x)2(1�8x+8x2)2

f
0(x) = 128x(1 � x)(�8 + 16x)(1 � 2x)2(1 �

8x+8x2)+64(1�x)(1�2x)2(1�8x+8x2)2�
64x(1� 2x)2(1� 8x+8x2)2� 256x(1�x)(1�
2x)(1� 8x+ 8x2)2

f(x):
v = x
for i = 1 to 3

v = 4*v*(1 - v)
return v

or, in closed-form,

f(x):
return 64*x*(1-x)*((1-2*x)^2)

*(1-8*x+8*x*x)^2

f’(x):
return 128*x*(1 - x)*(-8 + 16*x)

*((1 - 2*x)^2)*(1 - 8*x + 8*x*x)
+ 64*(1 - x)*((1 - 2*x)^2)*((1
- 8*x + 8*x*x)^2) - (64*x*(1 -
2*x)^2)*(1 - 8*x + 8*x*x)^2 -
256*x*(1 - x)*(1 - 2*x)*(1 - 8*x
+ 8*x*x)^2

f’(x0) = f
0(x0)
Exact

f’(x):
(v,dv) = (x,1)
for i = 1 to 3

(v,dv) = (4*v*(1-v), 4*dv-8*v*dv)
return (v,dv)

f’(x0) = f
0(x0)
Exact

f’(x):
h = 0.000001
return (f(x + h) - f(x)) / h

f’(x0) ⇡ f
0(x0)

Approximate

Manual
Di↵erentiation

Symbolic
Di↵erentiation

of the Closed-form

Coding Coding

Numerical
Di↵erentiation

Automatic
Di↵erentiation

Figure 2: The range of approaches for di↵erentiating mathematical expressions and com-
puter code, looking at the example of a truncated logistic map (upper left). Sym-
bolic di↵erentiation (center right) gives exact results but requires closed-form in-
put and su↵ers from expression swell; numerical di↵erentiation (lower right) has
problems of accuracy due to round-o↵ and truncation errors; automatic di↵eren-
tiation (lower left) is as accurate as symbolic di↵erentiation with only a constant
factor of overhead and support for control flow.

5

36

V5/6

PROBABILITIES

37

38

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

Getting deep systems that
know when they do not know

and, hence, recognise new
situations and adapt to them

The third wave of
differentiable programming

Probabilities

Shallow

1970

Deep

2010

now

„

ph“

1) Yes, a slide, quoting a slide

1)

Problems with deep (neural) networks (Ghahramani)

• Very data hungry (e.g. often millions of examples)

• Very compute-intensive to train and deploy (cloud GPU
resources)

• Poor at representing uncertainty

• Easily fooled by adversarial examples

• Finicky to optimise: non-convex + choice of
architecture, learning procedure, initialisation, etc,
require expert knowledge and experimentation

• Uninterpretable black-boxes, lacking in trasparency,
difficult to trust

39

Bayes rule to rule them all ...

• If we use the mathematics of probability theory to
express all forms of uncertainty and noise associated
with our model...

• ...then inverse probability (i.e. Bayes rule) allows us to
infer unknown quantities, adapt our models, make
predictions and learn from data.

40

𝑃 𝐻 𝐷 =
𝑃(𝐷|𝐻) Y 𝑃(𝐻)

𝑃(𝐷)
=

𝑃(𝐷|𝐻) Y 𝑃(𝐻)
∑` 𝑃 𝐷|ℎ 𝑃(ℎ)

H = hypothesis, model

D = data, observation Bayes Rule

V7

Probabilistic graphical models

Encode efficiently full joint
probabilities

• Directed graphs

(Bayesian networks,

Hidden Markov models ...)

• undirected graphs

(Markov networks...)

• Mixed models

• Factor graphs

41

A J ϕ(a,j)

F F 20

F T 1

T F 0.1

T T 0.4

x x

x x

Requires Normalization

𝑃 𝐵 = 𝑏, 𝐸 = 𝑒, 𝐴 = 𝑎, 𝑗, 𝑚 =
1
𝑧
𝜙𝐽𝐴 𝑎, 𝑗 𝜙𝑀𝐴 𝑎,𝑚 𝜙𝐴𝐵 𝑎, 𝑏 , 𝜙𝐴𝐸 𝑎, 𝑒 𝜙𝐵 𝑏

𝑍 = 4
O
j
k

𝜙𝑗

V7

Partition function

PROBABILISTIC PROGRAMMING

42

Why then not stick to probabilities

• Problem 1: Probabilistic model development and the
derivation of inference algorithms is time-consuming
and error-prone.

