PROBABILISTIC AND DIFFERENTIABLE PROGRAMMING V1: INTRODUCTION

Özgür L. Özçep Universität zu Lübeck Institut für Informationssysteme

Differentiable Programming and Probabilistic Programming for Machine Learning¹⁾

1) Yes, this is a footnote on a slide, believe it or not. The three lines summarizing the topic of the course is the optimal outcome w.r.t my subjective measure - using a non-gradient optimization procedure starting from the original course name: Probabilistic Differential Programming -> Probabilistic and Differentiable Programming ->Differentiable and Probabilistic Programming

What this lecture V₁ is about

Agenda

- 2. Differentiable Programming and
- 3. Probabilistic Programming for
- 1. Machine Learning¹⁾

Pointers to lectures in this fancy format.

1) Yes, this is a footnote on a slide, believe it or not. The three lines summarizing the topic of the course is the optimal outcome w.r.t my subjective measure - using a non-gradient optimization procedure starting from the original course name: Probabilistic Differential Programming -> Probabilistic and Differentiable Programming ->Differentiable and Probabilistic Programming

MACHINE LEARNING

What We Mean by "Learning"

Machine learning (ML) is programming algorithms for

- optimizing a performance criterion
- using example (training) data
- by constructing general(izable) models
- that are good approximations of the data

Role of Mathematics

- Building mathematical model
- core task is inference from a sample

- solve the optimization problem
- represent and evaluate the model for inference

Differentiable Programming

Machine learning (ML) is programming algorithms for

- optimizing a performance criterion
- using example (training) data
- by constructing general(izable) models
- that are good approximations of the data

Role of Mathematics

- Programming differentiable model
- core task is inference from a sample

- solve the optimization problem
- represent and evaluate the model for inference

Probabilistic Programming

Machine learning (ML) is programming algorithms for

- optimizing a performance criterion
- using example (training) data
- by constructing general(izable) models
- that are good approximations of the data

Role of Mathematics

- Programming probabilistic model
- core task is inference from a sample

- solve the optimization problem
- represent and evaluate the model for inference

Types of learning (classically)

- Supervised Learning learn to predict an output for input vector after training with labelled data
- Unsupervised Learning discover a good internal representation of the input
- Reinforcement Learning
 learn to select an action to
 maximize the expectation of
 future rewards (payoff)

Subtypes of unsupervised I. (in Deep Learning context)

- Self-supervised (Self-taught) Learning - learn with targets induced by a prior on the unlabelled training data
- Semi-supervised Learning learn with few labelled examples and many unlabelled ones (same distribution for labelled & non-labelled data)

Generative vs. Discriminative/descriptive

- Many unsupervised and self-supervised models can be classed as 'generative models'.
 - Given unlabelled data X, a unsupervised generative model learns full joint probability distribution P(X,Y).
 - These are characterised by an ability to 'sample' the model to 'create' new data
- In contrast: Discriminative models learn P(Y|X) (which can be calculated in a generative model, too, using Bayes's rule but not vice versa)

(X: observations, data, Y: categories, classes, non-observed)

Example Supervised Learning: Classification

- Class C of a "family car"
 - Prediction: Is car *x* a family car?
 - Knowledge extraction: What do people expect from a family car?
- Output:

Positive (+) and negative (–) examples

• Input representation by two features:

*x*₁: price, *x*₂: engine power

Training set X

Class C

Hypothesis class H

Example Supervised Learning: Regression

Price of a used car		
<i>x</i> :	car attribute	
<i>y</i> :	price	
$\hat{y} = g(x \mid \theta)$:	hypothesis	
g():	linear model	
g(x)	$) = w_1 x + w_0$	
heta:	parameters	
	(here w ₁ , w ₂)	

Example Supervised Learning: Regression

Price of a used car x: car attribute y: price $\hat{y} = g(x | \theta)$: hypothesis g(): quadratic model $g(x) = w_2 x^2 + w_1 x + w_0$ θ : parameters (here w_0, w_1, w_2)

Example Supervised Learning: Regression

Calculating the gradient ∇E analytically NOT feasible for thousands of parameters

- > Differentiable programming

$$X = \{ (x^{t}, r^{t}) \}_{t=1}^{N} \quad r^{t} = f(x^{t}) \in \mathbb{R}$$

Mean squared error for general and linear hypothesis g $E(g|X) = (1/N) \sum_{t=1}^{N} (g(x^{t}) - r^{t})^{2}$ $E(w_{1}, w_{0}|X) = (1/N) \sum_{t=1}^{N} (w_{1}x^{t} + w_{0}) - r^{t})^{2}$

Optimization:

$$\nabla E = \left(\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}\right) = (0, 0)$$
$$w_1 = \frac{\sum_t x^t r^t - \overline{xr}N}{\sum_t (x^t)^2 - N \ \overline{x}^2}$$

 $w_0 = \bar{r} - w_1 \, \bar{x}$

17

DIFFERENTIABLE PROGRAMMING

What is Differentiable Programming (DP)?

"Yeah, Differentiable Programming is little more than a rebranding of the modern collection Deep Learning techniques, the same way Deep Learning was a rebranding of the modern incarnations of neural nets with more than two layers. The important point is that people are now building a new kind of software by assembling networks of parameterized functional blocks and by training them from examples using some form of gradient-based optimization....It's really very much like a regular program, except it's parameterized, automatically differentiated, and trainable/optimizable....

(Part of a post of Yann Lecun, somewhere in Facebook, found at https://gist.github.com/halhenke/872708ccea42ee8cafd950c6c2069814)

",Yeah, Differentiable Programming is little more than a rebranding of the modern collection Deep Learning techniques, the same way Deep Learning was a rebranding of the modern incarnations of neural nets with more than two layers. The important point is that people are now building a new kind of software by assembling networks of parameterized functional blocks and by training them from examples using some form of gradient-based optimization.....It's really very much like a regular program, except it's parameterized, automatically differentiated, and trainable/optimizable. ...

(Part of a post of Yann Lecun, somewhere in Facebook, found at https://gist.github.com/halhenke/872708ccea42ee8cafd950c6c2069814)

What is Deep Learning (DL)?

- Deep learning is based on function composition
 - Feedforward networks: $\mathbf{y} = f(g(\mathbf{x}, \theta_g), \theta_f)$ Often with relatively simple functions (e.g. $f(\mathbf{x}, \theta_f) = \sigma(\mathbf{x}^T \theta_f)$)
 - Recurrent networks:

 $\mathbf{y}_{t} = f(\mathbf{y}_{t-1}, \mathbf{x}_{t}, \mathbf{\theta}) = f(f(\mathbf{y}_{t-2}, \mathbf{x}_{t-1}, \mathbf{\theta}), \mathbf{x}_{t}, \mathbf{\theta}) = \dots$

- In early days focus of DL on functions for classification
- Nowadays the functions are much more general in their inputs and outputs.

Network view of composed functions

V2

Deep networks

"Yeah, Differentiable Programming is little more than a rebranding of the modern collection Deep Learning techniques, the same way Deep Learning was a rebranding of the modern incarnations of neural nets with more than two layers. The important point is that people are now building a new kind of software by assembling networks of parameterized functional blocks and by training them from examples using some form of gradient-based optimization....It's really very much like a regular program, except it's parameterized, automatically differentiated, and trainable (antimizable)

differentiated, and trainable/optimizable. ...

(Part of a post of Yann Lecun, somewhere in Facebook, found at https://gist.github.com/halhenke/872708ccea42ee8cafd950c6c2069814)

Gradient Descent

• Total loss

$$L = -\sum_{(x,y)\in D} l(g(x,\theta), y)$$

for some loss function I, dataset D and model g with parameters θ

- Define how many passes (epochs) over the data to make
- learning rate η
- Gradient Descent: update θ by gradient in each epoch $\theta \leftarrow \theta - \eta \nabla_{\theta} L$

Pros and Cons

- Gradient Descent has good statistical properties (very low variance)
- But is very data inefficient (particularly when data has many similarities)
- Doesn't scale to effectively infinite data (e.g. with augmentation)

Stochastic Gradient Descent (SGD)

- Define loss function l, dataset D and model g with learnable parameters θ.
- Define how many passes over the data to make (each one known as an Epoch)
- Define a learning rate η
- Stochastic Gradient Descent updates the parameters θ by moving them in the direction of the negative gradient with respect to the loss of a single item I by the learning rate η multiplied by the gradient:
- for each Epoch:
 for each (x,y)∈D:

Backprop: efficient implementation of gradient descent

Backpropagation idea

 Generate error signal that measures difference between predictions and target values

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME (b) Backward pass

Deep networks

Problem: Many, many parameters, no structure

What is Deep Learning?

V3

- *Deep learning* systems are neural network models similar to those popular in the '80s and '90s, with:
 - 1. some architectural and algorithmic innovations (e.g. many layers, ReLUs, dropout, LSTMs)
 - 2. vastly larger data sets (web-scale)
 - 3. vastly larger-scale compute resources (GPU, cloud)
 - 4. much better software tools (Theano, Torch, TensorFlow)
 - 5. vastly increased industry investment and media hype

Deep Learning (ad 1.)

UNIVERSITAT ZU LÜBECK INSTITUT FÜR INFORMATI Adapted from https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.phg FOCUS DAS LEBEN

Example: Convolutional Neural Networks (CNN)

- More structure: local receptive fields
- Less parameters: weight tying, pooling

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

https://www.asimovinstitute.org/neural-network-zoo/

"Yeah, Differentiable Programming is little more than a rebranding of the modern collection Deep Learning techniques, the same way Deep Learning was a rebranding of the modern incarnations of neural nets with more than two layers. The important point is that people are now building a new kind of software by assembling networks of parameterized functional blocks and by training them from examples using some form of gradient-based optimization....It's really very much like a regular program, except it's parameterized, automatically differentiated, and trainable/optimizable....

(Part of a post of Yann Lecun, somewhere in Facebook, found at https://gist.github.com/halhenke/872708ccea42ee8cafd950c6c2069814)

Automatic Differentiation (AD)

• AD is a mix of

ERSITÄT ZU LÜBECK

- symbolic differentiation (SD) (rules s.a. chain rule, product rule)
- numerical differentiation (ND): use $\frac{dy}{dx} \approx \frac{\Delta y}{\Delta x}$

$$\frac{d(f(x) \cdot g(x))}{dx} = \frac{d f(x)}{dx} g(x) + \frac{d g(x)}{dx} f(x) \quad \text{(Product rule)}$$
$$- h(x) := g(x) \cdot f(x)$$

- $-\frac{dh(x)}{dx}$ and *h* have two components in common
- This may also be the case for f.
- Symbollically calculating f won't profit from common parts of f and $\frac{df(x)}{dx}$

PROBABILITIES

I The third wave of differentiable programming

Kristian Kersting - Sum-Product Networks: The Third Wave of Differentiable Programming

// 1)

1) Yes, a slide, quoting a slide

Problems with deep (neural) networks (Ghahramani)

- Very data hungry (e.g. often millions of examples)
- Very compute-intensive to train and deploy (cloud GPU resources)
- Poor at representing uncertainty
- Easily fooled by adversarial examples
- Finicky to optimise: non-convex + choice of architecture, learning procedure, initialisation, etc, require expert knowledge and experimentation
- Uninterpretable black-boxes, lacking in trasparency, difficult to trust

Bayes rule to rule them all ...

 ...then inverse probability (i.e. Bayes rule) allows us to infer unknown quantities, adapt our models, make predictions and learn from data.

$$P(H|D) = \frac{P(D|H) \cdot P(H)}{P(D)} = \frac{P(D|H) \cdot P(H)}{\sum_{h} P(D|h)P(h)}$$

H = hypothesis, model D = data, observation

IVERSITÄT ZU LÜBECK

INFORMATIONSSYSTEME

Bayes Rule

Probabilistic graphical models

Encode efficiently full joint probabilities

- Directed graphs
 (Bayesian networks, Hidden Markov models ...)
- undirected graphs
 (Markov networks...)
- Mixed models
- Factor graphs

Requires Normalization

$$P(B = b, E = e, A = a, j, m) = \frac{1}{z}\phi_{JA}(a, j)\phi_{MA}(a, m)\phi_{AB}(a, b), \phi_{AE}(a, e)\phi_{B}(b)$$

$$Z = \sum_{x} \prod_{j} \phi_{j} \qquad Par$$

Partition function

PROBABILISTIC PROGRAMMING

Why then not stick to probabilities

- Problem 1: Probabilistic model development and the derivation of inference algorithms is time-consuming and error-prone.
- Problem 2: Exact (and approximate inference) hard due to normalization: partition function Z)
- Solution to 1
 - Develop Probabilistic Programming Languages for expressing probabilistic models as computer programs that generate data (i.e. simulators).
 - Derive Universal Inference Engines for these languages that do inference over program traces given observed data (Bayes rule on computer programs).

