
PROBABILISTIC AND
DIFFERENTIABLE PROGRAMMING

V2: Gradient Descent

Özgür L. Özçep

Universität zu Lübeck

Institut für Informationssysteme

Agenda for today‘s lecture

2

Gradient descent (GD)

𝑑𝑓
𝑑𝑥

1. Differentiation 2. Basic GD and variants

3. Backpropagation

𝜃%&' ← 𝜃𝑡 − 𝜂∇𝜃 𝐿

Baydin, Pearlmutter, Radul, and Siskind

!a) Forward pass

x!

x2

E!y3$ t)

y2

@E=@y2

!b) Backward pass

w4

@E=@w4

w!

@E=@w!

w2

w3

y!

y3

@E=@y3

w5

w6

@E=@w6

@E=@E
@E=@w3

@E=@y!
@E=@w5

@E=@w2

Figure 1: Overview of backpropagation. (a) Training inputs xi are fed forward, generating
corresponding activations yi. An error E between the actual output y3 and the
target output t is computed. (b) The error adjoint is propagated backward,

giving the gradient with respect to the weights rwiE =
⇣

@E
@w1

, . . . ,
@E
@w6

⌘
, which is

subsequently used in a gradient-descent procedure. The gradient with respect to
inputs rxiE can be also computed in the same backward pass.

2.1 AD Is Not Numerical Di↵erentiation

Numerical di↵erentiation is the finite di↵erence approximation of derivatives using values of
the original function evaluated at some sample points (Burden and Faires, 2001) (Figure 2,
lower right). In its simplest form, it is based on the limit definition of a derivative. For
example, for a multivariate function f : Rn ! R, one can approximate the gradient rf =⇣

@f
@x1

, . . . ,
@f
@xn

⌘
using

@f(x)

@xi
⇡ f(x+ hei)� f(x)

h
, (1)

where ei is the i-th unit vector and h > 0 is a small step size. This has the advantage of
being uncomplicated to implement, but the disadvantages of performing O(n) evaluations
of f for a gradient in n dimensions and requiring careful consideration in selecting the step
size h.

Numerical approximations of derivatives are inherently ill-conditioned and unstable,5

with the exception of complex variable methods that are applicable to a limited set of
holomorphic functions (Fornberg, 1981). This is due to the introduction of truncation6 and

5. Using the limit definition of the derivative for finite di↵erence approximation commits both cardinal sins
of numerical analysis: “thou shalt not add small numbers to big numbers”, and “thou shalt not subtract
numbers which are approximately equal”.

6. Truncation error is the error of approximation, or inaccuracy, one gets from h not actually being zero.
It is proportional to a power of h.

4

The big idea: follow the gradient

3

• Fundamentally, we’re interested in machines that we
train by
– optimising parameters

• How do we select those parameters?

• In deep learning/differentiable programming we
typically define an objective function to optimize
– minimise (in case of error or loss say) or

– maximise with respect to those parameters

• We’re looking for points at which the gradient of the
objective function is zero w.r.t. the parameters

The big idea: follow the gradient

• Gradient based optimisation is a BIG field!
– First order methods, second order methods, subgradient

methods...

– With deep learning we’re primarily interested in first-
order methods1).

• Primarily using variants of gradient descent:
– function 𝐹(𝒙) has a (not necessarily unique or global)

minimum at a point 𝒙 = 𝒂 where 𝒂 is given by applying
𝒂4&' = 𝒂4 − 𝛼∇𝐹 𝒂𝑛

until convergence

4

1) Second order gradient optimisers are potentially better, but for systems with many variables are currently
impractical as they require computing the Hessian matrix.

DIFFERENTIATION

5

Gradient in one dimension

6

• Gradient of a straight line is ∆𝑦 /∆𝑥

• For arbitrary real-valued functions 𝑓(𝑥)

approximate the derivative,
:;
:<
(𝑎) using the gradient of

the secant line trough (𝑎, 𝑓(𝑎)) and (𝑎 + ℎ, 𝑓(𝑎 + ℎ)) for
small ℎ

𝑓A 𝑎 = :;
:<
(𝑎) ≈ C;

CD
≈ ; D&E F;(D)

E
(Newton‘s difference quotient)

:;
:<
(𝑎) = lim

E→K
; D&E F;(D)

E
(Derivative of 𝑓 at 𝑎)

secant line

Tangent line

Slope
:;
:D
(𝑎)

a

Example: Derivative of a quadratic function

𝑦 = 𝑥2
𝑑𝑦
𝑑𝑥

= lim
E → K

𝑥 + ℎ M − 𝑥M

ℎ
𝑑𝑦
𝑑𝑥

= lim
E → K

𝑥M + 2ℎ𝑥 + ℎM − 𝑥M

ℎ
𝑑𝑦
𝑑𝑥

= lim
E → K

2ℎ𝑥 + ℎM

ℎ
𝑑𝑦
𝑑𝑥

= lim
E → K

2𝑥 + ℎ
𝑑𝑦
𝑑𝑥

= 2𝑥

7

Derivatives of „deeper“ functions

• Deep learning is all about optimising deeper functions:
functions that are compositions of other functions, e.g.

ℎ = (𝑓 ◦ 𝑔)(𝑥) = 𝑓(𝑔(𝑥))

• Derivative can be calculated by chain rule

8

𝑑ℎ
𝑑𝑥

=
𝑑𝑓
𝑑𝑔

𝑑𝑔
𝑑𝑥

ℎ 𝑥 = 𝑓(𝑔(𝑥))

Chain rule (1-dim)

for

Example for chain rule

ℎ 𝑥 = 𝑥O = (𝑥M)M = 𝑓 𝑔 𝑥
𝑑ℎ
𝑑𝑥

= 2 P 𝑥M P 2𝑥 = 4𝑥R

9

You may verify this also directly

𝑑ℎ
𝑑𝑥

= lim
E→K

𝑥 + ℎ O − 𝑥O

ℎ
𝑑ℎ
𝑑𝑥

= lim
E→K

ℎO + 4ℎR𝑥 + 6ℎM𝑥M + 4ℎ𝑥R + 𝑥O − 𝑥O

ℎ
𝑑ℎ
𝑑𝑥

= lim
E→K

ℎR + 4ℎM𝑥 + 6ℎ𝑥M + 4𝑥R = 4𝑥R

Generalization: Vector functions 𝒚(𝑡)

• Split into its constituent coordinate functions:
𝒚(𝑡) = (𝑦'(𝑡), . . . , 𝑦4(𝑡))

• Derivative is a vector (the tangent vector),
𝒚′(𝑡) = (𝑦'′(𝑡), … , 𝑦4′(𝑡))

which consists of the derivatives of the coordinate

functions.

• Equivalently
𝒚A 𝑡 = lim

E →K
𝒚(%&E)F𝒚(%)

E

(if the limit exists)

10

Differentiation with multiple variables

11

𝑓 𝑥, 𝑦 = 𝑥M + 𝑥𝑦 + 𝑦M
𝜕𝑓
𝜕𝑥

= 2𝑥 + 𝑦
𝜕𝑓
𝜕𝑦

= 𝑥 + 2𝑦
𝜕𝑓
𝜕𝑥Y

𝒂 = lim
E →K

;(DZ,…,D[&E,…,D\) F;(𝒂)
E

Partial derivative of 𝑓 𝑥', … 𝑥4 :ℝ4 → ℝ
w.r.t. 𝑥Y at 𝒂 = (𝑎', … , 𝑎4)

∇ 𝑓 𝒂 = (
𝜕𝑓
𝜕𝑥'

(𝒂), … ,
𝜕𝑓
𝜕𝑥4

(𝒂))

Gradient of 𝑓 𝑥', … 𝑥4 :ℝ4 → ℝ at 𝒂 = (𝑎', … , 𝑎4)

Jacobian of 𝒇 𝑥', … 𝑥4 :ℝ4 → ℝ` at 𝒂 = (𝑎', … , 𝑎4)

𝜕𝒇
𝜕𝒙

𝒂 =
∇ 𝑓' 𝒂

⋮
∇ 𝑓 𝒂

=
𝜕𝑓𝒊
𝜕𝑥𝒋

𝒂
'dYd`;'dfd4

=

𝜕𝑓𝟏
𝜕𝑥𝟏

𝒂 ⋯
𝜕𝑓𝟏
𝜕𝑥𝒏

𝒂

⋮ ⋱ ⋮
𝜕𝑓𝒎
𝜕𝑥𝟏

𝒂 ⋯
𝜕𝑓𝒎
𝜕𝑥𝒏

𝒂

Linear algebra reminder

• Given vectors 𝒙 = (𝑥', … , 𝑥4) and 𝒚 = (𝑦', … , 𝑦4)
• Scalar product : 𝒙 ⋅ 𝒚 = ∑Yn '4 𝑥Y𝑦Y

• Jacobian is given as an 𝑚 × 𝑛 matrix
A = aYf 'dYd`,'dfd4

(m rows, n columns)

• An 𝑚 × 𝑛 matrix A defines a linear mapping
A: ℝ4 → ℝ` via

𝐱 =
<Z
<t…
<\

↦ 𝐴 𝑥 =
∑[wZ
\ DZ,[<[

∑[wZ
\ Dt,[<[

∑Yn'
4 𝑎`,Y𝑥Y

12

(Linearity: A 𝜆𝐱 + 𝜇𝒚 = 𝜆𝐴𝑥 + 𝜇𝐴𝑦 where x,y vectors and 𝜆, 𝜇 scalars)

...

Linear algebra reminder

Matrix multiplication 𝐶 = 𝐴 𝐵 for

𝑚 × 𝑛 matrix 𝐴 and n × 𝑝 matrix 𝐵

cY,f = ∑�n'4 𝑎Y,�𝑏�,f

Transposed matrix 𝐴�: change columns and rows

13

Gradients in Machine Learning

The kinds of functions (and programs) that are usually
optimized in ML have following properties:

• They are scalar-valued

• There are multiple losses, but ultimately we can just
consider optimising with respect to the sum of the
losses.

• They involve multiple variables, which are often
wrapped up in the form of vectors or matrices, and
more generally tensors.

How will we find the gradients of these?

14

The chain rule for vectors

Given functions 𝑓, 𝑔 with

– ℝ` →
�

ℝ4 →
;

ℝ
– 𝒙 ↦ 𝒚 = 𝑔 𝒙 ↦ 𝑧 = 𝑓(𝒚)

the chain rule gives the partial derivatives

𝜕𝑧
𝜕𝑥Y

= �
f

𝜕𝑧
𝜕𝑦f

𝜕𝑦f
𝜕𝑥Y

15

(in short form: ∇𝒙𝑧 =
�𝒚
�𝒙

�
∇𝒚𝑧

where
�𝒚
�𝒙

is the n x m Jacobian matrix of g)

Chain rule for Tensors (Informal)

• Tensors (as understood in the ML literature) generalize
vectors (1D-tensors) and matrices (2D-tensors)
– 3D-tensor: Layer of matrices

– nD-tensor 𝐴YZ…Y\ is indexed by n-tuples (𝑖' … 𝑖4)
• Needed e.g. to model layers of convolution matrices etc.

• Gradients of tensors by
– flattening them into vectors
– computing the vector-valued gradient

– then reshaping the gradient back into a tensor.

• This is just multiplying Jacobians by gradients again

16

The chain rule für tensors (formally)

• Aim: Calculate: ∇𝑿𝑧 for scalar 𝑧 and tensor 𝑿
– Indices into 𝑿 have multiple coordinates, but we can

generalise by using a single variable 𝑖 to represent the
complete tuple of indices.

– For all index tuples 𝑖: (∇𝑿𝑧)Y = ��
��[

For 𝒀 = 𝑔(𝑿) and 𝑧 = 𝑓 𝒀

∇𝑿𝑧 = ∑f(∇𝑿𝑌f)
��
���

17

Example for tensor chain rule

• Let 𝑫 = 𝑿𝑾 where the rows of X ∈ ℝ4 ×` contains
some fixed features, and W ∈ ℝ`×E is a matrix of
weights.

• Also let 𝐿 = 𝑓(𝑫) be some scalar function of 𝑫 that we
wish to minimise.

• What are the derivatives of 𝐿 with respect to the
weights 𝑾?

18

• Start by considering a specific weight 𝑊��

• ��
����

= ∑Y,f
��
��[�

��[�
����

(by chain rule)

•
��[�
����

= 0 if 𝑗 ≠ 𝑣 because 𝐷Yf is the scalar product of

row 𝑖 of 𝑿 and column 𝑗 of 𝑾.

• Therefore: ∑Y,f
��
��[�

��[�
����

= ∑Y
��
��[�

��[�
����

• What is
��[�
����

?

– 𝐷Y� = ∑'d�d` 𝑋Y�𝑊��

– ��[�
����

= �
����

∑'d�d¡ 𝑋Y�𝑊�� = ∑'d�d`
�

����
𝑋Y�𝑊�� = 𝑋Y�

19

• Putting every together, we have:
��

����
= ∑Y

��
��[�

𝑋Y�

• = ∑Y 𝑋Y�
��
��[�

= ∑Y 𝑋�Y�
��
��[�

• Doing this for arbitrary 𝑊Y� leads to

• ��
�𝑾

= 𝑿� ��
�𝑫

20

VANILLA GRADIENT DESCENT,
VARIANTS AND BEYOND

21

VGD: 𝜃%&' ← 𝜃𝑡 − 𝜂∇𝜃𝐿

Vanilla Gradient Descent (VGD)

• Given: loss function l, dataset D, and model g,
parameters θ; number of passes (epochs) over the data,
learning rate η

• Total loss: 𝐿 = −∑ <,¢ ∈� 𝑙(𝑔(𝑥, 𝜃), 𝑦)

22

+ Good statistical properties (very low variance)
- Very data inefficient (particularly when data

has many similarities)
- Doesn’t scale to infinite data (online learning)

Problems of *GD
- ...

Why the hell follow the gradient?

23

• Make shift in parameter space Δ𝜃 = (Δ𝜃', Δ𝜃M)

• Calculus says : Δ𝐿 ≈ ��
�¥Z

Δ𝜃' +
��
�¥t

Δ𝜃M = ∇LΔ𝜽

• Loss should decrease: Δ𝐿 ≤ 0
• Try: Δ𝜃 = −𝜂∇𝐿

• Helps, because Δ𝐿 ≈ −𝜂 ∇𝐿 ⋅ ∇𝐿 = −𝜂 ∇𝐿
M

and ∇𝐿
M
≥ 0

Linear algebra reminder:

• Norm of 𝑣: 𝑣 = 𝑣 ⋅ 𝑣 (for scalar product ⋅)

Let‘s talk abut loss – only roughly for now

• Gradient descent algorithms depend on loss function 𝑙
• For now think of loss function l as mean squared error
𝑙ª«¬

• We will see other ones and their interplay with
activation functions in the next lecture

Mean squared error on one single training example

24

(𝑦, 𝑦) ↦ 𝑦 − 𝑦
M

𝑙ª«¬ : ℝ4 ×ℝ4 →
𝒍

ℝ

Stochastic Gradient Descent (SGD)

• Given: loss function l, dataset D, model g, parameters θ,
number of epochs, learning rate η

25

SGD : In each epoch do for each 𝒙, 𝑦 ∈ 𝐷

𝜃%&' ← 𝜃% − 𝜂∇𝜃 𝑙(𝑔(𝒙, 𝜃%), 𝑦)

+ Faster than VGD
+ Online learning
- Poor statistical properties (high fluctuation)
- computational inefficiency

Problems of *GD
- ...

Mini-Batch SGD (MGD)

• Given: mini-batch size m (common: 50-256), loss
function l, dataset D, model g, parameters θ, number of
epochs , learning rate η

• Batch loss: 𝐿¯(%) = ∑ <,¢ ∈¯(%) 𝑙 𝑔 𝑥, 𝜃 , 𝑦
where 𝑏 𝑡 a subset of D of cardinality m.

26

MSGD : 𝜃%&' ← 𝜃% − 𝜂∇¥° 𝐿¯(%)

+ reduces the parameter-updates’ variance
+ stable convergencevery
+ computational efficiency

Problems of *GD
1. How to choose rate
2. No learning rate schedules
3. Trapping in local minima
4. Inefficient for sparse data set

Problem 1: Choosing the learning rate 𝜂 1)

• Choice of learning rate is extremely important

• But we have to reason about the ‘loss landscape’
– Types of cost functions (see next lecture)

– Most convergence analysis of optimisation algorithms
assumes a convex loss landscape

• Easy to reason about

• (S)GD converges to optimal solution for a variety of 𝜂s

• Insights into potential problems in the non-convex case

– Deep Learning is highly non-convex

– Many local minima; Plateaus; Saddle points; Symmetries
(permutation, etc)

27
1) One form of hyper-parameter magic

„Beyond“: Accelerated Gradient Methods

• Accelerated gradient methods use a leaky average of
the gradient, rather than the instantaneous gradient
estimate at each time step

• A physical analogy would be one of the momentum a
ball picks up rolling down a hill...

• Helps addressing the *GD problems

28

Mini-Batch SGD with Momentum (MSGDM)

• Given: momentum parameter 𝛽 (0,9 is good choice),
batch size m, batch loss Lb(t), number of epochs, learning
rate η

29

MSGDM : update θ by accumulated velocity
𝑣%&' ← 𝛽𝑣% + ∇𝜃 𝐿¯(%)
𝜃%&' ← 𝜃% − 𝜂𝑣%&'

+ The momentum method allows to accumulate velocity in directions
of low curvature that persist across multiple iterations

+ This leads to accelerated progress in low curvature directions
compared to gradient descent

Problem 2: Scheduling learning rates

• In practice you want to decay your learning rate over
time

• Smaller steps will help you get closer to the minima

• But don’t do it to early, else you might get stuck
Something of an art form!

• ‘Grad Student Descent’ or GDGS (‘Gradient Descent by
Grad Student‘)

• Tackling Plateaus (Common Heuristic approach)
– if the loss hasn’t improved (within some tolerance) for k

epochs then drop the lr by a factor of 10

30

Problem 3: Stucking into local minima

• Cycle the learning rate up and down (possibly
annealed), with a different lr on each batch

• See L. N. Smith. Cyclical Learning Rates for Training
Neural Networks. arXiv e-prints, page
https://arxiv.org/abs/1506.01186 , June 2015.

31

https://arxiv.org/abs/1506.01186

SOTA: More advanced optimisers

• Here only name dropping and some fancy gif from here
– Adagrad (dynamic decrease, second moment used)

– RMSProp (decouple learning rate from gradient)

– Adam (BestOf(RMSProp,MSDGM))

• J. Hare says:
– If you’re in a hurry to get results use Adam

– If you have time (or a Grad Student at hand), then use
SGD (with momentum) and work on tuning the learning
rate

– If you’re implementing something from a paper, then
follow what they did!

32

https://medium.com/@ramrajchandradevan/the-evolution-of-gradient-descend-optimization-algorithm-4106a6702d39

BACKPROPAGATION

33

x4

x2

x1

x3

Network view of single function1)

Input Output

²𝑦1

²𝑦2

²𝒚 = 𝒈 (𝒙 ;𝑾, 𝒃)

o1

o2

𝒃 ∶ Bias vector (𝑏', 𝑏M)
𝑾 = weight matrix

𝑤 'dYdM;'dfdO :
z: 𝑾𝒙 + 𝒃

linear output
𝛔 : activation function

ℝO →
𝒈

ℝM

𝒙 ↦ ²𝒚 = 𝒈 = (𝒈𝟏 𝒙 , 𝒈𝟐 𝒙)

= 𝛔 𝑾𝒙 + 𝒃 = 𝜎 𝒛
Decomposition into
linear and activation part

𝑾

𝑤𝟏𝟏

𝑤𝟏𝟒

𝑤𝟐𝟒

Vector-valued function in
four arguments

Network model

1) You may find this also under the term perceptron in the literature

x4

x2

x1

x3

Network view of single function

Input Output

²𝑦1

²𝑦2

²𝒚 = 𝒈 (𝒙 ;𝑾, 𝒃)

o1

o2

ℝO →
𝒈

ℝM

𝒙 ↦ ²𝒚 = 𝒈 = (𝒈𝟏 𝒙 , 𝒈𝟐 𝒙)

= 𝛔 𝑾𝒙 + 𝒃 = 𝜎 𝒛
Decomposition into
linear and activation part

𝑾

𝑤𝟏𝟏

𝑤𝟏𝟒

𝑤𝟐𝟒

Vector-valued function in
four arguments

Example linear output

35

𝐖 = ¾1 2
3 4 À−1 −2

−3 4 𝐱 =
Z
t
Á
Â
𝒃 = Ã

Ä

𝑾𝒙 =
1 ⋅ 1 + 2 ⋅ 2 + −1 ⋅ 3 − 2 ⋅ 4
3 ⋅ 1 + 4 ⋅ 2 + −3 ⋅ 3 + 4 ⋅ 4

=
−6
18

𝑾𝒙 + 𝒃 = FÄ
'Æ + Ã

Ä = F'
MO

x4

x2

x1

x3

Network view of single function

Input Output

²𝑦1

²𝑦2

²𝒚 = 𝒈 (𝒙 ;𝑾, 𝒃)

𝑏M

ℝO →
𝒈

ℝM

𝒙 ↦ ²𝒚 = 𝒈 = (𝒈𝟏 𝒙 , 𝒈𝟐 𝒙)

= 𝛔 𝑾𝒙 + 𝒃 = 𝜎 𝒛
Decomposition into
linear and activation part

𝑾

𝑤𝟏𝟏

𝑤𝟏𝟒

𝑤𝟐𝟒

Vector-valued function in
four arguments

36

𝑏'

Sometimes just write
biases into state

x4

Network view of composed functions1)

37

w(2)
ij

x1

x2

x3

w(1)
ij

Hidden layer(s) Output layer

²𝑦1

²𝑦2

²𝒚 = 𝒇 (𝒈 (𝒙 ; 𝑾 𝟏 , 𝒃𝟏); 𝑾 𝟐 , 𝒃𝟐)

o1

o2

h1

h2

h3

h4

h5

i: layer i
𝒃Y : Bias in i
W(i): weight matrix

in i
𝛔 i: activation

function in i

ℝO →
𝒈

ℝÃ →
𝒇

ℝM

𝒙 ↦ 𝒉 ↦ ²𝒚

Input layer

= 𝛔2 (𝑾 𝟐 𝛔 1(𝑾 𝟏 𝒙 + 𝒃𝟏) + 𝒃𝟐)

𝒂Y: 𝝈𝒊(𝑾(𝒊)𝒂YF' + 𝒃Y)
activation in i

𝒛Y : 𝑾 𝒊 𝒂𝒊F𝟏 + 𝒃𝒊
linear ouptut
in layer i

1) You may find this also under the term multilayer perceptron in the literature

Non-linearities needed to learn complex (non-linear) representations of data,
otherwise the network would be just a linear function

More layers and neurons can approximate more complex functions

Activation functions

W'WM𝑥 = 𝑊𝑥

Full list: https://en.wikipedia.org/wiki/Activation_function

http://cs231n.github.io/assets/nn1/layer_sizes.jpeg

https://en.wikipedia.org/wiki/Activation_function

• Takes a real-valued number and “squashes” it
into range between 0 and 1.

• Earliest used activation function (neuron)
• Leads to vanishing gradient problem

ℝ4 → 0,1

http://adilmoujahid.com/images/activation.png

Sigmoid

Tanh: ℝ4 → −1,1
• Takes a real-valued number and

“squashes” it into range between -1 and 1
• Same probem of vanishing gradient
• tanh 𝑥 = 2𝑠𝑖𝑔𝑚 2𝑥 − 1

Rectified Linear Unit ReLu: ℝ4 → ℝ&4
• Takes a real-valued number and thresholds it

at zero
• Used in Deep Learning
• No vanishing gradient
• But: it is not differentiable (need relaxation)
• Dying ReLU

Activation Functions

Sample
labeled data

(batch)

Forward it
through the
network, get
predictions

Back-
propagate
the errors

Update the
network
weights

Backpropagation idea
• Generate error signal that measures difference between predictions and

target values

• Use error signal to change the weights and get more
accurate predictions backwards

• Underlying mathematics: chain rule

Backprop: efficient implementation of gradient descent

𝑑ℎ
𝑑𝑥

=
𝑑𝑓
𝑑𝑔

𝑑𝑔
𝑑𝑥

(for ℎ 𝑥 = 𝑓(𝑔(𝑥)))

Chain rule (1-dim)

Baydin, Pearlmutter, Radul, and Siskind

!a) Forward pass

x!

x2

E!y3$ t)

y2

@E=@y2

!b) Backward pass

w4

@E=@w4

w!

@E=@w!

w2

w3

y!

y3

@E=@y3

w5

w6

@E=@w6

@E=@E
@E=@w3

@E=@y!
@E=@w5

@E=@w2

Figure 1: Overview of backpropagation. (a) Training inputs xi are fed forward, generating
corresponding activations yi. An error E between the actual output y3 and the
target output t is computed. (b) The error adjoint is propagated backward,

giving the gradient with respect to the weights rwiE =
⇣

@E
@w1

, . . . ,
@E
@w6

⌘
, which is

subsequently used in a gradient-descent procedure. The gradient with respect to
inputs rxiE can be also computed in the same backward pass.

2.1 AD Is Not Numerical Di↵erentiation

Numerical di↵erentiation is the finite di↵erence approximation of derivatives using values of
the original function evaluated at some sample points (Burden and Faires, 2001) (Figure 2,
lower right). In its simplest form, it is based on the limit definition of a derivative. For
example, for a multivariate function f : Rn ! R, one can approximate the gradient rf =⇣

@f
@x1

, . . . ,
@f
@xn

⌘
using

@f(x)

@xi
⇡ f(x+ hei)� f(x)

h
, (1)

where ei is the i-th unit vector and h > 0 is a small step size. This has the advantage of
being uncomplicated to implement, but the disadvantages of performing O(n) evaluations
of f for a gradient in n dimensions and requiring careful consideration in selecting the step
size h.

Numerical approximations of derivatives are inherently ill-conditioned and unstable,5

with the exception of complex variable methods that are applicable to a limited set of
holomorphic functions (Fornberg, 1981). This is due to the introduction of truncation6 and

5. Using the limit definition of the derivative for finite di↵erence approximation commits both cardinal sins
of numerical analysis: “thou shalt not add small numbers to big numbers”, and “thou shalt not subtract
numbers which are approximately equal”.

6. Truncation error is the error of approximation, or inaccuracy, one gets from h not actually being zero.
It is proportional to a power of h.

4

Computational graph perspective

41

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 P z
= qz

for q = 𝑥 + y

Function f Partial Derivatives Chain rule applied

𝜕𝑓
𝜕𝑧

= 𝑞
𝜕𝑞
𝜕𝑥

= 1

𝜕𝑓
𝜕𝑞

= 𝑧

𝜕𝑞
𝜕𝑦

= 1

𝜕𝑓
𝜕𝑥

=
𝜕𝑓
𝜕𝑞
𝜕𝑞
𝜕𝑥

= 𝑧

𝜕𝑓
𝜕𝑦

=
𝜕𝑓
𝜕𝑞
𝜕𝑞
𝜕𝑦

= 𝑧

Gradient

∇<,¢,�𝑓 = (𝑧, 𝑧, 𝑞)

Forward pass:
function values and
local gradients
Backward: chain rule

5

-4 1

(3,1,1)

(∇<,¢,�𝑓) −2,5, −4 = −4,−4, 3)

(𝑓, �;
�¡
, �;
��

)

(𝑞,
𝜕𝑞
𝜕𝑥
,
𝜕𝑞
𝜕𝑦
)

𝜕𝑓
𝜕𝑥

𝜕𝑓
𝜕𝑦

𝜕𝑓
𝜕𝑧

(-12,-4,3)
*

y

z

x

+

-2

3

-4

-4

𝜕𝑓
𝜕𝑓

-4

(In particular:

What this example tells us about backprop

• Every operation in the computational graph given its
inputs can immediately compute two things:
1. its output value and

2. local gradients of its inputs

• The chain rule tells us literally that each operation
should take its local gradients and multiply them by the
gradient that flows backwards into it

• Backprop is an instance of ‘Reverse Mode Automatic
Differentiation’

42

Backpropagation: requirements on cost (loss)

1. Cost 𝐶 (we named it 𝐿 before) on whole data is sum of
costs on training instances

2. Cost is a function of the output ²𝒚

• Backpropagation in the following described for cost on
single training example

• With 1. assumption backpropagation can be combined
with gradiend descent.

• In the following going to use Hadamard product ⨀
𝑎
𝑏
⨀

𝑐
𝑑

=
𝑎𝑐
𝑏𝑑

43

Propagation of errors

Backpropagation works on errors

(from these in the end one gets ∇𝑾,𝒃 𝐶)

𝛿fØ ≔ �Ú
���

Û error in jth component in layer l

•

44

2.3. The Hadamard product, s� t

��� 43

on the desired output y, and you may wonder why we’re not regarding the cost also as
a function of y. Remember, though, that the input training example x is fixed, and so
the output y is also a fixed parameter. In particular, it’s not something we can modify by
changing the weights and biases in any way, i.e., it’s not something which the neural network
learns. And so it makes sense to regard C as a function of the output activations a

L alone,
with y merely a parameter that helps define that function.

2.3 The Hadamard product, s� t

The backpropagation algorithm is based on common linear algebraic operations – things
like vector addition, multiplying a vector by a matrix, and so on. But one of the operations
is a little less commonly used. In particular, suppose s and t are two vectors of the same
dimension. Then we use s� t to denote the elementwise product of the two vectors. Thus
the components of s� t are just (s� t)

j
= s

j
t

j
. As an example,

ñ
1

2

ô
�
ñ

3

4

ô
=

ñ
1 ⇤ 3

2 ⇤ 4

ô
=

ñ
3

8

ô
. (2.6)

This kind of elementwise multiplication is sometimes called the Hadamard product or Schur

product. We’ll refer to it as the Hadamard product. Good matrix libraries usually provide fast
implementations of the Hadamard product, and that comes in handy when implementing
backpropagation.

2.4 The four fundamental equations behind backpropagation

Backpropagation is about understanding how changing the weights and biases in a network
changes the cost function. Ultimately, this means computing the partial derivatives @ C/@ w

l

jk

and @ C/@ b
l

j
. But to compute those, we first introduce an intermediate quantity, �l

j
, which

we call the error in the j-th neuron in the l-th layer. Backpropagation will give us a procedure
to compute the error �l

j
, and then will relate �l

j
to @ C/@ w

l

jk
and @ C/@ b

l

j
.

To understand how the error is defined, imagine there is a demon in our neural network:

The demon sits at the j-th neuron in layer l. As the input to the neuron comes in, the demon
messes with the neuron’s operation. It adds a little change �z

l

j
to the neuron’s weighted

input, so that instead of outputting �(zl

j
), the neuron instead outputs �(zl

j
+�z

l

j
). This

change propagates through later layers in the network, finally causing the overall cost to
change by an amount @ C

@ z
l

j

�z
l

j
.

2

Demon changes 𝑧fØ to 𝑧fØ+ Δ𝑧fØ

Resulting cost 𝐶 changes by
�Ú
���

Û Δ𝑧fØ

Backpropagation algorithm (on single instance)

1. Input: Initialize input vector 𝒙 = 𝒂K

2. Feedforward: For i = 1,2, ... , M
𝒛𝒊 = 𝑾 𝒊 𝒂𝒊F𝟏 + 𝒃𝒊 and 𝒂𝒊 = 𝝈𝒊 𝒛𝒊

3. Compute error on last layer
𝜹ª = ∇²𝒚𝐶 ⨀𝜎A(𝒛ª) (BP1)

4. Backpropagate error: For i = M-1, M-2, ...,
𝜹Y= (𝒘𝒊&𝟏)�𝜹Y&' ⨀𝜎A(𝒛Y) (BP2)

5. Compute gradients
�Ú
�Þ�ß

[= 𝑎�YF'𝛿𝒋Y and
�Ú
�¯�

[= 𝛿f
Y (BP3/4)

45

Proof of (BP1) in backprop

• 𝛿fª = �Ú
���

à (by definition)

• 𝛿fª = ∑�
�Ú
�Dß

à
�Dß

à

���
à (chain rule;

k over all components in output)

• 𝛿fª = �Ú
�D�

à
�D�

à

���
à (

�Dß
à

���
à vanishes if 𝑘 ≠ 𝑗)

• 𝛿fª = �Ú
�D�

à 𝜎A(𝑧fª) (𝑎fª = 𝜎(𝑧fª))

46

Backpropagation algorithm (within MSGD)

1. Input: mini-batch of m training examples x

2. For each training example set corresponding
activation 𝒂𝒙,𝟏 and do the following

1) Feedforward: For i = 1,2, ... , M

𝒛𝒙,𝒊 = 𝑾 𝒊 𝒂𝒙,𝒊F𝟏 + 𝒃𝒊 and 𝒂𝒙,𝒊 = 𝝈𝒊 𝒛𝒙,𝒊

2) Compute error on last layer
𝜹𝒙,ª = ∇²𝒚𝐶< ⨀𝜎A(𝒛𝒙,ª)

3) Backpropagate error: For i = M-1, M-2, ...,
𝜹Y= (𝒘𝒊&𝟏)�𝜹𝒙,Y&' ⨀𝜎A(𝒛𝒙,Y)

3. Gradient descent:

𝒘Y = 𝒘Y − â
`
∑< 𝜹𝒙,Y 𝒂𝒙,YF'

�
and 𝒃Y = 𝒃Y − â

`
∑< 𝜹𝒙,Y

47

Problem: Vanishing gradient for sigmoid 𝜎

• Gradient of sigmoid:
𝜎′(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥))

48

5.2. What’s causing the vanishing gradient problem? Unstable gradients in deep neural nets
��� 161

along the network to affect z2:

�z2 ⇡ �0(z1)w2�b1. (5.4)

Again, that should look familiar: we’ve now got the first two terms in our claimed expression
for the gradient @ C/@ b1.

We can keep going in this fashion, tracking the way changes propagate through the rest
of the network. At each neuron we pick up a �0(z

j
) term, and through each weight we pick

up a w
j

term. The end result is an expression relating the final change �C in cost to the
initial change �b1 in the bias:

�C ⇡ �0(z1)w2�
0(z2) . . .�0(z4)

@ C

@ a4
�b1. (5.5)

Dividing by �b1 we do indeed get the desired expression for the gradient:

@ C

@ b1
= �0(z1)w2�

0(z2) . . .�0(z4)
@ C

@ a4
. (5.6)

Why the vanishing gradient problem occurs: To understand why the vanishing gradi-
ent problem occurs, let’s explicitly write out the entire expression for the gradient:

@ C

@ b1
= �0(z1)w2�

0(z2)w3�
0(z3)w4�

0(z4)
@ C

@ a4
. (5.7)

Excepting the very last term, this expression is a product of terms of the form w
j
�0(z

j
). To

understand how each of those terms behave, let’s look at a plot of the function �0:

�4 �2 0 2 4
0

0.1

0.2

Derivative of sigmoid function

The derivative reaches a maximum at �0(0) = 1/4. Now, if we use our standard approach to
initializing the weights in the network, then we’ll choose the weights using a Gaussian with
mean 0 and standard deviation 1. So the weights will usually satisfy |w

j
|< 1. Putting these

observations together, we see that the terms w
j
�0(z

j
) will usually satisfy |w

j
�0(z

j
)|< 1/4.

And when we take a product of many such terms, the product will tend to exponentially
decrease: the more terms, the smaller the product will be. This is starting to smell like a
possible explanation for the vanishing gradient problem.

To make this all a bit more explicit, let’s compare the expression for @ C/@ b1 to an
expression for the gradient with respect to a later bias, say @ C/@ b3. Of course, we haven’t

5
160
��� Why are deep neural networks hard to train?

We’re going to study the gradient @ C/@ b1 associated to the first hidden neuron. We’ll
figure out an expression for @ C/@ b1, and by studying that expression we’ll understand why
the vanishing gradient problem occurs.

I’ll start by simply showing you the expression for @ C/@ b1. It looks forbidding, but
it’s actually got a simple structure, which I’ll describe in a moment. Here’s the expression
(ignore the network, for now, and note that �0 is just the derivative of the � function):

The structure in the expression is as follows: there is a �0(z
j
) term in the product for each

neuron in the network; a weight w
j
term for each weight in the network; and a final @ C/@ a4

term, corresponding to the cost function at the end. Notice that I’ve placed each term in the
expression above the corresponding part of the network. So the network itself is a mnemonic
for the expression.

You’re welcome to take this expression for granted, and skip to the discussion of how it
relates to the vanishing gradient problem. There’s no harm in doing this, since the expression
is a special case of our earlier discussion of backpropagation. But there’s also a simple
explanation of why the expression is true, and so it’s fun (and perhaps enlightening) to take
a look at that explanation.

Imagine we make a small change �b1 in the bias b1. That will set off a cascading series
of changes in the rest of the network. First, it causes a change �a1 in the output from the
first hidden neuron. That, in turn, will cause a change �z2 in the weighted input to the
second hidden neuron. Then a change �a2 in the output from the second hidden neuron.
And so on, all the way through to a change �C in the cost at the output. We have

@ C

@ b1
⇡ �C

�b1
. (5.1)

This suggests that we can figure out an expression for the gradient @ C/@ b1 by carefully
tracking the effect of each step in this cascade.

To do this, let’s think about how �b1 causes the output a1 from the first hidden neuron
to change. We have a1 = �(z1) = �(w1a0 + b1), so

�a1 ⇡
@ �(w1a0 + b1)

@ b1
�b1 = �0(z1)�b1. (5.2)

That �0(z1) term should look familiar: it’s the first term in our claimed expression for the
gradient @ C/@ b1. Intuitively, this term converts a change �b1 in the bias into a change �a1

in the output activation. That change �a1 in turn causes a change in the weighted input
z2 = w2a1 + b2 to the second hidden neuron:

�z2 ⇡
@ z2

@ a1
�a1 = w2�a1. (5.3)

Combining our expressions for�z2 and�a1, we see how the change in the bias b1 propagates

5

Max{𝜎A 𝑥 }
= 0.25

Gradients in linear network of depth 4

Gradient vanishes moving backwards

≤ 0,25 ≤ 0,25≤ 0,25

• Assume |𝑤𝑖 | ≤ 1 (e.g. 𝑤Y ~ 𝑁(0,1))
• Then: | 𝑤𝑖𝜎A(𝑧Y) ≤ 0,25
• Exponential decrease from later derivatives to earlier ones due to chain rule

Problem: Vanishing gradient with large input

• Gradient of sigmoid:
𝜎′(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥))

49

5.2. What’s causing the vanishing gradient problem? Unstable gradients in deep neural nets
��� 161

along the network to affect z2:

�z2 ⇡ �0(z1)w2�b1. (5.4)

Again, that should look familiar: we’ve now got the first two terms in our claimed expression
for the gradient @ C/@ b1.

We can keep going in this fashion, tracking the way changes propagate through the rest
of the network. At each neuron we pick up a �0(z

j
) term, and through each weight we pick

up a w
j

term. The end result is an expression relating the final change �C in cost to the
initial change �b1 in the bias:

�C ⇡ �0(z1)w2�
0(z2) . . .�0(z4)

@ C

@ a4
�b1. (5.5)

Dividing by �b1 we do indeed get the desired expression for the gradient:

@ C

@ b1
= �0(z1)w2�

0(z2) . . .�0(z4)
@ C

@ a4
. (5.6)

Why the vanishing gradient problem occurs: To understand why the vanishing gradi-
ent problem occurs, let’s explicitly write out the entire expression for the gradient:

@ C

@ b1
= �0(z1)w2�

0(z2)w3�
0(z3)w4�

0(z4)
@ C

@ a4
. (5.7)

Excepting the very last term, this expression is a product of terms of the form w
j
�0(z

j
). To

understand how each of those terms behave, let’s look at a plot of the function �0:

�4 �2 0 2 4
0

0.1

0.2

Derivative of sigmoid function

The derivative reaches a maximum at �0(0) = 1/4. Now, if we use our standard approach to
initializing the weights in the network, then we’ll choose the weights using a Gaussian with
mean 0 and standard deviation 1. So the weights will usually satisfy |w

j
|< 1. Putting these

observations together, we see that the terms w
j
�0(z

j
) will usually satisfy |w

j
�0(z

j
)|< 1/4.

And when we take a product of many such terms, the product will tend to exponentially
decrease: the more terms, the smaller the product will be. This is starting to smell like a
possible explanation for the vanishing gradient problem.

To make this all a bit more explicit, let’s compare the expression for @ C/@ b1 to an
expression for the gradient with respect to a later bias, say @ C/@ b3. Of course, we haven’t

5
160
��� Why are deep neural networks hard to train?

We’re going to study the gradient @ C/@ b1 associated to the first hidden neuron. We’ll
figure out an expression for @ C/@ b1, and by studying that expression we’ll understand why
the vanishing gradient problem occurs.

I’ll start by simply showing you the expression for @ C/@ b1. It looks forbidding, but
it’s actually got a simple structure, which I’ll describe in a moment. Here’s the expression
(ignore the network, for now, and note that �0 is just the derivative of the � function):

The structure in the expression is as follows: there is a �0(z
j
) term in the product for each

neuron in the network; a weight w
j
term for each weight in the network; and a final @ C/@ a4

term, corresponding to the cost function at the end. Notice that I’ve placed each term in the
expression above the corresponding part of the network. So the network itself is a mnemonic
for the expression.

You’re welcome to take this expression for granted, and skip to the discussion of how it
relates to the vanishing gradient problem. There’s no harm in doing this, since the expression
is a special case of our earlier discussion of backpropagation. But there’s also a simple
explanation of why the expression is true, and so it’s fun (and perhaps enlightening) to take
a look at that explanation.

Imagine we make a small change �b1 in the bias b1. That will set off a cascading series
of changes in the rest of the network. First, it causes a change �a1 in the output from the
first hidden neuron. That, in turn, will cause a change �z2 in the weighted input to the
second hidden neuron. Then a change �a2 in the output from the second hidden neuron.
And so on, all the way through to a change �C in the cost at the output. We have

@ C

@ b1
⇡ �C

�b1
. (5.1)

This suggests that we can figure out an expression for the gradient @ C/@ b1 by carefully
tracking the effect of each step in this cascade.

To do this, let’s think about how �b1 causes the output a1 from the first hidden neuron
to change. We have a1 = �(z1) = �(w1a0 + b1), so

�a1 ⇡
@ �(w1a0 + b1)

@ b1
�b1 = �0(z1)�b1. (5.2)

That �0(z1) term should look familiar: it’s the first term in our claimed expression for the
gradient @ C/@ b1. Intuitively, this term converts a change �b1 in the bias into a change �a1

in the output activation. That change �a1 in turn causes a change in the weighted input
z2 = w2a1 + b2 to the second hidden neuron:

�z2 ⇡
@ z2

@ a1
�a1 = w2�a1. (5.3)

Combining our expressions for�z2 and�a1, we see how the change in the bias b1 propagates

5

Max{𝜎A 𝑥 }
= 0.25

Gradients in linear network of depth 4

Gradient vanishes for large inputs to activation functions

• If |𝑥| very large , then 𝜎(𝑥) or (1-- 𝜎(𝑥)) becomes zero
• So 𝜎′(𝑥) becomes zero

NEARLY THE END

50

Take Home Message

Follow the gradient – with care

51

APPENDIX
Uhhh, a lecture with a hoepfully useful

52

Color Convention in this Course

• Formulae, when occurring inline

• Newly introduced terminology and definitions

• Important results (observations, theorems) as well as
emphasizing some aspects

• Examples are given with standard orange with possibly
light orange frame

• Comments and notes in nearly opaque post-it

• Algorithms

• Reminders (in the grey fog of your memory)

53

Todays lecture is based on the following

• Jonathon Hare: Lectures 2,3,4,6 of course „COMP6248 Differentiable
Programming (and some Deep Learning“)
http://comp6248.ecs.soton.ac.uk/

• Nielsen: Neural Networks and Deep Learning.
http://neuralnetworksanddeeplearning.com/, chapters 1,2

• https://medium.com/@ramrajchandradevan/the-evolution-of-gradient-
descend-optimization-algorithm-4106a6702d39

• I. Lorentzou: Introduction to Deep Learning, link

54

http://comp6248.ecs.soton.ac.uk/
http://neuralnetworksanddeeplearning.com/
https://medium.com/@ramrajchandradevan/the-evolution-of-gradient-descend-optimization-algorithm-4106a6702d39
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj5wNC8_77sAhUj8uAKHXeABggQFjAAegQIAhAC&url=http%3A%2F%2Fwww2.cs.uh.edu%2F~ordonez%2Fppt%2Fdeepnet-lourentzou.ppt&usg=AOvVaw1PmZYVQDHrUsM6V85GRQXf