• Problem 2: Exact (and approximate inference) hard due
to normalization: partition function Z)

• Solution to 1
– Develop Probabilistic Programming Languages for

expressing probabilistic models as computer programs
that generate data (i.e. simulators).

– Derive Universal Inference Engines for these languages
that do inference over program traces given observed
data (Bayes rule on computer programs).

43

V8

Comparison

44

Ex: F. Wood: Probabilistic Programming, PPAML Summer School, Portland 2016

V8

Probabilistic Programming Example

45
infinitely many hidden units is equivalent to a Gaussian process44. Note
that the above non-parametric components should be thought of again
as building blocks, which can be composed into more complex models
as described earlier. The next section describes an even more power-
ful way of composing models — through probabilistic programming.

Probabilistic programming
The basic idea in probabilistic programming is to use computer pro-
grams to represent probabilistic models (http://probabilistic-program-
ming.org)45–47. One way to do this is for the computer program to define
a generator for data from the probabilistic model, that is, a simulator
(Fig. 2). This simulator makes calls to a random number generator in
such a way that repeated runs from the simulator would sample different
possible data sets from the model. This simulation framework is more
general than the graphical model framework described previously since
computer programs can allow constructs such as recursion (functions
calling themselves) and control flow statements (for example, ‘if ’ state-
ments that result in multiple paths a program can follow), which are
difficult or impossible to represent in a finite graph. In fact, for many
of the recent probabilistic programming languages that are based on
extending Turing-complete languages (a class that includes almost all
commonly used languages), it is possible to represent any computable
probability distribution as a probabilistic program48.

The full potential of probabilistic programming comes from automat-
ing the process of inferring unobserved variables in the model condi-
tioned on the observed data (Box 1). Conceptually, conditioning needs
to compute input states of the program that generate data matching the
observed data. Whereas normally we think of programs running from
inputs to outputs, conditioning involves solving the inverse problem of
inferring the inputs (in particular the random number calls) that match
a certain program output. Such conditioning is performed by a ‘univer-
sal inference engine’, usually implemented by Monte Carlo sampling
over possible executions of the simulator program that are consistent
with the observed data. The fact that defining such universal inference
algorithms for computer programs is even possible is somewhat surpris-
ing, but it is related to the generality of certain key ideas from sampling
such as rejection sampling, sequential Monte Carlo methods25 and
‘approximate Bayesian computation’49.

As an example, imagine you write a probabilistic program that simu-
lates a gene regulatory model that relates unmeasured transcription

factors to the expression levels of certain genes. Your uncertainty in each
part of the model would be represented by the probability distributions
used in the simulator. The universal inference engine can then condition
the output of this program on the measured expression levels, and auto-
matically infer the activity of the unmeasured transcription factors and
other uncertain model parameters. Another application of probabilistic
programming implements a computer vision system as the inverse of a
computer graphics program50.

There are several reasons why probabilistic programming could
prove to be revolutionary for machine intelligence and scientific mod-
elling (its potential has been noticed by US Defense Advanced Research
Projects Agency, which is currently funding a major programme called
Probabilistic Programming for Advancing Machine Learning). First,
the universal inference engine obviates the need to manually derive
inference methods for models. Since deriving and implementing
inference methods is generally the most rate-limiting and bug-prone
step in modelling, often taking months, automating this step so that
it takes minutes or seconds will greatly accelerate the deployment of
machine learning systems. Second, probabilistic programming could
be potentially transformative for the sciences, since it allows for rapid
prototyping and testing of different models of data. Probabilistic pro-
gramming languages create a very clear separation between the model
and the inference procedures, encouraging model-based thinking51.
There are a growing number of probabilistic programming languages.
BUGS52, Stan53, AutoBayes54 and Infer.NET55 allow only a restrictive
class of models to be represented compared with systems based on
Turing-complete languages. In return for this restriction, inference
in such languages can be much faster than for the more general lan-
guages56, such as IBAL57, BLOG58, Church59, Figaro60, Venture61, and
Anglican62. A major emphasis of recent work is on fast inference in
general languages (see for example ref. 63). Nearly all approaches to
probabilistic programming are Bayesian since it is hard to create other
coherent frameworks for automated reasoning about uncertainty.
Notable exceptions are systems such as Theano, which is not itself a
probabilistic programming language but uses symbolic differentia-
tion to speed up and automate optimization of parameters of neural
networks and other probabilistic models64.

