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Today‘s Agenda
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1. Follow me: 
Recurrent networks

2. Some things to
remember, some
things to forget:  
Long short term
memory

Deep++  Networks

3. Forget to learn the hiddens:
Reservoir Computing



Example Named Entity recognition

x1 x2 x3 x4               x5                  x6                         x7

• x:   Jon and Ethan gave deep learning lectures

• y:   1        0        1         0         0           0               0 

y1 y2 y3 y4          y5               y6 y7

• In this case input and output vector of length 7

• But naturally longer sequences are possible
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Image classification
In: image
Out: Classifier

Image captioning
In: image
Out: sentence

Sentimental analysis
In: sentence
Out: sentiment

Machine translation
In: sentence
Out: sentence

Synced video
In: video
Out: real-time labels



Why Not a Standard Feed Forward Network? 

• For a task such as “Named Entity Recognition” a MLP 
(multi-layer perceptron)  would have several
disadvantages
– The inputs and outputs may have varying lengths

– The features wouldn’t be shared across different 
temporal positions in the network

• Note that 1-D convolutions can be (and are) used to
address this, in addition to RNNs 

• To interpret a sentence or to predict tomorrows
weather it is necessary to remember what happened in 
the past

• To facilitate this we would like to add a feedback loop
delayed in time 5



RNN Architecture

Output

DelayHidden Units

Inputs

𝑥(𝑡)

𝒉(𝑡)

𝒉(𝑡 − 1)

o 𝑡 = )𝑦(𝑡)

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑼
𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑾

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑽
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• RNNs are NNs for processing
sequential data

• Contain directed cycles in their
computational graph

• Another form of „more
structure“ in DL 

• Another form of parameter
sharing in DL

𝑎𝑙𝑙 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑨𝑾 = 𝑼 ∪ 𝑽 ∪𝑾



RNN Architecture

Left: feed forward neural network
Middle: a simple recurrent neural network
Right: Fully connected recurrent neural network
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An RNN is just a recursive function invocation

• Output update 
8𝒚 𝑡 = 𝒇𝒐 𝒙 𝑡 , 𝒉 𝑡 − 1 𝑨𝑾

• State update 

𝒉(𝑡) = 𝒇𝒉(𝒙 (𝑡), 𝒉(𝑡 − 1)|𝑨𝑾 )
• If 8𝒚(𝑡) depends on the input 𝒙(𝑡 − 2), then prediction

will be
𝒇𝒐 (𝒙 (𝑡), 𝒇𝒉(𝒙 (𝑡 − 1), 𝒇𝒉(𝑥 (𝑡 − 2), 𝒇𝒉(𝑥 (𝑡 − 3)|𝑨𝑾 )|𝑨𝑾 )|𝑨𝑾 )|𝑨𝑾 )

• Gradients of this with respect to the weights can be
found with the chain rule
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Variants of RNNs

• Depending on the instantiation of 𝒇𝒉()
– Elman (Vanilla/Simple Networks)

– Jordan (not discussed here)

– LSTM   (discussed here)

– GRU (Gated recurrent unit; not discussed here) 

– Elman
• 𝒉B = 𝒇𝒉 𝑼𝒙B + 𝒃𝑼 +𝑾𝒉BEF + 𝒃𝑾 = 𝒇𝒉(𝒂𝒉(𝑡))
• 8𝒚B = 𝒐 𝑡 = 𝑓I 𝑽ℎB + 𝒃𝒐 = 𝒇𝒐(𝒂𝒐(𝑡))
• 𝒇𝒉 is usally 𝑡𝑎𝑛ℎ
• 𝒇𝒐 identity or logit
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RNNs combine two properties which make them very
powerful. 

1. Distributed hidden state that allows them to store a lot
of information about the past efficiently. This is
because several different units can be active at once, 
allowing them to remember several things at once. 

