
Ontology-Revision Operators Based on
Reinterpretation

Carola Eschenbach and Özgür L. Özçep
Department for Informatics (AB WSV),
MIN Faculty, University of Hamburg,

Vogt-Kölln-Str. 30, D-22527 Hamburg, Germany.
E-mail: {eschenbach, oezcep}@informatik.uni-hamburg.de

Abstract

Communication between natural or artificial agents relies on the use
of a common vocabulary. Since sharing terms does not necessarily imply
that the terms have exactly the same meanings for all agents, integrat-
ing (trigger) statements into a formal ontology requires mechanisms for
resolving conflicts that are caused by the ambiguity of terms specified in
different but similar ontologies.

We define and analyze a family of ontology-revision operators that re-
solve conflicts by disambiguating concept symbols occurring in both the
ontology and the trigger statements. The operators yield bridging axioms
relating the different readings of the terms and, by including representa-
tions for both readings, preserve the initial ontology as well as the trigger
statements. The operators differ regarding which reading of the ambigu-
ous term is assigned to further uses of the common term and regarding
the semantic relation assumed between the two readings. The ontology-
revision operators are analyzed regarding their adaptability to consistent
sequences of trigger statements. One group of operators (type 1) preserves
all conflicts with the trigger sequence. Operators from the other group
(type 2) can resolve the conflicts, which is demonstrated by showing un-
der which conditions weak type-2 operators yield stabilizing sequences of
ontologies. Stronger type-2 operators can result in closer approximations
of the terminology underlying the sequence of trigger statements but can
also yield non-stabilizing sequences of ontologies.

1 Introduction
Communication between natural or artificial agents relies on the use of common
terms with shared meanings. This precondition, however, cannot always be
established in advance. While human users of natural language have flexible
means for handling situations where different readings of the same term become

1

Oezguer Oezcep
Preliminary Version of a paper published in IGPL

obvious, such mechanisms of reinterpretation are not well studied for logic-based
agents.

The approach presented in this article aims at handling the communica-
tion between agents that hold kindred ontologies for a common domain where
terminological conflicts are the exception rather than the rule. Therefore no
preprocessing stage of aligning the ontologies is assumed. A sender generates
a consistent sequence of statements based on its ontology and the receiver in-
tegrates these statements into its ontology. The terminological differences are
discovered when the sender presents statements that conflict with the ontology
of the receiver.

In the case of observing a conflict, the receiver could request a specification
of the critical terms and start an ontology-integration process on this basis [9],
[21]. Formal approaches to semantic integration mainly focus on the problem
of integrating two ontologies and of establishing a semantic mapping between
the name spaces of different (accessible) ontologies.1 However, we will look
at a different strategy to treat the conflicts identified during a communication
process. The incoming sequence of statements is incrementally integrated into
the initial ontology and thereby the conflicts are resolved one by one. Within
the classification of approaches to ontology change by Flouris and colleagues
[6], the approach presented in this article resolves terminological conflicts in the
process of ontology merging.

The successful integration of conflicting information into a knowledge base
is well-studied in the context of theories of belief change. Within this area,
operators for belief revision [1] and operators for belief update [12] are formal-
ized. Operators for belief revision resolve conflicts based on the assumption
that the knowledge base contains incorrect statements. Operators for belief
update resolve conflicts based on the assumption that the knowledge base con-
tains outdated statements. In both cases, the possibility of conflicts based on
terminological ambiguity is not considered, the vocabulary of the knowledge
base is kept constant, and the elimination of statements conflicting with the
new information from the knowledge base is accepted.

In this article, we define operators for ontology revision that combine an on-
tology and a statement (of restricted syntactic complexity) yielding an ontology
combining the information from both sources. Observed conflicts between the
ontology and the incoming statements are resolved by assuming the involved
concept terms to be ambiguous. According to the observation that different
readings of an ambiguous term are in many cases semantically related, the dis-
tinction between the different readings will also involve hypotheses on their
semantic relatedness. Since the integration of conflicting statements involves
the distinction between different readings of one term, we call the underlying
strategy reinterpretation.

An example of such a knowledge integration scenario is a knowledge-based
software agent (R) that holds an ontology OR and sends a request (e.g., ‘List
all cheap books on thermodynamics’) to a book-selling agent (S). Agent S

1Noy [19] presents an overview of approaches to semantic integration.

2

generates a response using its own ontology OS , and sends the response as a
sequence of statements (e.g., describing the offered books including their price).
Agent R integrates the statements into its ontology by successively applying the
ontology-revision operator and resolves conflicts that occur due to the difference
between OR and OS , thereby, e.g., discovering that the term cheap has a broader
meaning in OS than in OR. The receiver can choose to stick to its initial
reading of the common term cheap or to use the broader reading in the following
communication. In the latter case we will say that the terminology of the
resulting ontology is adapted to the terminology of the sender.

The meaning of the terms used in communication is based on the ontologies
the participating agents hold [19]. For an agent whose ontology is consistent and
well-tried, the treatment of terminological conflicts observed in communication
should not lead to the loss of (parts of) the initial ontology. Thus, in adapting
to the terminology of the book-selling agent, the customer agent needs not give
up its own cheap-concept and the relations this concept has to other concepts
within the ontology, even though it has learned that the book-selling agent uses
a different reading of the term cheap. For this reason, belief-revision operators
based on the AGM postulates [1] or belief-update operators according to [12]
are not directly applicable.

While the loss of (parts of) the initial ontology is not acceptable, the initial
ontology cannot (in its initial form) be part of the resulting ontology either,
if the resulting ontology contains the conflicting statement (in its initial form).
However, the initial ontology can be preserved by shifting it to a slightly different
name space within the resulting ontology yielding a semantic mapping. The
meaning the initial ontology assigns to the ambiguous term can be preserved
by representing it using a new symbol in the resulting ontology, which assigns
a new meaning to the common term in accordance with axioms specifying the
semantic interrelation between the two readings. The semantic mapping maps
the common vocabulary to the symbols representing their initial readings within
the resulting ontology. The ontology-revision operator defined along this line is a
non-monotonic belief-change operator, since the initial ontology is not preserved
in its initial form.

We will present (Section 4) a collection of ontology-revision operators that
differ regarding their adaptability to the terminology of the trigger and re-
garding the hypotheses on the semantic relatedness between the two readings
they employ. The operators are evaluated based on several criteria, includ-
ing the criteria developed for belief revision (Section 5). This evaluation will
show the similarities between belief revision and ontology revision as well as
the differences. Furthermore, we will show in which sense and to which extent
the ontology-revision operators in the case of integrating conflicting statements
yield conservative extensions of the initial ontology, i.e. purely terminological
changes (Section 6).

Iterated ontology revision results in a sequence of ontologies starting from an
initial ontology. If the sequence of triggers to be integrated is consistent, then
the resulting ontologies should include more and more of the information from
the sequence. If non-monotone belief-change operators are used to integrate

3

consistent sequences of statements into a knowledge base, statements from the
beginning of a sequence need not be contained in the resulting knowledge base
after integrating the whole sequence. In addition, within a longer process of
integrating statements using an ontology-revision operator, the meaning of a
common term can shift more than once, if the hypotheses on the semantic
relatedness prove too strong.

The concepts of convergence (for sequences based on infinite sets of triggers)
[24] or stability (for sequences based on finite sets of triggers) [13] allow one to
formalize that the sequence of statements is integrated on the long run. If a
belief-change operator can guarantee that for every initial ontology and every
consistent sequence with finitely many trigger statements the sequence of on-
tologies will become constant at some point, then the operator can be called
stable. We use the concept of stability to investigate the iterated application
of the ontology-revision operators rather than the concept of convergence, since
in the setting of communicating agents only finite sets of statements will have
to be integrated. Following the investigations on iterated belief revision in the
context of learning theory [13], [14], [16], [24], we will investigate how ontology-
revision operators behave in iterated application (Section 7). The investigations
on iterated ontology revision integrating sequences of statements show the con-
sequences of adapting the terminology based on conflicts and can form the basis
for considering iterated ontology revision where in each step an ontology is in-
tegrated.

2 Related Work
Ontology revision based on reinterpretation is an approach for integrating con-
flicting information into an ontology. The initial ontology is recognizable within
the resulting ontology due to a semantic mapping between the common terms
and symbols representing the reading assigned to the term by the initial ontol-
ogy. Correspondingly, ontology revision is closely related to belief change and
approaches to ontology integration that treat conflicts based on ambiguity.

Alchourrón, Gärdenfors and Makinson (AGM) [1] present a systematic and
formal treatment of belief-change operators. Belief-change operators are meant
to model the human ability to change beliefs in the presence of trustworthy
information conflicting with the current beliefs. AGM [1] consider settings in
which the conflict is based on false information and specify principles guiding the
(rational) revision of beliefs by rationality postulates. Beliefs are characterized
by belief sets, which are sets of formulae that are closed with respect to a
logical consequence operator. Belief change is formalized in terms of binary
belief-revision functions that map a belief set and a formula (the information
triggering the change) onto a new belief set. The rationality postulates are
axiom-like specifications of belief-revision functions. Additionally, AGM provide
specific belief-revision functions that fulfill the rationality postulates.

Post-AGM work on belief revision considers also the revision of (finite) be-
lief bases, allowing the definition of belief-revision operators based on a finite

4

representation of the beliefs of an agent. Approaches to belief-base revision in
the sense of [11] define belief-revision functions for which the revision results
depends on the syntactic structure of the belief bases. Approaches on the revi-
sion of knowledge bases ([3], [5]) define syntax-independent operators that are
defined on and result in finite representations of belief sets.

In the intended settings of belief revision, conflicts are caused by false in-
formation and not by terminological mismatch. Since erasing wrong beliefs is
a rational treatment of conflicts, belief revision is concerned with identifying
formulae that should not be preserved rather than with the question of how all
initial beliefs can be preserved. Nevertheless, the approach to ontology revision
discussed below employs techniques developed in the context of belief revision.

Based on the work of Meyer, Lee and Booth [17] on knowledge integration
strategies for stratified description-logic knowledge bases, Qi, Liu and Bell [22]
define revision operators for description-logic knowledge bases. The two knowl-
edge bases combined have different roles regarding the revision operator. The
knowledge base to be integrated will be called the trigger knowledge base and the
other knowledge base will be called the initial knowledge base in the following.
Qi, Liu and Bell show that their operators fulfill the main conditions specified
for rational belief-revision functions by AGM. But as their operators are applied
to finite knowledge bases rather than belief sets, the syntactic structure of the
knowledge base can have an effect on the resulting knowledge base. In order to
minimize the effect of the syntactic form and to carry over as much informa-
tion from the initial knowledge base as possible, axioms of the initial knowledge
base responsible for a conflict are replaced by weaker axioms that do not yield
a conflict, i.e., an axiom � is replaced by an (certain) axiom �w, which is a
consequence of �. The main components of the weakened axioms are exception
lists, which can be specified in certain description logics. For example, axioms
of the form ‘All Cs are Ds’ are weakened to axioms of the form ‘All Cs except
a1, . . . , an are Ds’. The revision operators of [22] are successful in the sense that
the trigger knowledge base is included in the resulting knowledge base, but the
initial knowledge base need not be preserved.

The consistency-based approach of Delgrande and Schaub [5] for the revision
of propositional belief sets uses language extensions similar to the ontology-
revision operators defined in Section 4. The input knowledge base (O) and
trigger statement (↵) of the belief-change operators are formulated based on a
common vocabulary Vc. In the case of conflict, a disjoint vocabulary Vp and a
substitution (·0) mapping Vc to Vp is introduced, such that every propositional
letter p 2 Vc is mapped to a p0 2 Vp. Applying this substitution to O results
in a renamed variant O0. To semantically interconnect the two sets of symbols
and thereby restore propositions from O formulated with Vc, bi-implications of
the type p $ p0, p 2 Vc are added to O0. The definition of the belief-change
operators select (inclusion) maximal sets of such bi-implications (EQ) consistent
with the union of the trigger statement and O0. To dispose of the propositions
using Vp while retaining as much content formulated in Vc as possible, the
resulting set O0 [{↵} [EQ is deductively closed and intersected with L(Vc),
the propositional language using propositional letters from Vc. Thus, the bi-

5

implications and the propositions using Vp are auxiliary means for the revision
step, but do not occur in the revision result.

Delgrande and Schaub [5] define two belief-revision operators, a choice-
revision operator uc, which is based on selecting one maximal set of bi-implications,
and a skeptical-revision operator u. The revision results Ouc↵, Ou↵ are knowl-
edge bases over the common vocabulary that do not preserve the initial belief
set O. Furthermore, the operators are defined for propositional logic and are
not directly applicable to more expressive logical frameworks required to model
terminological changes in ontologies.

The permanent extension of the used vocabulary and a terminological shift
is the result of the proposal to integrate conflicting description-logic ontologies
by Goeb and colleagues [9]. They specify an algorithm that takes as input two
ontologies OR and OS and yield a new ontology and two semantic mappings
that map the symbols of the initial ontologies to the symbols of the resulting
ontology. The common vocabulary of OR and OS is preserved in the resulting
ontology, but the three ontologies can assign three different readings to the
symbols of the common vocabulary.

Inconsistencies between OR and OS are resolved by applying two substi-
tutions �R,�S replacing common terms (c) by different symbols (c�R, c�S) in
the two ontologies, yielding compatible ontologies O�R and O�S . The common
symbol (c) is added as a common super-concept (or superordinate role symbol)
to the two new symbols. In an additional step, individual axioms of O�R or O�S

using c�R or c�S for which the replacement of the new symbol by the common
symbol is compatible with the intermediate ontology are replaced by the version
using the common symbol. Consequently, the common terms of the resulting
ontology neither represent the receiver’s nor the sender’s reading. Furthermore,
it is not guaranteed that the initial ontologies are (homogeneously) preserved
in the sense that O�R or O�S are consequences of the integration result [21].

A systematic evaluation of belief-revision functions with respect to incre-
mental integration of consistent sequences of trigger statements is studied by
Kelly [13], [14], Martin and Osherson [16], and Zhang and Foo [24]. They in-
vestigate the types of belief-revision functions and restrictions on sequences of
trigger statements that lead to sequences of epistemic states stabilizing at or
converging to a state corresponding to a model of the trigger statements. The
goal is to identify belief-revision operators that provide reliable learning meth-
ods despite the fact that belief revision is directed at retaining as much of the
original beliefs as possible, while learning requires changing beliefs to minimize
the difference between the belief set and the facts describing the world. Learning
methods are called reliable if the incremental integration of a consistent trigger
sequences leads to sequences of belief sets that stabilize or converge.

Kelly [13], [14] studied a collection of belief-revision functions with regards
to their behavior in iterated application and identified stable operators as well
as operators that do not guarantee stable behavior. A result of Zhang and
Foo [24] is that revision operators for epistemic states that are not extremely
skeptical regarding new statements will converge to a complete knowledge state
identifying a model of the trigger statements. We will show that some ontology-

6

revision operators that adapt to the terminology of the trigger sequences lead
to stabilizing sequences of ontologies that include the statements of the trigger
sequence. However, ontology-revision operators that use stronger hypotheses
regarding the semantic relations between the different readings of the common
term can, depending on the structure of the trigger sequence, lead to closer
approximations of the source ontology or lead to non-stabilizing integration
processes.

3 Basic Definitions: Description Logic and On-
tologies

Throughout this article an ontology will be a finite set of formulae over a
description-logic (DL) language. Ontologies will be denoted by O and indexed
or primed variants. For arbitrary formulae we will use � and indexed or primed
variants. A (DL) vocabulary V includes concept symbols (K,K 0,Ki, . . .), role
symbols (R,R0, Ri), and constants (a, b, c, a0, ai, . . .). An ontology over a vo-
cabulary V is a finite set of formulae in which all non-logical symbols are in V.
V(O) is the set of the non-logical symbols occurring in O. For V({�}) we write
V(�). If V is a vocabulary, then L(V) will be used for the set of all formulae that
can be formulated over V. O[K/K0] is the outcome of uniformly replacing the
concept symbol K by K 0 in O. An interpretation I = (�I , ·I) of the vocabulary
V is a pair consisting of the nonempty domain �I and a function ·I assigning
to every constant a 2 V an element aI 2 �I , to every concept symbol K 2 V a
set KI ✓ �I , and to every role symbol R 2 V a relation RI ✓ �I ⇥�I .

Concept descriptions (C,D,C 0, Ci, . . .) are formed based on a vocabulary
and concept constructors. The concept constructors used in this article are listed
in Table 1.2 The ontology-revision operators discussed in the following can be
represented in the description logic ALU . ALU is the DL language that adds the
concept constructor for concept union (disjunction) to the language AL, which
employs the basic inventory of intersection (conjunction), atomic negation, value
restriction and limited existential quantification. The examples and discussions
use additional concept constructors for general negation, (unqualified) number
restriction, and nominals.

Description-logic formulae can be classified as TBox axioms (terminological
knowledge) and ABox axioms (world description). In this article, we will use
general concept inclusions (GCI), i.e., formulae of the form C v D, and concept
equivalences, i.e., formulae of the form C ⌘̇ D, as TBox axioms. ABox axioms
can have the form C(a) or R(a, b). ABox axioms of the form K(a) (for a
concept symbol K) are called positive literals, ABox axioms of the form ¬K(a)
are negative literals, and the union of these sets of formulae is named literals.
Literals are denoted by ↵, � and indexed or primed variants. Finite sequences of
literals (A) will be represented as A = h↵1,↵2, . . . ,↵ni = h↵iii2{1,...,n}, infinite
sequences of literals as A = h↵nin2N. The set of elements occurring in a sequence

2For more details regarding the definitions and the syntax of description logics see [2].

7

Name Syntax Semantics

Top concept > �I

Bottom concept ? ;
Intersection C uD CI \DI

Union C tD CI [DI

Atomic negation ¬K �I \KI

General negation ¬C �I \ CI

Value restriction 8R.C {x 2 �I | {y 2 �I | (x, y) 2 RI} ✓ CI}
Limited exist. quantification 9R.> {x 2 �I | {y 2 �I | (x, y) 2 RI} 6= ;}
Unqual. number restriction nR {x 2 �I | |{y 2 �I | (x, y) 2 RI}| n}
Unqual. number restriction � nR {x 2 �I | |{y 2 �I | (x, y) 2 RI}| � n}
Nominals {a} {aI}

Table 1: DL syntax and semantics for ALCUNO

A is denoted by Ã. If A is a sequence of length n and i n or A is an infinite
sequence, then Ai is the prefix of A of length i.

The semantics of TBox axioms and ABox axioms is given by: I |= C v D
if and only if (iff) CI ✓ DI ; I |= C ⌘̇ D iff CI = DI ; I |= C(a) iff aI 2 CI ;
I |= R(a, b) iff (aI , bI) 2 RI . If for some formula � we have I |= �, then
we say that I makes � true or I is a model of �. Two formulae are equivalent
(� ⌘ �0) iff they have the same models. An interpretation I is a model of a set of
formulae M (I |= M) iff it is a model of every formula of M . A set of formulae is
consistent iff it has a model, otherwise, M is inconsistent (M |= ?). A sequence
of literals A is consistent iff Ã is consistent. Mod(M) is the set of models of
M . Two sets of formulae M1 and M2 are equivalent (M1 ⌘ M2) iff they have
the same models (Mod(M1) = Mod(M2)). A formula � is a consequence of a
set of formulae M (M |= �) iff every model of M is a model of �, and a set of
formulae M 0 is a consequence of M (M |= M 0) iff Mod(M) ✓ Mod(M 0). We
will also use |= � to stand for ; |= �.

The formal evaluation of the ontology-revision operators will be based on an
extended logical language combining description logic and propositional logic.
In this language, the description-logic formulae (TBox axioms and ABox ax-
ioms) play the role of atomic formulae. Additionally, we use equalities (a .

= b)
and inequalities (a 6 .= b) (with the semantics I |= (a

.
= b) iff aI = bI and

I |= (a 6 .= b) iff aI 6= bI) as atomic formulae to analyze and express the role of
unique name assumptions. However, equalities and inequalities are not assumed
to be contained in the sequences of literals representing the trigger statements.
The atomic formulae can be combined in the style of propositional logic. Thus,
� could be ¬R(a, b)_(R(b, a)^R(a, a)). Because of their close semantic related-
ness, we will not distinguish the symbols for propositional negation and concept
negation.

If M is a set of literals over vocabulary V, then the set of inequalities ex-

8

pressing the unique name assumption implicit in M is una(M) = {(a 6 .= b) |
K(a),¬K(b) 2 M, for K, a, b 2 V}. If A is a sequence of literals, then we will
write una(A) instead of una(Ã). Note that any set of literals M is inconsis-
tent if and only if there is a concept symbol K and a constant a, such that
{K(a),¬K(a)} ✓ M . Thus, a set of literals is inconsistent if and only if its
implicit unique name assumption is inconsistent.

The (global) strong ontology-revision operators of [20] are defined with ref-
erence to the most specific concept assigned by an ontology to a constant. C
is a most specific concept for a in the ontology O iff O |= C(a) and for all C 0

such that O |= C 0(a) also |= C v C 0. The existence of a finite representation
of a most specific concept depends on the ontology O and the underlying de-
scription logic.3 We assume that there is some systematic way (e.g. an ordering
over concept descriptions) to pick out for every constant a a representative of
the most specific concept in an ontology O. This representative will be denoted
by mscO(a).

4 Ontology-Revision Operators: Definitions
Ontology-revision operators are binary operators that map an ontology (O)
and a literal (↵) to another ontology (O � ↵) that represents the integrated
information of O and ↵. As we define ontologies as finite sets of formulae,
the ontology-revision operators take as first arguments sets of formulae that
are not deductively closed. In this respect our ontology-revision operators are
comparable with belief-revision functions operating on belief bases [11] and not
on belief sets, which are defined as deductively closed sets of formulae [1]. A
formula that occurs as the second argument of an ontology-revision operator is
called a trigger statement or just trigger.

If the trigger ↵ is compatible with O, then it can be added to O to derive
the new ontology O[{↵}. Correspondingly, the case that O[{↵} is consistent
is handled by all belief-change operators and the ontology-revision operators
defined in this section in this way. If the trigger ↵ is not compatible with ontol-
ogy O, then the ontology-revision operators based on reinterpretation defined
and analyzed in this article capture the assumption that the incompatibility is
caused by an ambiguity in the common vocabulary. If a conflict between O and
↵ derives from an underlying ambiguity of a common term (K) and the goal
is to represent both readings in the resulting ontology, then this goal can be
achieved by enriching the terminology. Correspondingly, two readings of a term
used in O and in ↵ are distinguished in the resulting ontology and a new symbol
(K 0) is introduced to represent one of the readings.

To systematically distinguish between the common symbols and the new
symbols, we will assume in the following that the vocabulary used by the receiver
can be partitioned into a common vocabulary (Vc) and an internal or private
vocabulary (Vp), such that the symbols of Vp cannot be used by the sender.

3[15] describes a family of description logics for which the most specific concept exists and
an algorithm for determining the most specific concept.

9

The symbols introduced in the reinterpretation process are private symbols.
We assume that Vp provides infinitely many symbols not used in the receiver’s
ontology O. We additionally assume in the following definitions that the choice
of a symbol K 0 2 Vp in the reinterpretation step is uniquely determined by the
symbol K and Vp \ V(O).

The strong ontology-revision operators �1 and �2 (Definition 1) differ re-
garding which reading (the reading represented in O vs. the reading underly-
ing ↵) is denoted by the new symbol K 0 after integrating the trigger state-
ment. The type-1 operator �1 uses the new symbol to represent the read-
ing underlying the trigger statement and continues to represent the reading
specified by the initial ontology by the common symbol. Correspondingly,
it does not add the trigger statement ↵ but ↵[K/K0] to the ontology. The
type-2 operator �2 internalizes the reading assigned by the initial ontology
to the common symbol by replacing every occurrence of the common term in
the initial ontology with the new symbol. The common symbol is used to
represent the reading underlying the trigger statement. Correspondingly, the
type-2 operator adds the trigger statement in its initial form to the modi-
fied initial ontology. Regarding the common term K, �1 preserves the ter-
minology of the ontology O while �2 adapts to the terminology of the trig-
ger ↵. The operators �1 and �2 are structurally similar in the sense that
one operator can be derived from the other by a simple syntactic transforma-
tion. In the case of inconsistency, (O �2 K(a)) = (O �1 K(a))[K/K0,K0/K] and
(O �1 K(a)) = (O �2 K(a))[K/K0,K0/K].

If a common term is ambiguous and the different readings are not semanti-
cally related, then the statement of the sender does not have any value for the
receiver. Unfortunately, the trigger statement does not specify the reading of
the common symbols it uses. However, hypotheses regarding the relation of the
alternative reading to the terminology specified in the ontology can be added
(and in later steps revised, if necessary). Therefore, both operators declare up-
per and lower bounds for the reading underlying the trigger statement. They
implement the assumption that one of the readings of the ambiguous terms is
more general than the other (as expressed by K v K 0 or K 0 v K). The observed
conflict gives evidence as to which subsumption relation has to be excluded.

The strong operators add additional bounds to minimize the semantic dif-
ference between the two readings. They exploit the ontology regarding its spec-
ification of the constant that is involved in the conflict. This constant denotes
the only known entity that is a witness for the ambiguity of the term and for
the difference between the two readings. The second bound based on mscO(a)
stands for the hypothesis that only objects that are similar to this witness will
be further examples of the difference.

Definition 1. Let O be an ontology over the vocabulary Vc[Vp with Vc\Vp = ;,
K 2 Vc a concept symbol and a 2 Vc a constant for which mscO(a) exists. Let
K 0 2 Vp be a concept symbol not used in O. Then the strong ontology-revision

10

operators of type 1 and 2 (�1 and �2) are defined for literals by

O �1 K(a) =

⇢
O [{K(a)} if O [{K(a)} is consistent,
O [{K 0(a),K v K 0,K 0 v K tmscO(a)} else

O �1 ¬K(a) =

⇢
O [{¬K(a)} if O [{¬K(a)} is consistent,
O [{¬K 0(a),K 0 v K,K v K 0 tmscO(a)} else

O �2 K(a) =

⇢
O [{K(a)} if O [{K(a)} is consistent,
O[K/K0] [{K(a),K 0 v K,K v K 0 tmscO[K/K0](a)} else

O �2 ¬K(a) =

⇢
O [{¬K(a)} if O [{¬K(a)} is consistent,
O[K/K0] [{¬K(a),K v K 0,K 0 v K tmscO[K/K0](a)} else

Following Grove’s idea of so called sphere-based belief revision developed
in [10], Wassermann/Fermé [23] defined operations for revising a concept com-
plex4 by a new piece of information, resulting in a new concept. These ideas
were adapted in [20] to define two types of ontology-revision operators in a local
and a global variant respectively. The strong operators correspond to the global
variants.5 They are called strong, because we will define and discuss weaker
ontology-revision operators in the following. The local operators are defined
with respect to a system of spheres for the concept symbol K, which represent
suitable generalizations of K. The use of the most specific concept in the spec-
ification of the global operators results as a common generalization of the local
operators [20].

The bounds referring to the most specific concept are comparable with the
weakenings of Qi, Liu and Bell [22]. For example, the inclusion axiom K v
K 0 t mscO[K/K0](a) occurring in the definition of O �2 K(a) is equivalent to
Ku¬mscO[K/K0](a) v K 0. This formula says that all individuals that instantiate
K but do not instantiate the most specific concept of a also instantiate K 0. In
description logics that provide the concept constructor for nominals, the most
specific concept of a in O can (in the context of O) be represented by {a}.
Thus we have K u ¬{a} v K 0, which says that all K except a are K 0. Such
axioms correspond to the form of weakened axioms used in the definitions of
the operators �w, �rw in [22].

To analyze the difference between the two types of ontology-revision opera-
tors, we will investigate iterated applications of the operators based on sequences
of trigger statements. This will lead to a more formal explication of the infor-
mal notion of adaptation to the terminology of the trigger. Since the difference
between the type-1 operator and the type-2 operator does not crucially depend

4A concept complex according to [23] comprises a concept and descriptions for its proto-
typical instances.

5cf. [20], p. 87. A limitation of the definitions for �1 and �2 in [20] is that they are
restricted to positive literals as trigger statements. To generalize the applicability of the
ontology-revision operators, Definition 1 extends the definitions of the operators to deal also
with negative literals as triggers. The extension of the definitions to other types of trigger
statements needs to handle more than one candidate for reinterpretation and is developed in
[21].

11

on the bound employing the most specific concept, we broaden the discussion
to a range of operator pairs.

Definition 2 specifies the weak ontology-revision operators ⌦1 and ⌦2, which
does not refer to most specific concepts. Furthermore, it does not employ the
constructor for concept union (t) and yields TBox axioms that can be embedded
in definitorial TBoxes. The weak ontology-revision operators can therefore be
used in the context of any description-logic system that is capable of expressing
the trigger sequence and handle definitions.

Definition 2. Let O be an ontology over the vocabulary Vc[Vp with Vc\Vp = ;,
K 2 Vc a concept symbol and a 2 Vc a constant. Let K 0 2 Vp be a new concept
symbol. Then the weak ontology-revision operators of type 1 and 2 (⌦1 and
⌦2) are defined (for literals) by

O ⌦1 K(a) =

⇢
O [{K(a)} if O [{K(a)} is consistent,
O [{K 0(a),K v K 0} else

O ⌦1 ¬K(a) =

⇢
O [{¬K(a)} if O [{¬K(a)} is consistent,
O [{¬K 0(a),K 0 v K} else

O ⌦2 K(a) =

⇢
O [{K(a)} if O [{K(a)} is consistent,
O[K/K0] [{K(a),K 0 v K} else

O ⌦2 ¬K(a) =

⇢
O [{¬K(a)} if O [{¬K(a)} is consistent,
O[K/K0] [{¬K(a),K v K 0} else

We demonstrate the effects of the ontology-revision operators with an ex-
ample of simple ontologies in a book-trading scenario.

Example 1. An agent (receiver) using an ontology OR wants to buy a cheap
book on thermodynamics in an online bookshop (sender) that uses the ontology
OS.

According to OR something is cheap if and only if it costs less than 5 Euros.
That a book cannot have a soft cover and a hard cover at the same time is cap-
tured by the axiom SoftC v ¬HardC in OR. OR also specifies that anything that
costs less than 5 Euros costs less than 8 Euros. Furthermore, the receiver has
some knowledge about four books on thermodynamics. Book th1 costs between 5
and 8 Euros, the books th3 and th4 cost more than 5 Euros, while book th2 costs
less than 5 Euros. th1 is a hardcover book, th4 is a softcover book, but for th2
and th3 the book type is not known to the receiver.

OR = {Cheap ⌘̇ CostLt_5,
SoftC v ¬HardC,CostLt_5 v CostLt_8,
¬CostLt_5(th1),CostLt_8(th1),HardC(th1),
CostLt_5(th2),¬CostLt_5(th3),¬CostLt_5(th4),SoftC(th4)}

According to OS something is cheap if and only if it costs less than 5 Euros
or is a hardcover book and costs less than 8 Euros. Thus, OS and OR have
different cheap-concepts. However, they agree regarding the axioms on book type

12

and ordering of prices. In the sender’s ontology OS, the book th1 is specified
to have a hard cover and to cost less than 8 Euros. Thus, book th1 is cheap
according to OS.

To the request to list cheap books on thermodynamics available, the online
bookshop answers (↵) that the book named th1 is cheap.

OS = {Cheap ⌘̇ CostLt_5 t (HardC u CostLt_8),
SoftC v ¬HardC,CostLt_5 v CostLt_8,
CostLt_8(th1),HardC(th1)}

↵ = Cheap(th1)

The different readings of Cheap lead to the inconsistency of OR [{↵}. If
the receiver decides to use the weak ontology-revision operator of type 2 for the
integration of ↵, the outcome of the integration is

OR ⌦2 ↵ = {Cheap0 ⌘̇ CostLt_5,
SoftC v ¬HardC,CostLt_5 v CostLt_8,
¬CostLt_5(th1),CostLt_8(th1),HardC(th1),
CostLt_5(th2),¬CostLt_5(th3),¬CostLt_5(th4),SoftC(th4),
Cheap(th1),Cheap0 v Cheap}

The operator ⌦2 reconstructs the relation between the different readings using the
subsumption Cheap0 v Cheap, which says the sender’s cheap-concept, denoted
by Cheap, is more general than the receiver’s initial cheap-concept, denoted by
Cheap0. A form of weakness of ⌦2 is demonstrated by the fact that some con-
sequences of the receiver’s ontology that are not involved in a conflict are not
preserved in their initial form. For example, while the consequence Cheap(th2)
of OR is a consequence of the revision result OR ⌦2 ↵, the literals ¬Cheap(th3)
and ¬Cheap(th4) are not consequences of OR ⌦2 ↵. The asymmetry regarding
the preservation of positive and negative literals that contain the concept symbol
of the trigger statement will be systematically discussed in the following section
(Propositions 3.2, 3.3).