Although parameter optimization is commonly used to improve
probabilistic models, in the next section I will describe recent work
on how probabilistic modelling can be used to improve optimization.

Figure 2 | Probabilistic programming. A probabilistic program in Julia
(left) defining a simple three-state hidden Markov model (HMM), inspired
by an example in ref. 62. The HMM is a widely used probabilistic model for
sequential and time-series data, which assumes the data were obtained by
transitioning stochastically between a discrete number of hidden states98.
The first four lines define the model parameters and the data. Here ‘trans’ is
the 3 × 3 state-transition matrix, ‘initial’ is the initial state distribution, and
‘statesmean’ are the mean observations for each of the three states; actual
observations are assumed to be noisy versions of this mean with Gaussian
noise. The function hmm starts the definition of the HMM, drawing the

sequence of states with the @assume statements, and conditioning on the
observed data with the @observe statements. Finally @predict states that we
wish to infer the states and data; this inference is done automatically by the
universal inference engine, which reasons over the configurations of this
computer program. It would be trivial to modify this program so that the
HMM parameters are unknown rather than fixed. A graphical model (right)
corresponding to the HMM probabilistic program showing dependencies
between the parameters (blue), hidden state variables (green) and observed
data (yellow). This graphical model highlights the compositional nature of
probabilistic models.

statesmean = [-1, 1, 0] # Emission parameters.
initial = Categorical([1.0/3, 1.0/3, 1.0/3]) # Prob distr of state[1].
trans = [Categorical([0.1, 0.5, 0.4]), Categorical([0.2, 0.2, 0.6]),
 Categorical([0.15, 0.15, 0.7])] # Trans distr for each state.
data = [Nil, 0.9, 0.8, 0.7, 0, -0.025, -5, -2, -0.1, 0, 0.13]

@model hmm begin # Define a model hmm.
 states = Array(Int, length(data))
 @assume(states[1] ~ initial)
 for i = 2:length(data)
 @assume(states[i] ~ trans[states[i-1]])
 @observe(data[i] ~ Normal(statesmean[states[i]], 0.4))
 end
 @predict states
end

states[1] states[2] states[3] …

…data[1] data[2] data[3]

initial trans

statesmean

2 8 M A Y 2 0 1 5 | V O L 5 2 1 | N A T U R E | 4 5 5

REVIEW INSIGHT

© 2015 Macmillan Publishers Limited. All rights reserved

Hidden markov model in Julia

V8

ADEQUATE DEEP STRUCTURES

46

Problem 2 of probabilistic graphical models

• Exact (and even approxiate) inference not tractable for
general probabilistic models (problem: normalization
function Z).

• Restricting the models in expressivity is possible (thin
junction trees and so on) - but not desirable

• Find a better compromise of expressivity and feasibility:
sum-product networks/probabilisitc boolean circuits

47

Programming with Adequate Deep Structures

48

Machine learning (ML) is programming algorithms for
• optimizing a performance criterion
• using example (training) data
• by constructing general(izable) models
• that are good approximations of the data

Role of Mathematics
• Building mathematical

model
• core task is inference

from a sample

Role of CS: Efficient algorithms
• solve the optimization

problem
• represent (expressively) and

evaluate (feasibily) the
model for inference

l Bottleneck: Summing out variables

l E.g.: Partition function

Sum of exponentially many products

Why Is Inference Hard?

49

𝑃 𝑋1, … 𝑋m =
1
𝑍
j
k

𝜙𝑗 (𝑋1, … 𝑋m)

𝑍 = 4
O
j
k

𝜙𝑗

V9/10

Alternative Representation

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

P(X) = 0.4 × X1 × X2

+ 0.2 × X1 × X2

+ 0.1 × X1 × X2

+ 0.3 × X1 × X2

¾

¾

¾ ¾

50

Network Polynomial [Darwiche, 2003]

V9/10

Sum Out Variables

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

P(e) = 0.4 × X1 × X2

+ 0.2 × X1 × X2

+ 0.1 × X1 × X2

+ 0.3 × X1 × X2

¾

¾

¾ ¾

e: X1 = 1

Set X1 = 1, X1 = 0, X2 = 1, X2 = 1
¾ ¾

Easy: Set both indicators to 1

51

V9/10

Easy: Partition function: Set all
indicators to 1

Graphical Representation

Ä

Å
0.4

Ä Ä Ä
0.2 0.1

0.3

¾
X1 X2X1

¾
X2

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

52

But in general may lead to exponentially large networks (e.g. parity).
Solution: Make a deep dive (reuse computations)
with Sum-Product networks