2. Non-linear dynamics that allows them to update their
hidden state in complicated ways. 

• In particular: RNNs are universal approximators
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Going Deep with RNNs

• You can go deep w.r.t. time unfolding (some do not 
consider this as going deep)

• As RNNs calculate functions, you can compose them
(stack the RNNs)

8𝒚 (𝑡) = 𝒇𝒐𝟐 (𝒇𝒐𝟏 (𝒙 (𝑡 ), 𝒉𝟏(𝑡 − 1)|𝑨𝑾𝟏 ), 𝒉𝟐(𝑡 − 1)|𝑨𝑾𝟐 )

– The output of the inner RNN at time 𝑡 is fed into the input
of the outer RNN which produces the prediction8𝒚

• You could of course also add feedfoward parts into the
input block or the output block or the hidden block
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Example: Character-level language modelling

• An RNN that learns to ‘generate’ English text by learning
to predict the next character in a sequence

• This is “Character-level Language Modelling” 
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Image from http://karpathy.github.io/2015/05/21/rnn-effectiveness/ 



Training and sampling the Language Model

• The training data is just text data (e.g. sequences of
characters) 

• The task is unsupervised (or rather self-supervised): 
given the previous characters predict the next one

• All you need to do is train on a reasonable sized corpus
of text

• Overfitting could be a problem: dropout is very useful
here

• Once the model is trained can generate text
– See examples at 

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
13

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Recurrent Neural Neworks unfolded

• Can unravel/unfold network into feed forward
– can apply gradient descent/timed backpropagation

(BPTT: Backpropagation through time)

– Minimize error ∑B 𝑦 𝑡 − )𝑦(𝑡)
N

over all time steps
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Back Propagation Through Time (BPTT)

• BPTT learning algorithm is an extension of standard 
backpropagation that performs gradients descent on an 
unfolded network.

• The gradient descent weight updates have contributions 
from each time step. 

• The errors have to be back-propagated through time as 
well as through the network
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RNN Backward Pass

• Loss function depends on the activation of the hidden layer 
through its influence on the output layer and through its 
influence on the hidden layer at the next step. 
– ℎB = 𝑓P 𝑥, ℎBEF ,𝑊
– 𝑜B = 𝑓I ℎB , 𝑉

• The interesting part is the calculation of the gradient w.r.t.
the hidden parameters W
– 𝐸 = ∑BUFV 𝐸B (error in RNN)

– WX
WY

= ∑BUFV WXZ
WY

= ∑BUFV WXZ
WIZ

WIZ
WPZ

WPZ
WY

– WPZ
WY

= W[\ (]Z,PZ^_,Y)
WY

+ W[\(]Z,PZ^_ ,Y)
WPZ^_

WPZ^_
WY

(by chain rule)

– WPZ
WY

= W[\ (]Z,PZ^_,Y)
WY

+ ∑`UFBEF(∏bU`cF
B WPd

WPd^_
) W[\ (]e,Pe^_,Y)

WY
(by  solving the recursion)
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Here they come again: Vanishing and exploding Gradients

=>Solution:  Long short
term memory networks
(LSTMs)
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LONG SHORT TERM MEMORY
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LSTM - introduction

• LSTM was invented to solve the vanishing gradients 
problem.

• LSTM maintain a more constant error flow in 
backprapogation.  
– Long term memory by specific hidden state c(t) = c(t-1)

– Sometimes one has to  forget and sometimes have to 
change the memory

– To do this use gates saturating at 0 (read/write denied) 
and 1 (read/write allowed) => Sigmoid

• LSTM can handle global dependencies (1000 time steps)
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LSTM Architecture
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LSTM Architecture
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LSTM Architecture - overview
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LSTM Architecture – long term memory cell 
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• Each memory cell contains a node with a 
self-connected recurrent edge of fixed 
weight one

• Ensures that the gradient can pass across 
many time steps without vanishing

• CEC (constant error carousel)

• => Long term memory 
• In contrast: Previous outputs from 

hidden: short term memory 

𝑐 𝑡 = 𝑧 𝑡 ⊙ 𝑖 𝑡 + 𝑐(𝑡 − 1)



LSTM Architecture – input 

𝒂i 𝑡 = 𝑾i𝒙 𝑡 + 𝑹i𝒚(𝑡 − 1)
𝑧 𝑡 = 𝑔 𝒂𝒛 𝑡
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(control forwarding of input
and previous step information)