If the receiver uses the strong type-2 operator for the integration, the result
can be represented as

OR �2 ↵ ⌘ OR ⌦2 ↵ [{Cheap v Cheap0 t (¬CostLt_5 u CostLt_8 u HardC)}
In this case it is assumed that the sender calls something cheap only if it costs
less than 5 Euros or costs between 5 and 8 Euros and is a hardcover book. For
both OS and OR�2↵ the formula Cheap v CostLt_5t (CostLt_8uHardC) is a
consequence. As in the case of the integration with ⌦2, the literal ¬Cheap(th3)
is not a consequence of OR �2 ↵. However in this case, the literal ¬Cheap(th4)
is preserved, i.e., OR �2 ↵ |= ¬Cheap(th4). The difference derives from th4
being known to be a softcover book and, thus, not similar to th1, the only known
witness of the difference between the two readings of Cheap, whereas the type of
book is not known for th2 and th3 (see Proposition 3.4).

13

The scheme underlying the definitions of the ontology-revision operators
�i and ⌦i for (i 2 {1, 2}) can be generalized to the definition of a family of
operators that differ regarding the specification of the second bound for the new
concept. Let sel stand for a selection function that selects upper-bound axioms
for the new concept. As possible upper bounds we take concepts that are both
more general than the lower bound and will not add new information to the
known instance a. Then the selection function sel can be a parameter in the
specification of the operators �sel

i .

Definition 3. Let O be an ontology over the vocabulary Vc[Vp with Vc\Vp = ;,
K 2 Vc a concept symbol, a 2 Vc a constant, and ↵ = K(a) or ↵ = ¬K(a). Let
i 2 {1, 2} and K 0 2 Vp be the new concept symbol introduced to form O ⌦i ↵.
Then the upper-bound axioms based on O for ↵ and K 0 (ubi(O,↵,K 0)) and
the ontology-revision operators of type 1 and 2 based on sel (�sel

1 and �sel

2) are
defined (for literals) by6

ub1(O,K(a),K 0) = {K 0 v K t C | O |= C(a)}
ub1(O,¬K(a),K 0) = {K v K 0 t C | O |= C(a)}
ub2(O,K(a),K 0) = {K v K 0 t C | O[K/K0] |= C(a)}

ub2(O,¬K(a),K 0) = {K 0 v K t C | O[K/K0] |= C(a)}

O �sel

i ↵ =

⇢
O [{↵} if O [{↵} is consistent,
O ⌦i ↵ [sel(ubi(O,↵,K 0)) else

If the selection function sel selects the empty set or another set of tautolog-
ical formulae, one gets an operator with the same semantic effect as the weak
operator ⌦i. If sel returns the complete set or any set that contains the upper
bound derived from mscO(a), one gets an operator with the same semantic effect
as the strong operator �i.

One simple form of selection is to (syntactically) evaluate the assertions of
the ontology. This idea is captured in the definition of the revision operators
�expl

i . The proof of the instability of the stronger ontology-revision operators
is based on �expl

2 and Example 5 in Appendix II demonstrates the use of �expl

2 .
Computing the additional axioms on this basis is rather simple. Other forms of
restricting the additional bounds can set restrictions on the syntactic complexity
of the bounds (such as restrictions on the embedding of quantifiers).

Definition 4. Let O be an ontology over the vocabulary Vc[Vp with Vc\Vp = ;,
K 2 Vc a concept symbol, a 2 Vc a constant, and ↵ = K(a) or ↵ = ¬K(a). Let
i 2 {1, 2} and K 0 2 Vp be the new concept symbol introduced to form O ⌦i ↵.

Then the functions ubi,expl deriving upper-bound axioms based on explicit
concept assertions and the ontology-revision operator based on explicit concept

6If upper-bound axioms are selected for the type-1 operator in the positive case from
{K0 v C | O |= C(a) and O |= (K v C)} (and in a corresponding way in the other cases),
then the constructor for concept union is not needed. However, in this case the inclusion
property Observation 1.1, p. 15, can be violated.

14

assertions (�expl

i) are given by

ub1,expl(O,K(a),K 0) = {K 0 v K t C | C(a) 2 O}
ub1,expl(O,¬K(a),K 0) = {K v K 0 t C | C(a) 2 O}
ub2,expl(O,K(a),K 0) = {K v K 0 t C | C(a) 2 O[K/K0]}

ub2,expl(O,¬K(a),K 0) = {K 0 v K t C | C(a) 2 O[K/K0]}

O �expl

i ↵ =

⇢
O [{↵} if O [{↵} is consistent,
O ⌦i ↵ [ubi,expl(O,↵,K 0) else

Notation 1. In the following, the symbol �1 will be used as metavariable for
ontology-revision operators of type 1, i.e., �1 stands for �1, �sel

1 , �expl

1 , or ⌦1.
Similarly, �2 will be used as metavariable for ontology-revision operators of type
2, i.e., �2 stands for �2, �sel

2 , �expl

2 , or ⌦2. The symbol � will be used as
metavariable for all defined ontology-revision operators. If � is an ontology-
revision operator, O an ontology, and A = h↵1,↵2, . . . ,↵ni a finite sequence of
literals, then O � A =def (. . . (O � ↵1) � ↵2) . . .) � ↵n is the outcome of iterated
applications of the operator � to the ontology O and the literals of the sequence
A. The successive integration of the literals of any sequence A into an ontology
O defines a sequence of ontologies. If � is an ontology-revision operator, O an
ontology, and A = h↵iii2I a sequence of literals, then the sequence of ontologies
resulting from iteratively integrating A is hO �Aiii2I .

5 Basic Properties of the Ontology-Revision Op-
erators

The following observations directly result from the definitions of the operators.

Observation 1. Let O,O1, O2 be ontologies over Vc [Vp with Vc \ Vp = ;,
V(O1) \ Vp = V(O2) \ Vp, ↵, � be literals with V({↵, �}) ✓ Vc, and A a finite
sequence of literals over Vc. Let � be any ontology-revision operator, �1 be an
ontology-revision operator of type 1, �2 be an ontology-revision operator of type
2, and i 2 {1, 2}.

1. O � ↵ \ L(Vc [V(O)) ✓ O [{↵} (inclusion)

2. O �A \ L(Vc [V(O)) ✓ O [Ã (inclusion for iterated �)
3. O � ↵ = O [{↵} iff O [{↵} is consistent. (vacuity)

4. O �A = O [Ã iff O [Ã is consistent. (vacuity for iterated �)
5. If O1 ⌘ O2, then (O1 ⌦i ↵) ⌘ (O2 ⌦i ↵) (left extensionality for weak

operators)

6. If O1 ⌘ O2, then (O1 �i ↵) ⌘ (O2 �i ↵) (left extensionality for strong
operators)

15

7. If ↵ ⌘ �, then (O � ↵) ⌘ (O � �) (right extensionality)

8. ↵ 2 O �2 ↵ (success for �2)
9. O ✓ O �1 ↵ (monotonicity for �1)

10. O ✓ O �1 A (monotonicity for iterated �1)
11. O �i ↵ |= O �i ↵ (strength of strong operators)

12. O �i ↵ |= O ⌦i ↵ (strength of weak operators)

13. O � ↵ is consistent iff O is consistent. (consistency)

14. O �A is consistent iff O is consistent. (consistency for iterated �)

Observations 1.1, 1.3, 1.5, 1.6, 1.7, and 1.8 are adapted variants of the basic
AGM postulates.7 Observation 1.1 (the part of O �↵ expressed in the common
vocabulary and the vocabulary of the initial ontology is included in O [{↵}) is
weaker than the inclusion postulate for belief bases (O ⇤ ↵ ✓ O [{↵}, cf. [11],
p. 200). Observation 1.13 is weaker than the corresponding AGM consistency
postulate (O ⇤ ↵ is inconsistent iff ↵ is inconsistent) as inconsistencies in the
ontology O can be preserved by the ontology-revision operators. Similarly, the
belief-revision operators defined by Delgrande and Schaub [5] fulfill a weaker
consistency postulate corresponding to 1.13 rather than the AGM version.

The slight weakenings of the inclusion and consistency postulates suggest
that the ontology-revision operators are not rational belief-revision functions as
defined by [1] and [8]. To pay tribute to the difference regarding inclusion and to
the fact that type-1 operators do not fulfill success, we call the operators defined
in Section 4 ontology-revision operators rather than belief-revision operators.

Ontology-revision operators take as first arguments finite sets of formulae.
In this sense, they are comparable with revision functions for belief bases. But
in contrast to operators for belief-base revision that fulfill the inclusion postulate
for belief bases (O ⇤ ↵ ✓ O [{↵}) weak and strong ontology-revision operators
fulfill left extensionality (Observations 1.5, 1.6). Therefore, ontology-revision
operators are comparable to revision operators for knowledge bases (like the
operators defined by Dalal [3] or Delgrande and Schaub [5]), which fulfill left
extensionality but do not fulfill the inclusion postulate for belief bases.

Since conflicts between the ontology O and the trigger statement ↵ are re-
solved by the ontology-revision operators, the operators cannot be both mono-
tone regarding O and successful regarding ↵. Type-1 operators are monotone
(1.9) and not necessarily successful, while type-2 operators are successful (1.8)
but not monotone. As type-1 operators do not fulfill the success postulate, they
cannot be classified as belief-expansion operators (cf. [7], p. 49). While the
observations 1.1, 1.3, 1.9, and 1.13 can be generalized to statement sequences

7Compare the formulation of the postulates for belief sets in [8], [11], and [12]. The two
AGM postulates not adapted here deal with the revision of belief sets with complex formulae
(conjunction). For proofs of some of the observations consult p. 28 in Appendix I.

16

(1.2, 1.4, 1.10, and 1.14), such a generalization is not possible for 1.8. This issue
will be discussed in Section 7 in the context of the stability of the operators.

Proposition 1 states generalizations of Observation 1.8 and Observation 1.10
that are valid for both types of ontology-revision operators. The initial ontology
O is preserved in the resulting ontology O�A in the sense that O� is a subset of
O�A where � is a substitution function. � plays the role of a semantic mapping
that maps a common symbol s to the symbol s� representing the reading of s
relative to O in O � A. Furthermore, both O and A can be recovered from the
integration result by applying another substitution ⇢. The substitution ⇢ is a
semantic mapping that maps axioms of O � A that originate from O or A to
their initial form.

Proposition 1. For any ontology O over Vc [Vp with Vc \ Vp = ;, finite
sequence A of literals over Vc, and ontology-revision operator � there are two
substitutions of concept symbols (� and ⇢), such that

1. O� ✓ O �A, and

2. O [Ã ✓ (O �A)⇢.

Proof. See p. 28.

6 Conservativity
Type-1 operators preserve the terminology of the initial ontology. Formally,
preservation of the terminology means that terminological shifts result in con-
servative extensions. More specifically, type-1 operators yield conservative ex-
tensions of an ontology in cases of triggers that conflict with the ontology.

Definition 5. A theory O0 over vocabulary V(O0) is called a conservative ex-
tension of the theory O over vocabulary V(O) ✓ V(O0) iff for all formulae � in
V(O): O |= � iff O0 |= �.8

Proposition 2. Let O be an ontology, ↵ be a literal, and �1 be an ontology-
revision operator of type 1. If O [{↵} is inconsistent, then O �1 ↵ is a conser-
vative extension of O.

Proof. See p. 29. As the receiver wants to enrich his knowledge, he is not
generally interested in conservative extensions. If a trigger statement ↵ is com-
patible with the ontology O, then the sender and the receiver have compatible
readings of the common symbols. Correspondingly, if O [{↵} is consistent and
O 6|= ↵, then the integration result O[{↵} is not a conservative extension. As a
consequence it is not the case that for all finite sequences A the ontology O�1A is
a conservative extension of O. Type-1 operators preserve the terminology of the
initial ontology in the sense that the integration of sequences of statements is a
combination of conservative extensions and accepting statements. Observation

8[18], p. 208.

17

2 states that for ontology-revision operators of type 1 the effect of integrating
sequences of trigger statement can be decomposed into the simple addition of
some statements from the sequence and a conservative extension.

Observation 2. Let O be an ontology over the vocabulary Vc[Vp with Vc\Vp =
;, A be a finite sequence of statements over Vc, and �1 an ontology revision
operator of type 1. Then there is a subset Ã0 ✓ Ã, such that O [Ã0 ✓ O �1 A
and O �1 A is a conservative extension of O [Ã0.

A restricted form of conservativity in the case of inconsistency can also be
proved for operators of type 2. As type-2 operators adapt to the terminology of
the sender, the main question for these operators in the context of conservativity
is to describe the parts of the receiver’s initial ontology that are preserved in
the common language along the integration and the conditions under which the
preservation holds.

Proposition 3 states a combination of success and restricted conservativity
properties for the type-2 operators in the case of reinterpretation. It generalizes
and formalizes the observations on preservation and asymmetry mentioned in
Example 1. More precisely, Assertion 3.1 states conservativity for all formulae
� that do not contain one of the concept symbols involved in the reinterpreta-
tion. Because type-2 operators are successful regarding the trigger statement,
the trigger statement constitutes an exception to conservativity. Assertion 3.2
expresses restricted conservativity for those literals in which the reinterpreted
symbol occurs with the same negation prefix (negation vs. no negation sym-
bol) as in the trigger. It makes the entity mentioned by the trigger statement
the only exception to conservativity for literals of this form. Regarding liter-
als in which the reinterpreted symbol occurs with a complementary negation
prefix, the strong and the weak operators differ. Assertion 3.3 expresses that
⌦2 does not preserve any literal in which the reinterpreted symbol K occurs
with a complementary negation prefix. In contrast to this, revision with the
strong operator �2 preserves such literals for those constants that are known to
differ from a regarding some property (Assertion 3.4). Given the mixed results
regarding the literals, for more complex formulae involving the reinterpreted
symbol simple preservation conditions cannot be formulated.

Proposition 3. Let O be an ontology over the vocabulary Vc[Vp with Vc\Vp =
;, K 2 Vc be a concept symbol, and a, c 2 Vc be constants, such that mscO(a)
exists. Let ↵ = K(a) and � = K(c) or ↵ = ¬K(a) and � = ¬K(c). Let
K 0 2 Vp \V(O) be the new symbol introduced in O �2 ↵, and � be a formula with
V(�) ✓ (Vc [V(O)) \ {K}.

If O |= ¬↵, then
1. O �2 ↵ |= � iff O |= �
2. O �2 ↵ |= � iff O [{a 6 .= c} |= �
3. O ⌦2 ↵ 6|= ¬�
4. O �2 ↵ |= ¬� iff O |= ¬� and O |= ¬mscO(a)(c)

Proof. See p. 30.

18

7 Stability
The monotonicity of �1 (Observation 1.10) leads to the preservation of conflicts:
If O [{↵} is inconsistent, then O �1 A [{↵} is also inconsistent. Thus, if
O [{↵} is inconsistent, even repeated occurrences of ↵ in A cannot result in
O �1 A |= ↵. In this sense, the type-1 operators do not lead to an adaptation to
the terminology of the trigger sequence but rigidly cling to the terminology of
O.

In contrast to type-1 operators, type-2 operators are successful regarding the
trigger statement if applied once (Observation 1.8). However, due to their non-
monotone behavior regarding the ontology, a literal from a trigger sequence need
not be a consequence of the ontology resulting from adding a longer sequence
of triggers to the initial ontology.

Example 2. Consider the ontology O = {K(a)} and the sequence A = hK(b),¬K(a)i.
Then O �2 A = {K 0(a),K 0(b),¬K(a),K v K 0,K 0 v K t K 0} 6|= K(b).

However, Ã ✓ (O �2 A) �2 A = {K 0(a),K 0(b),¬K(a),K v K 0,K 0 v K t
K 0,K(b)}, so the repeated integration of the sequence A yields an ontology that
includes the information contained in A.

Since the information from the trigger sequence can get lost, the repetition
of statements in the trigger sequence can be helpful to ensure that these state-
ments are included in the final ontology. Therefore, we will study the question,
for which operators repetitions in the trigger sequence can guarantee that all
statements of the trigger sequence are consequences of the final ontology. As
including the same literal twice (three times, four times etc.) in the trigger
sequence may still not be enough to guarantee success, we will also consider
infinite sequences, in which literals can re-occur infinitely often.

Definition 6. Let O be an ontology, A be an infinite sequence of literals, and
� an ontology-revision operator. hO �Anin2N stabilizes (at step i), if there is a
step i from which on the sequence of ontologies is constant, i.e.,

O �Ai+m = O �Ai, for all m 2 N

Observation 3. Let Ãi be the set of literals occurring in A after position i.
hO �Anin2N stabilizes at step i iff Ãi ✓ O �Ai.

Some fundamental incompatibilities between the statement sequence to be
integrated and the initial ontology can enforce instability of the derived sequence
of ontologies for any ontology-revision operator. For example, if the trigger
sequence is inconsistent, then stabilization cannot be expected. However, if the
trigger sequence stems from one source ontology and this ontology is consistent,
also A is consistent. Consequently, we will evaluate the behavior of the operators
mainly with respect to consistent trigger sequences.9 Furthermore, the sequence

9This assumption is also found in the discussion of iterated revision in the context of belief
revision [4]. It is also valid in the setting of learning theory, where all trigger statements are
generated from a pre-selected model.

19

of ontologies need not stabilize in cases where the underlying ontologies disagree
regarding the identities of the constants’ referents. This can be demonstrated
by Example 3.

Example 3. Consider the ontology O = {R(c, a), R(c, b), (1R)(c)}. It says
that c is in R-relation to a and b and that there is at most one individual to which
c is R-related. Thus O |= (a

.
= b). If A is the infinite sequence hK(a),¬K(b),

K(a),¬K(b), . . . i with finite Ã = {K(a),¬K(b)}, then stabilization cannot oc-
cur for operators that resolve conflicts by reinterpreting concept symbols.

More generally, if according to the ontology of the receiver one object is
denoted by different constants a, b but according to the ontology of the sender
a, b denote different objects, then this mismatch can lead to non-stabilizing se-
quences of ontologies for an operator that resolves conflicts by reinterpreting
concept symbols. Therefore, we will focus on combinations of sequences and
ontologies, where the resulting ontologies are compatible with unique name as-
sumptions implicit in the trigger sequence. This restriction will avoid anomalies
as demonstrated in Example 3. Furthermore, we will focus on sequences based
on finite sets of literals.

Definition 7. Ontology-revision operator � is stable iff for any consistent on-
tology O and sequence A of literals with finite Ã such that for every n 2 N the set
(O �An)[una(An) is consistent, hO �Anin2N stabilizes. If an ontology-revision
operator is not stable, then we call it unstable.

Even though we formulated the property of stability for ontology-revision
operators in general, it is obvious that type-1 operators are not stable, due to
the fact, that type-1 operators are monotone and therefore preserve conflicts.
A receiver who uses a type-1 operator does not change its terminology when
integrating conflicting trigger information. The initial ontology is included in the
resulting ontology and the common symbol involved in the conflict is specified
by the resulting ontology in the same way as in the initial ontology. However,
the resulting ontology is a proper extension of the initial ontology. The situation
is different for the operators of type 2. Type-2 operators are non-monotone and
fulfill success in one-step application. Hence type-2 operators might be stable if
all conflicts between the initial ontology and the trigger sequence get resolved
during the integration process (see Observation 1.4).

7.1 Stability of ⌦2

The main result of this article is the stability of the weak ontology-revision
operator of type 2 (⌦2) and the instability of several stronger ontology-revision
operators of type 2, namely �2 and �expl

2 . To show the stability of ⌦2, we
will argue (Corollary 1) that given an ontology O and a sequence of literals
A = h↵nin2I :

1. If a conflict resolution for a literal ↵i = K(a) is done in step i, then all
ontologies derived at later steps are compatible with any ↵j = K(b) if
they are compatible with una(Aj).

20

2. If a conflict resolution for a literal ↵i = ¬K(a) is done in step i, then all
ontologies derived at later steps are compatible with any ↵j = ¬K(b) if
they are compatible with una(Aj).

3. There can be at most two conflict resolutions with respect to the same
concept symbol if all ontologies derived are compatible with una(A).

The first two items show that the conflict resolution of the operator ⌦2 is
carried out on the terminological level rather than on the level of statements.

The details of the argument for the stability of ⌦2 are given in Appendix
I. In the following, we will provide some useful definitions and sketch the main
steps of the complete proof. The proof is based on the observation that the set of
literals from the trigger sequence that are involved in conflicts with the receiver’s
ontology is monotonously reduced during the integration process. Definition 8
provides the basis for identifying the conflicting literals from the sequence.

Definition 8. Let O be an ontology and A be a sequence of literals with finite
Ã.

1. C(O,A) = {M ✓ Ã | O [una(Ã) [M |= ?} is the set of all conflict sets
of A relative to O.

2. M(O,A) = {M 2 C(O,A) | there is no M 0 2 C(O,A) with M 0 ⇢ M} is
the set of all (inclusion) minimal conflict sets of A relative to O.

3. CL(O,A) =
SM(O,A) is the set of literals of A that are essentially

involved in a conflict between O and A.

Lemma 1 describes the effect of the integration of a literal from the trigger
sequence into an ontology on the set of conflicting literals using a weak ontology-
revision operator of type 2. While each step removes at least the integrated
literal from the set of conflicting literals, reinterpretation removes every literal
that differs from the integrated literal only regarding the constant. In addition,
no literals are added to the set of conflicting literals.

Lemma 1. Let V be a vocabulary, K,K 0 2 V concept symbols, a 2 V a constant.
Let O be an ontology, and A a sequence of literals with finite Ã, V(O [Ã) ✓
V \ {K 0}.

1. If ↵ 2 Ã and O1 = O [{↵}, then CL(O1, A) ✓ CL(O,A) \ {↵}
2. If K(a) 2 Ã and O2 = O[K/K0] [{K(a),K 0 v K}, then

CL(O2, A) ✓ CL(O,A) \ {K(b) | constant b 2 V}
3. If ¬K(a) 2 Ã, and O3 = O[K/K0] [{¬K(a),K v K 0}, then

CL(O3, A) ✓ CL(O,A) \ {¬K(b) | constant b 2 V}
Proof. See p. 35.

As a consequence of Lemma 1 and Definition 2, the integration of sequences
of literals monotonously reduces the set of conflicting literals, thereby removing

21

any literal that has been integrated at least once. Lemma 2 states that a literal
that is integrated once will not appear in the set of conflicting literals at a later
step.

Lemma 2. Let O be an ontology, A a sequence of literals with finite Ã, ↵ 2 Ã,
and An a finite prefix of A.

1. CL(O ⌦2 ↵, A) ✓ CL(O,A) \ {↵}
2. CL(O ⌦2 A

n, A) ✓ CL(O,A) \ Ãn.

Proof. See p. 35.
Furthermore, conflict resolution guarantees that literals based on the same

concept are permanently removed from the set of conflicting literals whenever
the unique name assumption implicit in the trigger sequence is compatible with
the resulting ontology.

Corollary 1. Let V be a vocabulary, K 2 V a concept symbol, a, c 2 V con-
stants, O an ontology over V, and A a finite sequence of literals over V.

1. If O [{K(a)} is inconsistent, O0 = (O ⌦2 K(a))⌦2 A, and O0 [una(Ã [
{K(a),K(c)}) is consistent, then O0 [{K(c)} is consistent.

2. If O[{¬K(a)} is inconsistent, O0 = (O⌦2¬K(a))⌦2A, and O0[una(Ã[
{¬K(a),¬K(c)}) is consistent, then O0 [{¬K(c)} is consistent.

3. If the unique name assumption implicit in a sequence is not violated during
the integration of the sequence into an ontology using the weak revision
operator of type 2, no concept symbol is reinterpreted more than twice.

Proof. See p. 36.
The following Corollary 2 expresses a weakening of success in the case of

iterated application of the weak ontology-revision operator. It expresses that
all conflicts between O and An get resolved as O ⌦2 A

n is compatible with Ãn.

Corollary 2. Let O be a consistent ontology over Vc[Vp with Vc\Vp = ;, and
A a sequence of literals over Vc with finite Ã. Then for all prefixes An of A:

If (O ⌦2 An) [una(An) is consistent, then (O ⌦2 An) [una(An) [Ãn is
consistent as well.

Proof. According to Lemma 2.2 CL(O⌦2 A
n, An) ✓ CL(O,An) \ Ãn = ;. Since

(O ⌦2 A
n) [una(An) is consistent, this means that (O ⌦2 A

n) [una(An) [Ãn

is consistent as well, according to Definition 8.

As obvious from Lemma 2.2 and Observation 1.4, the repetition of a finite
sequence of literals leads to the entailment of the content of the sequence if the
weak ontology-revision operator of type 2 is used, as stated in Corollary 3.

22

Corollary 3. Let O be a consistent ontology and A a finite sequence of literals,
such that (O ⌦2 A) [una(A) is consistent. Then

(O ⌦2 A)⌦2 A |= Ã

As a further consequence of Lemma 2, the stability of ⌦2 can be proved.

Theorem 1. The weak ontology-revision operator of type 2 (⌦2) is stable.

Proof. See p. 36.
The stability of the weak revision operator of type 2 derives from reducing

the set of literals essentially involved in conflicts in each revision step. If the
unique name assumption implicit in the sequence is not violated during the
integration of the sequence, then any literal that is not essentially involved in a
conflict at some step can not become essential for a conflict at a later step.

7.2 Weakness of ⌦2

The stability of the weak ontology-revision operator of type 2 suggests that this
operator yields a terminological shift from the initial reading of the common
term, as specified in the initial ontology of the receiver, to the reading of the
term as specified in the sender’s ontology. However, since the receiver gets
only the sequence of literals as information about the sender’s ontology, it can
only adapt to this sequence. In addition, after the second conflict resolution
with respect to the same concept symbol, the receiver’s reading of the concept
symbol is independent from the initial reading it assigned to the concept symbol
(represented in the resulting ontology by some other internal concept symbol).
This can be illustrated with another book-trading example.

Example 4. An agent (receiver) using an ontology OR wants to buy a cheap
book on thermodynamics in an online bookshop (sender) that uses the ontology
OS.

The receiver’s price-for-value judgement is based on nothing but the price.
According to OR something is cheap if and only if it costs less than 5 Euros.
Furthermore, the receiver knows already that th1 costs more than 5 Euros (and
is not cheap), while th2 costs less than 5 Euros (and is cheap).

OR = {Cheap ⌘̇ CostLt_5,¬CostLt_5(th1),CostLt_5(th2)}

The sender has a more refined cheap-concept in which the upper prize limit
depends on one of three disjoint book types—hardcover, softcover, or booklet.
That the three book types are exclusive and exhaustive is specified, as well as
some knowledge on the order of prices. As th1 is known to be a hardcover book
that costs less than 8 Euros, it is classified as cheap. The booklet th2, which

23

costs more than 3 Euros, is not cheap.

OS = {Cheap ⌘̇ (CostLt_5 u SoftC) t (CostLt_8 u HardC) t
(CostLt_3 u Booklet),
SoftC v ¬HardC,Booklet ⌘̇ ¬(SoftC t HardC),

CostLt_3 v CostLt_5,CostLt_5 v CostLt_8,
HardC(th1),CostLt_8(th1),Booklet(th2),¬CostLt_3(th2)}

Assume that the sequence A = hCheap(th1),¬Cheap(th2)i stemming from
the sender is integrated into the receiver’s ontology using ⌦2, the weak ontology
revision operator of type 2. The integration of the positive literal Cheap(th1) de-
mands a reinterpretation of Cheap. The newly introduced symbol Cheap0 denotes
the receiver’s initial cheap-concept.

OR ⌦2 Cheap(th1) = {Cheap0 ⌘̇ CostLt_5,¬CostLt_5(th1),CostLt_5(th2),
Cheap(th1),Cheap0 v Cheap}

Correspondingly, the integration of the second literal ¬Cheap(th2) enforces an-
other reinterpretation of Cheap. In the resulting ontology OR ⌦2 A, the new
concept symbol Cheap00 denotes the receiver’s interim cheap-concept.

OR ⌦2 A = {Cheap0 ⌘̇ CostLt_5,¬CostLt_5(th1),CostLt_5(th2),
Cheap00(th1),Cheap0 v Cheap00,
¬Cheap(th2),Cheap v Cheap00}

The integration of A into the receiver’s ontology OR yields ontology OR ⌦2 A
from which no subsumption relation between the receiver’s initial cheap-concept,
denoted by Cheap0, and the new cheap-concept, denoted by Cheap, can be derived.

The observation formulated in Example 4 can be generalized to show that
the interpretation of a concept symbol that was subject to two reinterpretations
solely depends on the trigger sequence A and is completely independent of the
initial ontology. Theorem 2 says that every model I of the resulting ontology
that conforms to the unique name assumption of the trigger sequence can be
modified in such a way that the interpretation of the concept symbol is restricted
by nothing but the trigger sequence and the denotations assigned by I to the
constants occurring in the sequence. In this sense, the price to pay for the
stability of the ontology-revision operator is the loss of semantic embedding of
concept symbols in the resulting ontology.

Theorem 2. Let O be a consistent ontology over vocabulary Vc [Vp with Vc \
Vp = ;, A be a finite, consistent sequence of literals over Vc, K 2 Vc be any
concept symbol that has been reinterpreted twice during the integration of A into
O using the weak revision-operator of type 2, and ÃK = {� 2 Ã | � contains K}
be the set of literals from A using K. Let I be a model of (O ⌦2 A) [una(A)

24

and IA
K ✓ �I be any set, such that {aI | K(a) 2 Ã} ✓ IA

K and {aI | ¬K(a) 2
Ã} \ IA

K = ;.
Define J as the modification of I with

KJ = IA
K

(K 00)J = (K 00)I [IA
K if K 00 2 Vp,K v K 00 2 O ⌦2 A

(K 00)J = (K 00)I \ IA
K if K 00 2 Vp,K

00 v K 2 O ⌦2 A

Then J is a model of (O ⌦2 A) [una(A) [ÃK .

Proof. See p. 37.
The weak ontology-revision operator of type 2 is stable but also unable to

yield useful bridging axioms whenever the different readings of the common term
are not related by subsumption. Although the operator can integrate different
conflicting statements without introducing a conflict into the ontology, the re-
sulting readings of the common term might not be semantically related to the
initial reading. This behavior is due to the fact that the weak operator intro-
duces only one bound relating the common symbol and the symbol introduced
in the reinterpretation step. Examples 1 and 5 (in Appendix II) show that the
stronger ontology-revision operators of type 2 can yield more useful bridging
axioms.

7.3 Instability of �expl

2 and �2

The stronger ontology-revision operators use the specification of the critical
constant in the ontology to derive additional bridging axioms for the different
readings of the common term. Unfortunately, for the stronger operators that
introduce a second bound, stability is not guaranteed.

Theorem 3. The strong ontology-revision operator of type 2 (�2) and the
ontology-revision operator of type 2 using upper-bound axioms based on explicitly
introduced concept assertions (�expl

2) are not stable.

Proof. Let Vc and Vp be vocabularies such that Vc \ Vp = ;, a, b, c, d 2 Vc be
constants, and B,C,D,E 2 Vc be concept symbols. Let the ontology O, the
finite sequence A, and the infinite sequence A0 (the infinite repetition of A) be
given by

O = {¬B(a),¬C(a),¬D(a),¬E(a),¬B(b),¬C(b),¬B(c),¬C(c),¬D(c),¬E(c),

¬B(d),¬C(d),¬D(d),¬E(d)}
A = h↵iii2{1,...,16} = hC(a), B(a), B(b), B(d), E(b), D(b), D(a), D(c),¬B(c),

¬C(c),¬C(d),¬C(b),¬D(d),¬E(d),¬E(a),¬E(c)i
A0 = h↵iii2N, with ↵i = ↵i+16 for all i 2 N

As O is finite and neither O nor A employ role symbols or concept construc-
tors based on constants (i.e. nominals), for any k 2 N: O�expl

2 (A0)k = O�2(A0)k

(s. Lemma 6 and Corollary 4 in Appendix I).

25

Furthermore, for any literal ↵ with V(↵) ✓ Vc

O �expl

2 A |= ↵ iff O |= ↵
O �2 A |= ↵ iff O |= ↵

and
M(O,A) = M(O,A0) = {{B(a)}, {C(a)}, {D(a)}, {B(b)}, {D(c)}, {B(d)}}

= M(O �expl

2 A,A0) = M(O �2 A,A0)
For details regarding this example see p. 39.

Although the basic sequence of literals used in the proof is quite long, the
underlying structure of the statements is very simple. In particular, the complete
example is formulated in a monadic fragment of description logic (without using
roles, quantifiers or number restrictions). All concept assertions in the ontology
and in the trigger sequence are literals. Thus, the syntactic complexity of the
added bridging axioms is minimal. For this construction it is not necessary
that the additional bounds are based on computing the most specific concept.
Nevertheless, in the given example, the computation of the most specific concept
yields exactly the same result as extracting the explicit assertions regarding the
given constant.

The combination of Theorem 1, Theorem 2, and Theorem 3 suggests an
underlying tradeoff in the sense that the cost of exploiting the ontology to
derive hypotheses on the reading of a concept symbol used by a communication
partner is the risk to showing unstable behavior regarding repeated input.

8 Conclusion
The definition of ontology-revision operators based on reinterpretation allows
one to resolve conflicts between a well-tried ontology and an incoming state-
ment while preserving both the ontology and the conflicting statement due to
the establishment of a semantic mapping between the initial ontology and the
resulting ontology. The operators introduced differ regarding whether the mean-
ing of the term specified in the initial ontology will be used as the future reading
of the common term (type 1), or, whether an adaptation to the terminology of
the communication partner should result (type 2).

Independently of the strength of the operator chosen, type-1 operators yield
monotone extensions of the initial ontology, where the vocabulary extension in
the case of conflicts is conservative. These features seem to be characteristic of
communication partners that do not try to learn from solving communication
problems. In the case of artificial agents, implementing the process of informa-
tion integration based on type-1 operators in an incremental fashion does not
seem appropriate when the trigger sequence stems from a constant communica-
tion partner that holds a consistent ontology. However, if the trigger sequence
stems from different communication partners that hold different (conflicting)
ontologies, the preservation of one’s own terminology might be preferable to a
struggle to adapt to the terminology of the trigger sequence.

26

Type-2 operators, on the other hand, attempt to adapt to the terminology
of the communication partner by assigning the readings underlying the trigger
statements to the commonly used terms in the case of conflicts. To relate these
readings to the initial ontology, the operators implement different hypotheses
regarding the semantic relations between the different readings of the common
term. Since such hypotheses might turn out to produce new conflicts, a detailed
analysis of the different options is required. The results presented in this article
show a general conflict between two goals for operators that adapt to the ter-
minology of the trigger statement. On the one hand, stable behavior during the
integration of sequences of information can be guaranteed only on the basis of
weak hypotheses regarding the bridging axioms relating the different readings
of the term. On the other hand, only stronger operators yield useful semantic
specifications of the common terms when the semantic relations between the
different readings are not just a matter of one term being more general than the
other.

The main problem underlying the inability to derive a stable terminology
with useful semantic specifications of the different readings of a common term
derives from the restricted information available to the operator in each single
step. Additionally, the result of the integration process depends strongly on the
order within the sequence. This suggests that integration steps should preferably
be applied to larger chunks of information. Nevertheless, when we consider
extensions of the ontology-revision operators that combine two ontologies [21],
then the successive integration of sequences of ontologies into one ontology will
yield similar cases of instability as discussed in this article.

Acknowledgements
We thank Christopher Habel for his support during the work on this article and
two anonymous reviewers for their detailed and helpful comments.

Appendix I: Proofs
We add further observations and lemmata that will be helpful for the proofs.

Observation 4. Let O be an ontology and M1,M2 be sets of formulae over
the vocabulary Vc [Vp with Vc \ Vp = ;. Let K 2 Vc, K 0 2 Vp \ V(O [M2),
L 2 (Vc [Vp) \ V(O [M1 [M2) be concept symbols, � = [K/L,K 0/K], and
O0 = O[K/K0] [M1 [M2.

Let a 2 Vc be a constant, ↵ = K(a) or ↵ = ¬K(a), and �1 and �2 be a pair
of corresponding type-1 and type-2 operators.

1. O0� = O [M1� [(M2)[K/L].

2. O ✓ O0�.

3. O0 has a model iff O0� has one.

27

4. If O [{↵} is inconsistent and K 0 is the new symbol introduced in O �2 ↵
resp.O �1 ↵, then O ✓ (O �1 ↵)[K0/L] = (O �2 ↵)�.

Proof of Parts of Observation 1 (p. 15).

Proof of 1.1. Let O be an ontology, ↵ be a statement, and � an ontology-
revision operator as defined above. If O [{↵} is consistent, then all definitions
yield O � ↵ = O [{↵}. If O [{↵} is not consistent, and � is a type-1 operator,
then O � ↵ = O [{↵}� [BA, where BA is a set of bridging axioms and �
is a substitution mapping all symbols to themselves or to a newly introduced
symbol that is not in Vc [V(O). According to all definitions, each bridging
axiom uses the new symbol. Also, ↵� contains this symbol. Therefore, (O�↵)\
L(Vc [V(O)) = O \ L(Vc [V(O)) = O. If O [{↵} is not consistent, and � is
a type-2 operator, then O � ↵ = O� [{↵} [BA, where BA is a set of bridging
axioms and � is a substitution restricted as in the first case. According to all
definitions, each bridging axiom uses the new symbol. In addition, all formulae
in O� that are not in O use the new symbol. Therefore, (O�↵)\L(Vc[V(O)) =
(O� [{↵} [BA) \ L(Vc [V(O)) = O� \ L(Vc [V(O)) [{↵} ✓ O [{↵}.

Proof of 1.5 and 1.6. Let O1, O2 be ontologies over Vc[Vp with Vc\Vp = ;,
V(O1) \ Vp = V(O2) \ Vp, � be a concept substitution, and M be a set of
formulae over Vc[Vp. If O1 ⌘ O2, then (O1)� ⌘ (O2)�, O1[M ⌘ O2[M , and
Oi |= mscO1(a) ⌘̇ mscO2(a) for i 2 {1, 2}. Since in the case of reinterpretation
the same substitution is chosen according to the assumption that the choice of
a symbol K 0 2 Vp in the reinterpretation step is uniquely determined by symbol
K and Vp \V(O1) = Vp \V(O2) (see page 10), this results in (O1 �↵) ⌘ (O2 �↵)
according to Definitions 1 and 2.

Proof of 1.13. If O[{↵} is consistent, then O is consistent and O�↵ = O[{↵}
is consistent. So assume that O [{↵} is inconsistent. If O is inconsistent, then
O �1 ↵ is inconsistent according to 9 of this observation, and the inconsistency
of O �2↵ follows with Observation 4.3. If O is consistent, it has a model I |= O.
We prove the consistency of O �i ↵, the consistency of the other operators �i
then follows with part 11 of this observation. If ↵ = K(a), then O |= ¬K(a)
and O�1↵ = O[{K 0(a),K v K 0,K 0 v KtmscO(a)}. Define the modification
J of I by setting K 0J = KI [{aI}. Then clearly J |= O �1 ↵. If ↵ = ¬K(a),
then O |= K(a) and O�1 ↵ = O [{¬K 0(a),K 0 v K,K v K 0 tmscO(a)}. Now
define the modification J of I by setting K 0J = KI \ {aI}. Again J |= O�1 ↵
results. With Observation 4.3 the consistency of O �2 ↵ follows.
Proof of Proposition 1 (p. 17).

We will prove the more elaborate Proposition 4 as parts 1 and 2 can more
easily be proved in the context of part 3.

Proposition 4. For any ontology O over Vc [Vp with Vc \ Vp = ;, finite
sequence A of literals over Vc, and ontology-revision operator � there are two
substitutions of concept symbols (� and ⇢), such that

28

1. O� ✓ O �A,

2. O [Ã ✓ (O �A)⇢,

3. for any concept symbol L 2 V(O) [Vc, L = L⇢

Proof. Let O be an ontology over Vc [Vp with Vc \ Vp = ;. If A is the empty
sequence (O � A = O), the neutral substitution fulfills the conditions for � and
⇢.

Let A = An+1 be a sequence of literals over Vc of length n + 1 and the
assumption be proved for An, such that �n and ⇢n are the substitutions fulfilling
all conditions of this proposition.

If O � An [{↵n+1} is consistent, then O�n ✓ O � An ✓ O � An [{↵n+1} =
O�An+1 and O[Ãn+1 = O[Ãn[{↵n+1} ✓ (O�An)⇢n[{↵n+1} = ((O�An)[
{↵n+1})⇢n = (O �An+1)⇢n, since V(↵n+1) ✓ Vc and therefore ↵n+1 = ↵n+1⇢n.
Thus, �n and ⇢n do the job for An+1 as well as for An.

If O � An [{↵n+1} is inconsistent, then there is a concept symbol K 2
V(↵n+1) ✓ Vc and a concept symbol K 0 2 Vp, such that K 0 2 V(O � An+1) \
V(O �An) and K 0 is introduced to resolve the conflict.

Let ⇢n+1 be the composition of [K 0/K] and ⇢n. It is easy to verify that this
choice of ⇢n+1 fulfills the condition 3 of this proposition, given that ⇢n fulfills
this condition.

Since O [Ãn+1 = O [Ãn [{↵n+1} ✓ (O �An)⇢n [{↵n+1}, we prove part 2
(O [Ãn+1 ✓ (O �An+1)⇢n+1) by showing that O �An ✓ (O �An+1)[K0/K] and
↵n+1 2 (O �An+1)[K0/K]⇢n.

If � = �1 is a type-1 operator, then we have by definition O �1 An [
{(↵n+1)[K/K0]} ✓ O �1 An+1. Since K 0 does not occur in O �1 An, we have
O �1 An = (O �1 An)[K0/K] ✓ (O �1 An+1)[K0/K]. Since K 0 does not oc-
cur in ↵n+1, also ↵n+1 = (↵n+1)[K/K0][K0/K] 2 (O �1 An+1)[K0/K]. Since
V(↵n+1) ✓ Vc,↵n+1 = (↵n+1)⇢n 2 (O �1 An+1)[K0/K]⇢n, yielding part 2 of
this proposition for type-1 operators.

In this case let �n+1 be the neutral substitution. O�n+1 ✓ O �1 An+1

according to Observation 1.10. Consequently, part 1 holds in the case of type-1
operators.