V9/10

53

Sum-Product Networks (SPNs)

• Rooted DAG

• Nodes: Sum, product,
input indicator

• Weights on edges from
sum to children

• More general class:
Probabilistic Boolean
Circuits

Å

Ä

Å
0.7 0.3

¾
X1 X2

Å ÅÅ

Ä

0.80.30.1
0.20.70.90.4

0.6

X1
¾
X2

V9/10

V11/12

NEARLY THE END

54

Topic progress of course in short

• It‘s from discriminative to generative models

• It‘s from pure functions to algorithms to algorithms over
semi-declarative structures (and some logic)

• It‘s from non-probabilities to probabilities (and some
logic)

55

APPENDIX
Uhhh, a lecture with a hoepfully useful

56

Todays lecture is based on the following slides

• Jonathon Hare: Lecture 1,2 of course „COMP6248 Differentiable
Programming (and some Deep Learning“)
http://comp6248.ecs.soton.ac.uk/

• Zoubin Ghahramani: Probabilistic Machine Learning and AI, Microsoft AI
Summer School Cambridge 2017
http://mlss.tuebingen.mpg.de/2017/speaker_slides/Zoubin1.pdf

• Hoifung Poon: Sum-Product Networks: A New Deep Architecture
https://www.microsoft.com/en-us/research/wp-
content/uploads/2017/05/spn11.pdf

• E. Alpaydin: Course on machine learning, introductory slides,
https://www.cmpe.boun.edu.tr/~ethem/i2ml2e/2e_v1-0/i2ml2e-chap1-
v1-0.pptx

• I. Lorentzou: Introduction to Deep Learnin, link

• F. Wood: Probabilistic Programming, PPAML Summer School, Portland
2016, link

57

http://comp6248.ecs.soton.ac.uk/
http://mlss.tuebingen.mpg.de/2017/speaker_slides/Zoubin1.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/spn11.pdf
https://www.cmpe.boun.edu.tr/~ethem/i2ml2e/2e_v1-0/i2ml2e-chap1-v1-0.pptx
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj5wNC8_77sAhUj8uAKHXeABggQFjAAegQIAhAC&url=http%3A%2F%2Fwww2.cs.uh.edu%2F~ordonez%2Fppt%2Fdeepnet-lourentzou.ppt&usg=AOvVaw1PmZYVQDHrUsM6V85GRQXf
https://media.nips.cc/Conferences/2015/tutorialslides/wood-nips-probabilistic-programming-tutorial-2015.pdf

Color Convention in this course

• Formulae, when occurring inline

• Newly introduced terminology and definitions

• Important results (observations, theorems) as well as
emphasizing some aspects

• Examples are given with standard orange with possibly light
orange frame

• Comments and notes

• Algorithms

58

Books for topics covered in this lecture (1)

• Nielsen: Neural Networks and Deep Learning.
http://neuralnetworksanddeeplearning.com/

• Zhang et al.: Dive into Deep Learning
https://d2l.ai/

• I. Goodfellow, Y. Bengio, and A. Courville. Deep
Learning. MIT Press, 2016.

• D. Koller and N. Friedman. Probabilistic Graphical
Models: Principles and Techniques - Adaptive Com-
putation and Machine Learning. The MIT Press, 2009.

• L. D. Raedt, K. Kersting, and S. Natarajan. Statistical
Relational Artificial Intelligence: Logic, Probability, and
Computation. Morgan & Claypool Publishers, 2016.

59

Books for topics covered in this lecture (2)

• J.-W. van de Meent, B. Paige, H. Yang, and F. Wood. An
Introduction to Probabilistic Programming. arXiv e-
prints, arXiv:1809.10756, Sept. 2018.

• U. Naumann. The Art of Differentiating Computer
Programms. Siam, 2012.

• K. Murphy. Machine Learning: A Probabilistic
Perspective. Adaptive Computation and Machine Learn-
ing series. MIT Press, 2012.

• S. J. Russell and P. Norvig. Artificial Intelligence – A
Modern Approach. Prentice Hall, 1995.

60