LSTM Architecture – input gate 

𝒂𝒊𝒏 𝑡 = 𝑾𝒊𝒏𝒙 𝑡 + 𝑹𝒊𝒏𝒚 𝑡 − 1
𝑖 𝑡 = 𝜎 𝒂𝒊𝒏 𝑡
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(control write access to memory cells)



LSTM Architecture – Output gate 

𝒂𝒐𝒖𝒕 𝑡 = 𝑾𝒐𝒖𝒕𝒙 𝑡 + 𝑹𝒐𝒖𝒕𝒚 𝑡 − 1
𝑜 𝑡 = 𝜎 𝒂𝒐𝒖𝒕 𝑡
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(control read access to memory cell)



LSTM Architecture – Output gate 

𝒚 𝑡 = 𝒉 𝒄 𝑡 ⊙ 𝒐 𝑡

27

(control outputting of memory cell
content via o(t))



LSTM Forward Pass

• The cell state 𝑐 is updated based on its current 
state and 3 inputs: 𝑎i , 𝑎`r , 𝑎IsB

𝑎i 𝑡 = 𝑊i𝑥 𝑡 + 𝑅i 𝑦 𝑡 − 1 , 𝑧 𝑡 = 𝑔 𝑎i 𝑡

𝑎`r 𝑡 = 𝑊`r𝑥 𝑡 + 𝑅`r 𝑦 𝑡 − 1 , 𝑖 𝑡 = 𝜎 𝑎`r 𝑡

𝑎IsB 𝑡 = 𝑊IsB𝑥 𝑡 + 𝑅IsB 𝑦 𝑡 − 1 , 𝑜 𝑡 = 𝜎 𝑎IsB 𝑡
𝑐 𝑡 = 𝑧 𝑡 ⊙ 𝑖 𝑡 + 𝑐(𝑡 − 1)

𝑦 𝑡 = ℎ 𝑐 𝑡 ⊙ 𝑜 𝑡
28



LSTM Backward Pass

• Errors arriving at cell outputs are propogated to the CEC

• Errors can stay for a long time inside the CEC

• This ensures non-decaying error

• Can bridge time lags between input events and target 
signals

• (details left out here)
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An addition: Handling unbounded memory

𝑐 𝑡 = 𝑧 𝑡 ⊙ 𝑖 𝑡 + 𝑐 𝑡 − 1 → grows linearly

For a continuous input stream à
𝑐(𝑡) may grow in an unbounded fashion à
can cause a saturation in ℎ(𝑡)

𝛿w 𝑡 = 𝛿x 𝑡 ℎy 𝑐 𝑡 ⊙ 𝑜 𝑡

Small gradients 30



LSTM possible remedy by forget gate

𝑐 𝑡 = 𝑧 𝑡 ⊙ 𝑖 𝑡 + 𝑓(𝑡) ⊙ 𝑐(𝑡 − 1)
𝑓 𝑡 = 𝜎 W{x t + R{ y t − 1 31



Success Story of LSTMs

• LSTMs have been used to win many competitions in 
speech and handwriting recognition. 

• Major technology companies (Google, Apple, and
Microsoft) are using LSTMs 
– Google used LSTM for speech recognition on the

smartphone, for Google Translate. 

– Apple uses LSTM for the ”Quicktype” function on the
iPhone and for Siri. 

– Amazon uses LSTM for Amazon Alexa.

– In 2017, Facebook performed some 4.5 billion automatic
translations every day using long short-term memory
networks1. 
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RESERVOIR COMPUTING
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Reservoir Computing (RC): Idea

• Idea: Separate state space calculation from output calculation (as 
they serve different purposes)

• Input (history) represented in high-dimensional state space (as 
for kernels used in SVMs)

• Output spaces: Merger of states for desired output 

• Uses recurrent structures without the training

• Fixed (random) topology 

• Linear “readout” function is trained
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Reservoir Computing: History

• Buonomano (1995), Laurenco (1994): early related 
work

• Boyd/Chua (95): Mathematical Foundation (without 
input feedback) 

• Jaeger (2001): Echo State Networks (engineering)

• Maass (2002): Liquid State Machines (neuroscience) 

• …

• And now: various physical reservoir computing 
approaches (morphological computing, cellular 
automata, etc.)  (see Tanaka et al. 19))





Reservoir Computing

• (De-facto & required) Properties of reservoir:
– Exact topology, connectivity, weights: not important

– Has to have fading memory/echo state property: when 
not chaotic  (as k → ∞) effect of ℎ(𝑡) and 𝑥(𝑡) on          
ℎ(𝑡 + 𝑘) vanishes 

– Can be ensured by choosing spectral radius of weight 
matrix (largest absolute eigenvalue) smaller than 1

– Reservoir size can be large: no over-fitting

• Training with linear regression (or similar):
– No local minima, no problems with recurrent structure, 

one shot learning

– Can do regression, classification, prediction



Reservoir Computing

• RC does on-line computing: prediction at every time-step

• Theoretically:
– Any time-invariant filter ( F(x(t)) = F(x(t),t) ) with fading 

memory can be learned

– But: unable to implement generic FSMs

• Hence add output feedback,  Maass (2006)
– Also non-fading memory filters: generic FSMs

– Ability to simulate any n-th order dynamical system

– Turing universal



Usual setup and training

• Create random weight matrices

• Rescale reservoir weights so that max absolute 
eigenvalue close to one (edge of stability)

• Excite reservoir with input and record all states 

• Train readouts by minimizing (AV-B)2

A

space

tim
e

V B



Link to FSMs

FSM RC RC
with output feedback



RC: Applications

• Chaotic time series prediction

• Speech recognition on small 
vocabulary: outperform HMM-
based recognizer (Sphinx)

• Digits recognition

• Robot control

• System identification

• Noise removal/modelling

• …



Larger example: speech
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RC: novel computing paradigm

• RC presents a novel way of looking at computation

• “Random” dynamic systems can be used by only 
training a linear readout layer

• RC already used to show general computing 
capabilities of:

– Microcolumn structure in the cortex

– Gene regulatory network

– The visual cortex of a real cat

• Implementations:
– “Bucket of water”, aVLSI, digital hardware

– Photonics
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Different Flavors of RC

. .
 .

X

. .
 .

nonlinear 
combination

temporal 
integration +

Fernando and Sojakka,  2003

bucket of water

• Water is mechanically perturbed (with motors)
• Complex response of the surface
• Readout is digitized picture frame + processing (vision)



APPENDIX
Uhhh, a lecture with a hopefully useful
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Color Convention in this course

• Formulae, when occurring inline

• Newly introduced terminology and definitions

• Important results (observations, theorems) as well as 
emphasizing some aspects 

• Examples are given with standard orange with possibly light 
orange frame 

• Comments and notes

• Algorithms
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Today‘s lecture is based on the following

• Jonathon Hare: Lectures 12, 13 of course „COMP6248 Differentiable
Programming (and some Deep Learning)“  
http://comp6248.ecs.soton.ac.uk/

• Michael Green & Shaked Perek: Recurrent networks And Long Short 
Term Memory link

• Karpathy: The unreasonable effectiveness of recurrent Neural Networks 
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

• Benjamin Schrauven et al: An overview of reservoir computing, ESANN 
2007 (paper and slides, link)

• Helmut Hauser, 2013: Introduction to Reservoir Computing 
https://www.ifi.uzh.ch/dam/jcr:00000000-2826-155d-0000-
0000225e9316/Formale_Methoden_UZH_Nov_2013.pdf

• Deep Dive into deep learning, chapter 8 

https://d2l.ai/chapter_recurrent-neural-networks/bptt.html
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http://comp6248.ecs.soton.ac.uk/
https://slideplayer.com/slide/13047419/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjsxZ6j6vzsAhWNmKQKHWC_B4MQFjABegQIBBAC&url=http%3A%2F%2Ftomcat.elis.ugent.be%2Fstatic%2Felisall%2Fpubl%2FPPT%2FP107_045.ppt&usg=AOvVaw3W3T0w_CGDqdfGUV2BcgH4
https://www.ifi.uzh.ch/dam/jcr:00000000-2826-155d-0000-0000225e9316/Formale_Methoden_UZH_Nov_2013.pdf
https://d2l.ai/chapter_recurrent-neural-networks/bptt.html
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