If � = �2 is a type-2 operator, and given that K 0 does not occur in O �2 An,
O �2 An = (O �2 An)[K/K0][K0/K] ✓ ((O �2 An)[K/K0] [{↵n+1})[K0/K] ✓ (O �2
An+1)[K0/K]. In addition, with V(↵n+1) ✓ Vc we get ↵n+1 = (↵n+1)[K0/K] =
(↵n+1)[K0/K]⇢n 2 (O � An+1)[K0/K]⇢n. Consequently, part 2 holds in the case
of type-2 operators.

In this case let �n+1 be the composition of �n and [K/K 0]. We have O�n+1 =
(O�n)[K/K0] ✓ (O �2 An)[K/K0] ✓ (O �2 An)[K/K0] [{↵n+1} ✓ O �2 An+1 by
definition, yielding part 1 of this proposition for type-2 operators.

Proof of Proposition 2 (p. 17).
Let O be an ontology and ↵ a literal such that O [{↵} is inconsistent. Let

�1 be an ontology-revision operator of type 1. We have to show that O �1 ↵ is
a conservative extension of O.

29

If � is a formula with V(�) ✓ V(O) and O |= �, then also O �1 ↵ |= �,
because O ✓ O �1 ↵. Now suppose that O 6|= � for � over V(O). We have to
show that O �1 ↵ 6|= �. We show this for �1 = �1. For ⌦1, �expl

1 , and �sel

1 the
assertion then follows from Observation 1.11.

We show the proposition for positive literals ↵ = K(a). Let K 0 be the
new concept symbol introduced by the reinterpretation rule and O �1 K(a) =
O [{K v K 0,K 0 v K t mscO(a),K 0(a)}. Since O 6|= �, there is a model
I of O [¬�. Define J as the modification of I with K 0J = KI [{aI}.
Then J |= O [{¬�}, since J is the same as I for all symbols in V(O), and
I |= O [{¬�}, J |= {(K v K 0), (K 0 v K tmscO(a)),K 0(a)} (by construction
of J), and therefore J |= O �1 K(a) [{¬�}.

The proof for negative literals ↵ = ¬K(a) is done similarly by selecting the
model J with K 0J = KI \ {aI}.
Proof of Proposition 3 (p. 18).

Let O be an ontology over the vocabulary Vc [Vp with Vc \ Vp = ;, K 2 Vc

be a concept symbol, and a, c 2 Vc be constants, such that mscO(a) exists. Let
↵ = K(a) and � = K(c) or ↵ = ¬K(a) and � = ¬K(c), such that O |= ¬↵. Let
K 0 2 Vp \ V(O) be the new symbol introduced in O �2 ↵, and � be a formula
with V(�) ✓ (Vc [V(O)) \ {K}.

In the proofs the substitution � = [K/L,K 0/K] with L 2 (Vc[Vp)\V(O�2↵)
will be used. Because of the fact that O ✓ (O �2 ↵)� (see Observation 4), the
modification of the models in the proofs will be more readable.

Proof of 3.1 O �2 ↵ |= � iff O |= �
As K,K 0 /2 V(�) we have �� = �.

First assume O |= �. We have to show O �2 ↵ |= �. Applying � this reduces
to showing (O �2 ↵)� |= �. But this is the case because of O ✓ (O �2 ↵)� and
the monotonicity of |=.

For the other direction, we begin with the case ↵ = K(a) and consider
�2 in place of �2. Thus, assume O �2 K(a) |= �, applying �, this leads to
O [{L(a),K v L,L v K tmscO(a)} |= �. Let I be any model of O. Let J be
the modification of I with LJ = KI [{aI}. Then J |= O [{L(a),K v L,L v
K t mscO(a)} and hence J |= �. As L does not occur in �, this means that
also I |= �. We have shown the assertion that if O �2 K(a) |= �, then O |= �.
The general assertion for �2 follows with Observation 1.11.

The case ↵ = ¬K(a) can be proved in the same fashion, but this time
selecting J based on I with LJ = KI \ {aI}.

Proof of 3.2 O �2 ↵ |= � iff O [{a 6 .= c} |= �
We begin by considering the case ↵ = K(a) and � = K(c). First assume
O [{a 6 .= c} |= K(c). Then also O �2 K(a) [{a 6 .= c} |= K 0(c) and since
K 0 v K 2 O �2 K(a) also O �2 K(a) [{a 6 .= c} |= K(c). Now let I be a model
of O �2 K(a). If aI 6= cI , then I |= a 6 .= c, and I |= K(c) follows. If, on the
other hand, aI = cI , then because of K(a) 2 O �2 K(a) also cI 2 KI results,
i.e., I |= K(c).

30

Now assume O [{a 6 .= c} 6|= K(c). Let I be a model of O [{a 6 .= c,¬K(c)}.
Consequently aI 6= cI and cI /2 KI . We have to show O �2 K(a) 6|= K(c).
The general assertion for �2 then follows with Observation 1.11. Applying the
substitution � to both sides of the entailment results in the task to show

O [{L(a),K v L,L v K tmscO(a)} 6|= L(c) (1)

Let J be the modification of I with LJ = KI [{aI}. Then J is a model of
O[{¬K(c)} and additionally a model of {L(a),K v L,L v KtmscO(a),¬L(c)}
showing (1).

The proof for the other case (↵ = ¬K(a) and � = ¬K(c)) is similar, using
the modification J of the model I of O [{a 6 .= c,K(c)} with LJ = KI \ {aI}.

Proof of 3.3 O ⌦2 ↵ 6|= ¬�
We begin with case ↵ = K(a) and � = K(c). Let I be a model of O⌦2K(a). Let
J be the modification of I with KJ = �I . Then J is a model of O⌦2K(a) and
of K(c). (Remember that K 0 v K and K(a) are the only formulae of O⌦2K(a)
that involve K.)

For the other case let I be a model of O⌦2¬K(a) and J be the modification
of I with KJ = ;. Then J is a model of O ⌦2 ¬K(a) and of ¬K(c).

Proof of 3.4 O �2 ↵ |= ¬� iff O |= ¬� and O |= ¬mscO(a)(c)
We begin with case ↵ = K(a) and � = K(c). First assume O |= ¬K(c) and
O |= ¬mscO(a)(c). Then O�2K(a) |= ¬K 0(c), O�2K(a) |= ¬mscO[K/K0](a)(c),
and because of O�2 K(a) |= K v K 0 tmscO[K/K0](a) also O�2 K(a) |= ¬K(c).

Now we want to show, if O 6|= ¬K(c), then O �2 K(a) 6|= ¬K(c) and if
O 6|= ¬mscO(a)(c), then O �2 K(a) 6|= ¬K(c).

Assume O 6|= ¬mscO(a)(c). Let I be a model of O [{mscO(a)(c)} and
construct J as the modification of I with LJ = KI [{aI , cI}. Then cJ 2 LJ

and J |= (O �2 K(a))� and so also J |= (O �2 K(a) [{K(c)})� resulting in
O �2 K(a) 6|= ¬K(c).

Assume O 6|= ¬K(c). Let I be a model of O [{K(c)}. Again use the
modification J of I with LJ = KI [{aI , cI}. Then as above J |= (O �2

K(a) [{K(c)})� and O �2 K(a) 6|= ¬K(c) results.
For the other case (↵ = ¬K(a) and � = ¬K(c)) the proof is similar. In the

second part one has to construct the modification J of interpretation I such
that I |= O [{mscO(a)(c)} or I |= O [{¬K(c)} with LJ = KI \ {aI , cI}.
Observation 5. Let V be a vocabulary, K,K 0 2 V concept symbols, O an
ontology, A a sequence of literals with finite Ã such that V(O [Ã) ✓ V \ {K 0},
↵ 2 Ã, and An a finite prefix of A.

1. If O [una(A) is inconsistent, then O [{↵} [una(A) is inconsistent.

2. If O [una(A) is inconsistent, then O[K/K0] [una(A) is inconsistent.

3. If (O ⌦2 ↵) [una(A) is consistent, then O [una(A) is consistent.

31

4. If (O ⌦2 A
n) [una(A) is consistent, then O [una(A) is consistent.

Proof.
1. Trivial.

2. This is a consequence of the fact that K 0 does not occur in O and K,K 0

do not occur in una(A).

3. Direct consequence of Definition 2 and parts 1 and 2 of this observation.

4. Derives from part 3 of this observation by induction on the length of A.

Observation 6. Let O be an ontology, A a sequence of literals with finite Ã,
and ↵ a literal.

1. M(O,A) ✓ C(O,A) ✓ 2Ã are finite and CL(O,A) ✓ Ã is finite.

2. M 2 C(O,A) iff there is a M 0 2 M(O,A) such that M 0 ✓ M ✓ Ã.
C(O,A) = {M ✓ Ã | there is a M 0 2 M(O,A) such that M 0 ✓ M}.

3. M(O,A) = ; iff O [Ã is consistent.

4. M(O,A) = {;} iff O [una(A) is inconsistent.

5. {↵} 2 M(O,A) iff O[una(A) is consistent, ↵ 2 Ã, and O[una(A) |= ¬↵.

6. If O [una(A) |= ↵, then ↵ 62 CL(O,A).

Lemma 3. Let O be an ontology, A a sequence of literals with finite Ã, ↵ 2 Ã,
and O1 = O [{↵}.

1. C(O1, A) = {M ✓ Ã | M [{↵} 2 C(O,A)}
2. M(O1, A) ✓ {M \ {↵} | M 2 M(O,A)}

Proof.
1. According to O1 = O [{↵} and Definition 8.1, M 2 C(O1, A) iff M ✓ Ã

and O[{↵}[una(A)[M |= ?, which is the same as M [{↵} 2 C(O,A).

2. If Y 2 M(O1, A) then (Definition 8.2) Y 2 C(O1, A), thus (part 1 of
this lemma) Y [{↵} 2 C(O,A). According to Observation 6.2, there is a
M 2 M(O,A), such that M ✓ Y [{↵} and M \ {↵} ✓ Y . Since M 2
C(O,A), also M \ {↵} 2 C(O1, A) (part 1 of this lemma), and M \{↵} = Y
according to Definition 8.2.

Definition 9. Let V be a vocabulary, A a sequence of literals over vocabulary
V with finite Ã, K 2 V a concept symbol, B = K or B = ¬K.

SL(A,B) = {M ✓ Ã | there is a constant b 2 V such that B(b) 2 M} is the
set of subsets of Ã holding a literal based on B.

32

Lemma 4. Let V be a vocabulary, K,K 0 2 V concept symbols, a 2 V a constant.
Let O be an ontology, and A a sequence of literals with finite Ã, V(O [Ã) ✓
V \ {K 0}, K(a) 2 Ã, and O2 = O[K/K0] [{K(a),K 0 v K}.

1. C(O2, A) ✓ C(O,A)

2. C(O,A) \ SL(A,K) ