PROBABILISTIC AND DIFFERENTIABLE PROGRAMMING V2: Gradient Descent

Özgür L. Özçep
Universität zu Lübeck
Institut für Informationssysteme

Agenda for today's lecture

Gradient descent (GD)

1. Differentiation

$$
\frac{d f}{d x}
$$

2. Basic GD and variants

$$
\theta_{t+1} \leftarrow \theta_{t}-\eta \nabla_{\theta} L
$$

3. Backpropagation

The big idea: follow the gradient

- Fundamentally, we're interested in machines that we train by
- optimising parameters
- How do we select those parameters?
- In deep learning/differentiable programming we typically define an objective function to optimize
- minimise (in case of error or loss say) or
- maximise with respect to those parameters
- We're looking for points at which the gradient of the objective function is zero w.r.t. the parameters

The big idea: follow the gradient

- Gradient based optimisation is a BIG field!
- First order methods, second order methods, subgradient methods...
- With deep learning we're primarily interested in firstorder methods ${ }^{11}$.
- Primarily using variants of gradient descent:
- function $F(x)$ has a (not necessarily unique or global) minimum at a point $x=a$ where a is given by applying

$$
a_{n+1}=a_{n}-\alpha \nabla F\left(a_{n}\right)
$$

until convergence

1) Second order gradient optimisers are potentially better, but for systems with many variables are currently impractical as they require computing the Hessian matrix.

DIFFERENTIATION

Gradient in one dimension

- Gradient of a straight line is $\Delta y / \Delta x$

$$
1
$$

a

- For arbitrary real-valued functions $f(x)$ approximate the derivative, $\frac{d f}{d x}(a)$ using the gradient of the secant line trough $(a, f(a))$ and $(a+h, f(a+h))$ for small h

$$
\begin{array}{rlr}
f^{\prime}(a) & =\frac{d f}{d x}(a) \approx \frac{\Delta f}{\Delta a} \approx \frac{f(a+h)-f(a)}{h} & \text { (Newton's difference quotient) } \\
\frac{d f}{d x}(a) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} & \text { (Derivative of } f \text { at } a \text {) }
\end{array}
$$

Example: Derivative of a quadratic function

$$
\begin{aligned}
& y=x^{2} \\
& \frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& \frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{x^{2}+2 h x+h^{2}-x^{2}}{h} \\
& \frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{2 h x+h^{2}}{h} \\
& \frac{d y}{d x}=\lim _{h \rightarrow 0} 2 x+h \\
& \frac{d y}{d x}=2 x
\end{aligned}
$$

Derivatives of „deeper" functions

- Deep learning is all about optimising deeper functions: functions that are compositions of other functions, e.g.

$$
h=(f \circ g)(x)=f(g(x))
$$

- Derivative can be calculated by chain rule

Chain rule (1-dim)

$$
\frac{d h}{d x}=\frac{d f}{d g} \frac{d g}{d x} \quad \text { for } \quad h(x)=f(g(x))
$$

Example for chain rule

$$
\begin{aligned}
& h(x)=x^{4}=\left(x^{2}\right)^{2}=f(g(x)) \\
& \frac{d h}{d x}=2 \cdot x^{2} \cdot 2 x=4 x^{3}
\end{aligned}
$$

You may verify this also directly

$$
\begin{aligned}
& \frac{d h}{d x}=\lim _{h \rightarrow 0} \frac{(x+h)^{4}-x^{4}}{h} \\
& \frac{d h}{d x}=\lim _{h \rightarrow 0} \frac{h^{4}+4 h^{3} x+6 h^{2} x^{2}+4 h x^{3}+x^{4}-x^{4}}{h} \\
& \frac{d h}{d x}=\lim _{h \rightarrow 0} h^{3}+4 h^{2} x+6 h x^{2}+4 x^{3}=4 x^{3}
\end{aligned}
$$

Generalization: Vector functions $\boldsymbol{y}(t)$

- Split into its constituent coordinate functions:

$$
\boldsymbol{y}(t)=\left(y_{1}(t), \ldots, y_{n}(t)\right)
$$

- Derivative is a vector (the tangent vector),

$$
\boldsymbol{y}^{\prime}(t)=\left(y_{1}^{\prime}(t), \ldots, y_{n}^{\prime}(t)\right)
$$

which consists of the derivatives of the coordinate functions.

- Equivalently

$$
\boldsymbol{y}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\boldsymbol{y}(t+h)-\boldsymbol{y}(t)}{h}
$$

(if the limit exists)

Differentiation with multiple variables

$$
\begin{aligned}
& f(x, y)=x^{2}+x y+y^{2} \\
& \frac{\partial f}{\partial x}=2 x+y \\
& \frac{\partial f}{\partial y}=x+2 y
\end{aligned}
$$

Partial derivative of $f\left(x_{1}, \ldots x_{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}$ w.r.t. x_{i} at $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right)$

$$
\frac{\partial f}{\partial x_{i}}(\boldsymbol{a})=\lim _{h \rightarrow 0} \frac{f\left(a_{1}, \ldots, a_{i}+h, \ldots, a_{n}\right)-f(\boldsymbol{a})}{h}
$$

Gradient of $f\left(x_{1}, \ldots x_{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}$ at $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right)$

$$
\nabla f(\boldsymbol{a})=\left(\frac{\partial f}{\partial x_{1}}(\boldsymbol{a}), \ldots, \frac{\partial f}{\partial x_{n}}(\boldsymbol{a})\right)
$$

$$
\begin{gathered}
\text { Jacobian of } \boldsymbol{f}\left(x_{1}, \ldots x_{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \text { at } \boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right) \quad\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(\boldsymbol{a}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\boldsymbol{a}) \\
\vdots & \ddots & \vdots \\
\frac{\partial f}{\partial \boldsymbol{x}}(\boldsymbol{a})=\left(\begin{array}{c}
\nabla f_{1}(\boldsymbol{a}) \\
\vdots \\
\nabla f_{m}(\boldsymbol{a})
\end{array}\right)=\left(\frac{\partial f_{i}}{\partial x_{j}}(\boldsymbol{a})\right)_{1 \leq i \leq m ; 1 \leq j \leq n}^{\partial x_{1}}(\boldsymbol{a}) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(\boldsymbol{a})
\end{array}\right)
\end{gathered}
$$

Linear algebra reminder

- Given vectors $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$
- Scalar product : $\boldsymbol{x} \cdot \boldsymbol{y}=\sum_{i=1}^{n} x_{i} y_{i}$
- Jacobian is given as an $m \times n$ matrix

$$
\mathrm{A}=\left(\mathrm{a}_{i j}\right)_{1 \leq i \leq m, 1 \leq j \leq n} \quad \text { (m rows, } \mathrm{n} \text { columns) }
$$

- An $m \times n$ matrix A defines a linear mapping

A: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ via

$$
\mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right) \mapsto A x=\left(\begin{array}{c}
\sum_{i=1}^{n} \\
a_{1, i} x_{i} \\
\sum_{i=1}^{n} \\
a_{2, i} x_{i} \\
\sum_{i=1}^{n} \\
\ddot{a}_{m, i} x_{i}
\end{array}\right)
$$

(Linearity: $\mathrm{A}(\lambda \mathbf{x}+\mu \boldsymbol{y})=\lambda A x+\mu A y \quad$ where x, y vectors and λ, μ scalars)

Linear algebra reminder

Matrix multiplication $C=A B$ for
$m \times n$ matrix A and $n \times p$ matrix B

Transposed matrix A^{\top} : change columns and rows

Gradients in Machine Learning

The kinds of functions (and programs) that are usually optimized in ML have following properties:

- They are scalar-valued
- There are multiple losses, but ultimately we can just consider optimising with respect to the sum of the losses.
- They involve multiple variables, which are often wrapped up in the form of vectors or matrices, and more generally tensors.

How will we find the gradients of these?

The chain rule for vectors

Given functions f, g with

$$
\begin{aligned}
& -\mathbb{R}^{m} \xrightarrow[\rightarrow]{g} \quad \mathbb{R}^{n} \quad \stackrel{f}{\rightarrow} \quad \mathbb{R} \\
& -\boldsymbol{x} \quad \mapsto
\end{aligned} \quad \boldsymbol{y}=g(\boldsymbol{x}) \mapsto \quad z=f(\boldsymbol{y})
$$

the chain rule gives the partial derivatives

$$
\frac{\partial z}{\partial x_{i}}=\sum_{j} \frac{\partial z}{\partial y_{j}} \frac{\partial y_{j}}{\partial x_{i}}
$$

(in short form: $\quad \nabla_{x} z=\left(\frac{\partial y}{\partial x}\right)^{\top} \nabla_{y} z$
where $\left(\frac{\partial y}{\partial x}\right)$ is the $\mathrm{n} \times \mathrm{m}$ Jacobian matrix of g)

Chain rule for Tensors (Informal)

- Tensors (as understood in the ML literature) generalize vectors (1D-tensors) and matrices (2D-tensors)
- 3D-tensor: Layer of matrices
- nD-tensor $A_{i_{1} \ldots i_{n}}$ is indexed by n-tuples ($i_{1} \ldots i_{n}$)
- Needed e.g. to model layers of convolution matrices etc.
- Gradients of tensors by
- flattening them into vectors
- computing the vector-valued gradient
- then reshaping the gradient back into a tensor.
- This is just multiplying Jacobians by gradients again

The chain rule für tensors (formally)

- Aim: Calculate: $\nabla_{X} z$ for scalar z and tensor X
- Indices into X have multiple coordinates, but we can generalise by using a single variable i to represent the complete tuple of indices.
- For all index tuples i :

$$
\left(\nabla_{X} Z\right)_{i}=\frac{\partial z}{\partial X_{i}}
$$

For $\boldsymbol{Y}=g(\boldsymbol{X})$ and $z=f(\boldsymbol{Y})$

$$
\nabla_{X^{Z}}=\sum_{j}\left(\nabla_{\boldsymbol{X}} Y_{j}\right) \frac{\partial z}{\partial Y_{j}}
$$

Example for tensor chain rule

- Let $\boldsymbol{D}=\boldsymbol{X} \boldsymbol{W}$ where the rows of $X \in \mathbb{R}^{n \times m}$ contains some fixed features, and $W \in \mathbb{R}^{m \times h}$ is a matrix of weights.
- Also let $L=f(\boldsymbol{D})$ be some scalar function of \boldsymbol{D} that we wish to minimise.
- What are the derivatives of L with respect to the weights W ?
- Start by considering a specific weight $W_{u v}$
- $\frac{\partial L}{\partial W_{u v}}=\sum_{i, j} \frac{\partial L}{\partial D_{i j}} \frac{\partial D_{i j}}{\partial W_{u v}}$
(by chain rule)
- $\frac{\partial D_{i j}}{\partial W_{u v}}=0$ if $j \neq v$ because $D_{i j}$ is the scalar product of row i of \boldsymbol{X} and column j of \boldsymbol{W}.
- Therefore: $\sum_{i, j} \frac{\partial L}{\partial D_{i j}} \frac{\partial D_{i j}}{\partial W_{u v}}=\sum_{i} \frac{\partial L}{\partial D_{i v}} \frac{\partial D_{i v}}{\partial W_{u v}}$
-What is $\frac{\partial D_{i v}}{\partial W_{u v}}$?

$$
\begin{aligned}
& -D_{i v}=\sum_{1 \leq k \leq m} X_{i k} W_{k v} \\
& -\frac{\partial D_{i v}}{\partial W_{u v}}=\frac{\partial}{\partial W_{u v}} \sum_{1 \leq k \leq q} X_{i k} W_{k v}=\sum_{1 \leq k \leq m} \frac{\partial}{\partial W_{u v}} X_{i k} W_{k v}=X_{i u}
\end{aligned}
$$

- Putting every together, we have: $\frac{\partial L}{\partial W_{u v}}=\sum_{i} \frac{\partial L}{\partial D_{i j}} X_{i u}$
- $=\sum_{i} X_{i u} \frac{\partial L}{\partial D_{i j}}=\sum_{i} X_{u i}^{\top} \frac{\partial L}{\partial D_{i j}}$
- Doing this for arbitrary $W_{i u}$ leads to
- $\frac{\partial L}{\partial \boldsymbol{W}}=\boldsymbol{X}^{\top} \frac{\partial L}{\partial \boldsymbol{D}}$

VANILLA GRADIENT DESCENT, VARIANTS AND BEYOND

Vanilla Gradient Descent (VGD)

- Given: loss function I, dataset D, and model g, parameters θ; number of passes (epochs) over the data, learning rate η
- Total loss:

$$
L=-\sum_{(x, y) \in D} l(g(x, \theta), y)
$$

VGD:

$$
\theta_{t+1} \leftarrow \theta_{t}-\eta \nabla_{\theta} L
$$

+ Good statistical properties (very low variance)
Problems of *GD
- Very data inefficient (particularly when data has many similarities)
- Doesn't scale to infinite data (online learning)

Why the hell follow the gradient?

- Make shift in parameter space $\Delta \theta=\left(\Delta \theta_{1}, \Delta \theta_{2}\right)$
- Calculus says:

$$
\Delta L \approx \frac{\partial L}{\partial \theta_{1}} \Delta \theta_{1}+\frac{\partial L}{\partial \theta_{2}} \Delta \theta_{2}=\nabla \mathrm{L} \Delta \boldsymbol{\theta}
$$

- Loss should decrease:
- Try:

$$
\begin{array}{r}
\Delta L \leq 0 \\
\Delta \theta=-\eta \nabla L \\
\Delta L \approx-\eta \nabla L \cdot \nabla L=-\eta| | \nabla L \|^{2} \\
\left|\mid \nabla L \|^{2} \geq 0\right.
\end{array}
$$

- Helps, because and

Linear algebra reminder:

- Norm of $v: \quad| | v \|=v \cdot v$ (for scalar product $\cdot)$

Let's talk abut loss - only roughly for now

- Gradient descent algorithms depend on loss function l
- For now think of loss function I as mean squared error $l_{\text {MSE }}$
- We will see other ones and their interplay with activation functions in the next lecture

Mean squared error on one single training example

\[

\]

Stochastic Gradient Descent (SGD)

- Given: loss function I, dataset D, model g, parameters θ, number of epochs, learning rate η

$$
\begin{array}{ll}
\text { SGD : } \quad \text { In each epoch do for each }(x, y) \in D \\
& \theta_{t+1} \leftarrow \theta_{t}-\eta \nabla_{\theta} l\left(g\left(x, \theta_{t}\right), y\right)
\end{array}
$$

+ Faster than VGD
Problems of *GD
+ Online learning
- Poor statistical properties (high fluctuation)
- computational inefficiency

Mini-Batch SGD (MGD)

- Given: mini-batch size m (common: 50-256), loss function l, dataset D, model g, parameters θ, number of epochs, learning rate η
- Batch loss: $L_{b(t)}=\sum_{(x, y) \in b(t)} l(g(x, \theta), y)$
where $b(t)$ a subset of D of cardinality m.

$$
\text { MSGD : } \quad \theta_{t+1} \leftarrow \theta_{t}-\eta \nabla_{\theta_{t}} L_{b(t)}
$$

+ reduces the parameter-updates' variance
+ stable convergencevery
+ computational efficiency

Problems of *GD

1. How to choose rate
2. No learning rate schedules
3. Trapping in local minima
4. Inefficient for sparse data set

Problem 1: Choosing the learning rate $\eta^{1)}$

- Choice of learning rate is extremely important
- But we have to reason about the 'loss landscape'
- Types of cost functions (see next lecture)
- Most convergence analysis of optimisation algorithms assumes a convex loss landscape
- Easy to reason about
- (S)GD converges to optimal solution for a variety of $\eta \mathrm{s}$
- Insights into potential problems in the non-convex case
- Deep Learning is highly non-convex
- Many local minima; Plateaus; Saddle points; Symmetries (permutation, etc)

„Beyond": Accelerated Gradient Methods

- Accelerated gradient methods use a leakyaverage of the gradient, rather than the instantaneous gradient estimate at each time step
- A physical analogy would be one of the momentum a ball picks up rolling down a hill...
- Helps addressing the *GD problems

Mini-Batch SGD with Momentum (MSGDM)

- Given: momentum parameter β (0,9 is good choice), batch size m, batch loss $L_{b(t)}$, number of epochs, learning rate η

MSGDM : update θ by accumulated velocity

$$
\begin{aligned}
v_{t+1} & \leftarrow \beta v_{t}+\nabla_{\theta} L_{b(t)} \\
\theta_{t+1} & \leftarrow \theta_{t}-\eta v_{t+1}
\end{aligned}
$$

+ The momentum method allows to accumulate velocity in directions of low curvature that persist across multiple iterations
+ This leads to accelerated progress in low curvature directions compared to gradient descent

Problem 2: Scheduling learning rates

- In practice you want to decay your learning rate over time
- Smaller steps will help you get closer to the minima
- But don't do it to early, else you might get stuck Something of an art form!
- 'Grad Student Descent' or GDGS ('Gradient Descent by Grad Student')
- Tackling Plateaus (Common Heuristic approach)
- if the loss hasn't improved (within some tolerance) for k epochs then drop the Ir by a factor of 10

Problem 3: Stucking into local minima

- Cycle the learning rate up and down (possibly annealed), with a different Ir on each batch
- See L. N. Smith. Cyclical Learning Rates for Training Neural Networks. arXiv e-prints, page https://arxiv.org/abs/1506.01186, June 2015.

SOTA: More advanced optimisers

- Here only name dropping and some fancy gif from here
- Adagrad (dynamic decrease, second moment used)
- RMSProp (decouple learning rate from gradient)
- Adam (BestOf(RMSProp,MSDGM))
- J. Hare says:

- If you're in a hurry to get results use Adam
- If you have time (or a Grad Student at hand), then use SGD (with momentum) and work on tuning the learning rate
- If you're implementing something from a paper, then follow what they did!

BACKPROPAGATION

Network view of single function ${ }^{1)}$

$$
\begin{array}{lll}
\mathbb{R}^{4} & \xrightarrow{g} & \mathbb{R}^{2} \\
\boldsymbol{x} & \mapsto & \hat{\boldsymbol{y}}=\boldsymbol{g}=\left(\boldsymbol{g}_{1}(\boldsymbol{x}), \boldsymbol{g}_{2}(\boldsymbol{x})\right) \\
\widehat{\boldsymbol{y}}=\boldsymbol{g}(\boldsymbol{x} ; \boldsymbol{W}, \boldsymbol{b})=\boldsymbol{\sigma}(W \boldsymbol{x}+\boldsymbol{b})=\sigma(\mathbf{z})
\end{array}
$$

Network model

$\boldsymbol{b}:$	Bias vector $\left(b_{1}, b_{2}\right)$
$\boldsymbol{W}=$	weight matrix
	$(w)_{1 \leq i \leq 2 ; 1 \leq j \leq 4}:$
z:	$\boldsymbol{W} \boldsymbol{x}+\boldsymbol{b}$
	linear output
$\boldsymbol{\sigma}:$	activation function

Vector-valued function in four arguments

Decomposition into linear and activation part

Network view of single function

Example linear output

$$
\begin{aligned}
\mathbf{W} & =\left(\begin{array}{cccc}
1 & 2 & -1 & -2 \\
3 & 4 & -3 & 4
\end{array}\right) \mathbf{x}=\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right) \boldsymbol{b}=\binom{5}{6} \\
\boldsymbol{W} \boldsymbol{x} & =\binom{1 \cdot 1+2 \cdot 2+-1 \cdot 3-2 \cdot 4}{3 \cdot 1+4 \cdot 2+-3 \cdot 3+4 \cdot 4} \\
& =\binom{-6}{18} \\
\boldsymbol{W} \boldsymbol{x}+\boldsymbol{b} & =\binom{-6}{18}+\binom{5}{6}=\binom{-1}{24}
\end{aligned}
$$

$$
\begin{array}{ccc}
\mathbb{R}^{4} & \xrightarrow{g} & \mathbb{R}^{2} \\
\boldsymbol{x} & \mapsto \quad \widehat{y}=\boldsymbol{g}=\left(\boldsymbol{g}_{1}(\boldsymbol{x}), \boldsymbol{g}_{2}(\boldsymbol{x})\right) \\
\widehat{\boldsymbol{y}}=\boldsymbol{g}(\boldsymbol{x} ; \boldsymbol{W}, \boldsymbol{b})=\boldsymbol{\sigma}(W \boldsymbol{x}+\boldsymbol{b})=\sigma(\boldsymbol{z})
\end{array}
$$

Vector-valued function in four arguments

Decomposition into linear and activation part

Network view of single function

$$
\begin{array}{ccc}
\mathbb{R}^{4} & \xrightarrow{g} & \mathbb{R}^{2} \\
\boldsymbol{x} & \mapsto & \mapsto \boldsymbol{y}=\boldsymbol{g}=\left(\boldsymbol{g}_{1}(\boldsymbol{x}), \boldsymbol{g}_{2}(\boldsymbol{x})\right) \\
\widehat{\boldsymbol{y}}=\boldsymbol{g}(\boldsymbol{x} ; \boldsymbol{W}, \boldsymbol{b}) & =\boldsymbol{\sigma}(W \boldsymbol{x}+\boldsymbol{b})=\sigma(\boldsymbol{z})
\end{array}
$$

Vector-valued function in four arguments

Decomposition into linear and activation part

Network view of composed functions ${ }^{1)}$

1) You may find this also under the term multilayer perceptron in the literature

UNIVERSIIAT ZU LOBECK
INSTITUT FUR INFORMATIONSSYSTEME

Activation functions

Non-linearities needed to learn complex (non-linear) representations of data, otherwise the network would be just a linear function

$$
\mathrm{W}_{1} \mathrm{~W}_{2} x=W x
$$

http://cs231n.github.io/assets/nn1/layer_sizes.jpeg
More layers and neurons can approximate more complex functions

Full list: https://en.wikipedia.org/wiki/Activation function

Activation Functions

Sigmoid $\mathbb{R}^{n} \rightarrow[0,1]$

- Takes a real-valued number and "squashes" it into range between 0 and 1 .
- Earliest used activation function (neuron)
- Leads to vanishing gradient problem

Tanh: $\mathbb{R}^{n} \rightarrow[-1,1]$

- Takes a real-valued number and "squashes" it into range between -1 and 1
- Same probem of vanishing gradient
- $\tanh (x)=2 \operatorname{sigm}(2 x)-1$

Rectified Linear Unit ReLu: $\mathbb{R}^{n} \rightarrow \mathbb{R}_{+}^{n}$

- Takes a real-valued number and thresholds it at zero
- Used in Deep Learning
- No vanishing gradient
- But: it is not differentiable (need relaxation)
- Dying ReLU

Backprop: efficient implementation of gradient descent

Sample
labeled data

(batch) \longrightarrow\begin{tabular}{c}
Forward it

through the

network, get

predictions

$\quad \longrightarrow$

Back-

propagate

the errors

\longrightarrow

Update the

network

weights
\end{tabular}

Backpropagation idea

- Generate error signal that measures difference between predictions and target values
- Use error signal to change the weights and get more accurate predictions backwards
- Underlying mathematics: chain rule Chain rule (1-dim)

$$
\frac{d h}{d x}=\frac{d f}{d g} \frac{d g}{d x}
$$

$($ for $h(x)=f(g(x)))$

Computational graph perspective

Function f

$$
\begin{aligned}
f(x, y, z) & =(x+y) \cdot \mathrm{z} \\
& =\mathrm{qz} \\
\text { for } \mathrm{q}= & x+\mathrm{y}
\end{aligned}
$$

Partial Derivatives

$$
\begin{array}{ll}
\frac{\partial f}{\partial z}=q & \frac{\partial f}{\partial q}=z \\
\frac{\partial q}{\partial x}=1 & \frac{\partial q}{\partial y}=1
\end{array}
$$

Chain rule applied

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{\partial f}{\partial q} \frac{\partial q}{\partial x}=z \\
& \frac{\partial f}{\partial y}=\frac{\partial f}{\partial q} \frac{\partial q}{\partial y}=z
\end{aligned}
$$

Gradient

$$
\nabla_{x, y, z} f=(z, z, q) \quad\left(\text { In particular: } \quad\left(\nabla_{x, y, z} f\right)(-2,5,-4)=(-4,-4,3)\right)
$$

Forward pass:
function values and local gradients
Backward: chain rule

What this example tells us about backprop

- Every operation in the computational graph given its inputs can immediately compute two things:

1. its output value and
2. local gradients of its inputs

- The chain rule tells us literally that each operation should take its local gradients and multiply them by the gradient that flows backwards into it
- Backprop is an instance of 'Reverse Mode Automatic Differentiation'

Backpropagation: requirements on cost (loss)

1. Cost C (we named it L before) on whole data is sum of costs on training instances
2. Cost is a function of the output $\widehat{\boldsymbol{y}}$

- Backpropagation in the following described for cost on single training example
- With 1. assumption backpropagation can be combined with gradiend descent.
- In the following going to use Hadamard product \odot

$$
\binom{a}{b} \odot\binom{c}{d}=\binom{a c}{b d}
$$

Propagation of errors

Backpropagation works on errors

 (from these in the end one gets $\nabla_{\boldsymbol{W}, \boldsymbol{b}} C$)$$
\delta_{j}^{l}:=\frac{\partial C}{\partial z_{j}^{l}} \quad \text { error in } j^{\text {th }} \text { component in layer I }
$$

Demon changes z_{j}^{l} to $z_{j}^{l}+\Delta z_{j}^{l}$
Resulting cost C changes by $\frac{\partial C}{\partial z_{j}^{l}} \Delta z_{j}^{l}$

Backpropagation algorithm (on single instance)

1. Input: Initialize input vector $\boldsymbol{x}=\boldsymbol{a}^{0}$
2. Feedforward: For $\mathrm{i}=1,2, \ldots, \mathrm{M}$

$$
z^{i}=\boldsymbol{W}^{(i)} \boldsymbol{a}^{i-1}+\boldsymbol{b}_{\boldsymbol{i}} \text { and } \boldsymbol{a}^{i}=\boldsymbol{\sigma}_{\boldsymbol{i}}\left(z^{i}\right)
$$

3. Compute error on last layer

$$
\begin{equation*}
\boldsymbol{\delta}^{M}=\nabla_{\widehat{\boldsymbol{y}}} C \odot \sigma^{\prime}\left(\mathbf{z}^{M}\right) \tag{BP1}
\end{equation*}
$$

4. Backpropagate error: For $\mathrm{i}=\mathrm{M}-1, \mathrm{M}-2, \ldots$,

$$
\begin{equation*}
\boldsymbol{\delta}^{i}=\left(\boldsymbol{w}^{i+1}\right)^{\top} \boldsymbol{\delta}^{i+1} \odot \sigma^{\prime}\left(\mathbf{z}^{i}\right) \tag{BP2}
\end{equation*}
$$

5. Compute gradients

$$
\begin{equation*}
\frac{\partial C}{\partial w_{j k}^{i}}=\quad a_{k}^{i-1} \delta_{j}^{i} \quad \text { and } \quad \frac{\partial C}{\partial b_{j}^{i}}=\delta_{j}^{i} \tag{BP3/4}
\end{equation*}
$$

Proof of (BP1) in backprop

- $\delta_{j}^{M}=\frac{\partial C}{\partial z_{j}^{M}}$
- $\delta_{j}^{M}=\sum_{k} \frac{\partial C}{\partial a_{k}^{M}} \frac{\partial a_{k}^{M}}{\partial z_{j}^{M}}$
(chain rule;
k over all components in output)
- $\delta_{j}^{M}=\frac{\partial c}{\partial a_{j}^{M}} \frac{\partial a_{j}^{M}}{\partial z_{j}^{M}}$
$\left(\frac{\partial a_{k}^{M}}{\partial z_{j}^{M}}\right.$ vanishes if $\left.k \neq j\right)$
- $\delta_{j}^{M}=\frac{\partial C}{\partial a_{j}^{M}} \sigma^{\prime}\left(z_{j}^{M}\right)$
$\left(a_{j}^{M}=\sigma\left(z_{j}^{M}\right)\right)$

Backpropagation algorithm (within MSGD)

1. Input: mini-batch of m training examples x
2. For each training example set corresponding activation $\boldsymbol{a}^{\boldsymbol{x}, \mathbf{1}}$ and do the following
1) Feedforward: For $i=1,2, \ldots, M$

$$
z^{x, i}=W^{(i)} \boldsymbol{a}^{x, i-1}+b_{i} \text { and } \boldsymbol{a}^{x, i}=\sigma_{i}\left(\mathbf{z}^{x, i}\right)
$$

2) Compute error on last layer

$$
\boldsymbol{\delta}^{\boldsymbol{x}, M}=\nabla_{\widehat{\boldsymbol{y}}} C_{x} \odot \sigma^{\prime}\left(\mathbf{z}^{\boldsymbol{x}, M}\right)
$$

3) Backpropagate error: For $\mathrm{i}=\mathrm{M}-1, \mathrm{M}-2, \ldots$,

$$
\boldsymbol{\delta}^{i}=\left(\boldsymbol{w}^{i+1}\right)^{\top} \boldsymbol{\delta}^{x, i+1} \odot \sigma^{\prime}\left(\mathbf{z}^{x, i}\right)
$$

3. Gradient descent:

$$
\boldsymbol{w}^{i}=\boldsymbol{w}^{i}-\frac{\eta}{m} \sum_{x} \boldsymbol{\delta}^{x, i}\left(\boldsymbol{a}^{x, i-1}\right)^{\top} \text { and } \boldsymbol{b}^{i}=\boldsymbol{b}^{i}-\frac{\eta}{m} \sum_{x} \boldsymbol{\delta}^{x, i}
$$

Problem: Vanishing gradient for sigmoid σ

Derivative of sigmoid function

- Gradient of sigmoid:

$$
\sigma^{\prime}(x)=\sigma(x)(1-\sigma(x))
$$

Gradients in linear network of depth 4

$$
\begin{gathered}
\leq 0,25 \quad \leq 0,25
\end{gathered} \frac{\partial C}{\partial b_{1}}=\sigma^{\prime}\left(z_{1}\right) \times w_{2} \times \sigma^{\prime}\left(z_{2}\right) \times w_{3} \times \sigma^{\prime}\left(z_{3}\right) \times w_{4} \times \sigma^{\prime}\left(z_{4}\right) \times \frac{\partial C}{\partial a_{4}}
$$

- Assume $\left|w_{i}\right| \leq 1$ (e.g. $w_{i} \sim N(0,1)$)
- Then: $\left|\left|w_{i} \sigma^{\prime}\left(z_{i}\right)\right| \leq 0,25\right.$
- Exponential decrease from later derivatives to earlier ones due to chain rule

Problem: Vanishing gradient with large input

Derivative of sigmoid function

- Gradient of sigmoid:

$$
\sigma^{\prime}(x)=\sigma(x)(1-\sigma(x))
$$

Gradients in linear network of depth 4

$$
\frac{\partial C}{\partial b_{1}}=\sigma^{\prime}\left(z_{1}\right) \times w_{2} \times \sigma^{\prime}\left(z_{2}\right) \times w_{3} \times \sigma^{\prime}\left(z_{3}\right) \times w_{4} \times \sigma^{\prime}\left(z_{4}\right) \times \frac{\partial C}{\partial a_{4}}
$$

- If $|x|$ very large, then $\sigma(x)$ or (1-- $\sigma(x)$) becomes zero
- So $\sigma^{\prime}(x)$ becomes zero

NEARLY THE END

Take Home Message

Follow the gradient - with care

APPENDIX

Color Convention in this Course

- Formulae, when occurring inline
- Newly introduced terminology and definitions
- Important results (observations, theorems) as well as emphasizing some aspects
- Examples are given with standard orange with possibly light orange frame
- Comments and notes in nearly opaque post-it
- Algorithms
- Reminders (in the grey fog of your memory)

Todays lecture is based on the following

- Jonathon Hare: Lectures 2,3,4,6 of course „COMP6248 Differentiable Programming (and some Deep Learning")
http://comp6248.ecs.soton.ac.uk/
- Nielsen: Neural Networks and Deep Learning. http://neuralnetworksanddeeplearning.com/, chapters 1,2
- https://medium.com/@ramrajchandradevan/the-evolution-of-gradient-descend-optimization-algorithm-4106a6702d39
- I. Lorentzou: Introduction to Deep Learning, link