V8

Comparison

Probabilistic Programming Example

Hidden markov model in Julia

V8

ADEQUATE DEEP STRUCTURES

Problem 2 of probabilistic graphical models

- Exact (and even approxiate) inference not tractable for general probabilistic models (problem: normalization function Z).
- Restricting the models in expressivity is possible (thin junction trees and so on) but not desirable
- Find a better compromise of expressivity and feasibility: sum-product networks/probabilisitc boolean circuits

Programming with Adequate Deep Structures

Machine learning (ML) is programming algorithms for

- optimizing a performance criterion
- using example (training) data
- by constructing general(izable) models
- that are good approximations of the data

Role of Mathematics

- Building mathematical model
- core task is inference from a sample

- solve the optimization problem
- represent (expressively) and evaluate (feasibily) the model for inference

$$P(X_1, ..., X_n) = \frac{1}{Z} \prod_{j} \phi_j(X_1, ..., X_n)$$

- Bottleneck: Summing out variables
- E.g.: Partition function

Sum of exponentially many products

$$Z = \sum_{x} \prod_{j} \phi_{j}$$

Alternative Representation

$$P(X) = 0.4 \cdot X_1 \cdot X_2$$

+ 0.2 \cdot X_1 \cdot \overline{X}_2
+ 0.1 \cdot \overline{X}_1 \cdot X_2
+ 0.3 \cdot \overline{X}_1 \cdot \overline{X}_2

Sum Out Variables

			$e: X_1 = 1$
<i>X</i> ₁	<i>X</i> ₂	P(X)	$P(e) = 0.4 \cdot X_1 \cdot X_2$
1	1	0.4	$+0.2 \cdot X_1 \cdot \overline{X}_2$
1	0	0.2	$+ 0 1 \overline{V} V$
0	1	0.1	$+ 0.1 \cdot A_1 \cdot A_2$
0	0	0.3	$+0.3 \cdot X_1 \cdot X_2$

Set
$$X_1 = 1, \overline{X}_1 = 0, X_2 = 1, \overline{X}_2 = 1$$

Easy: Set both indicators to 1

Easy: Partition function: Set all indicators to 1

Graphical Representation

But in general may lead to exponentially large networks (e.g. parity). Solution: Make a deep dive (reuse computations) with Sum-Product networks

Sum-Product Networks (SPNs)

- Rooted DAG
- Nodes: Sum, product, input indicator
- Weights on edges from sum to children
- More general class: Probabilistic Boolean Circuits

NEARLY THE END

Topic progress of course in short

- It's from discriminative to generative models
- It's from pure functions to algorithms to algorithms over semi-declarative structures (and some logic)
- It's from non-probabilities to probabilities (and some logic)

Uhhh, a lecture with a hoepfully useful

APPENDIX

Todays lecture is based on the following slides

- Jonathon Hare: Lecture 1,2 of course "COMP6248 Differentiable Programming (and some Deep Learning") <u>http://comp6248.ecs.soton.ac.uk/</u>
- Zoubin Ghahramani: Probabilistic Machine Learning and AI, Microsoft AI Summer School Cambridge 2017 <u>http://mlss.tuebingen.mpg.de/2017/speaker_slides/Zoubin1.pdf</u>
- Hoifung Poon: Sum-Product Networks: A New Deep Architecture <u>https://www.microsoft.com/en-us/research/wp-</u> <u>content/uploads/2017/05/spn11.pdf</u>
- E. Alpaydin: Course on machine learning, introductory slides, <u>https://www.cmpe.boun.edu.tr/~ethem/i2ml2e/2e_v1-0/i2ml2e-chap1-v1-0.pptx</u>
- I. Lorentzou: Introduction to Deep Learnin, <u>link</u>
- F. Wood: Probabilistic Programming, PPAML Summer School, Portland 2016, <u>link</u>

Color Convention in this course

- Formulae, when occurring inline
- Newly introduced terminology and definitions
- Important results (observations, theorems) as well as emphasizing some aspects
- Examples are given with standard orange with possibly light orange frame
- Comments and notes
- Algorithms

Books for topics covered in this lecture (1)

- Nielsen: Neural Networks and Deep Learning. http://neuralnetworksanddeeplearning.com/
- Zhang et al.: Dive into Deep Learning https://d2l.ai/
- I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
- D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques - Adaptive Computation and Machine Learning. The MIT Press, 2009.
- L. D. Raedt, K. Kersting, and S. Natarajan. Statistical Relational Artificial Intelligence: Logic, Probability, and Computation. Morgan & Claypool Publishers, 2016.

Books for topics covered in this lecture (2)

- J.-W. van de Meent, B. Paige, H. Yang, and F. Wood. An Introduction to Probabilistic Programming. arXiv eprints, arXiv:1809.10756, Sept. 2018.
- U. Naumann. The Art of Differentiating Computer Programms. Siam, 2012.
- K. Murphy. Machine Learning: A Probabilistic Perspective. Adaptive Computation and Machine Learning series. MIT Press, 2012.
- S. J. Russell and P. Norvig. Artificial Intelligence A Modern Approach. Prentice Hall, 1995.

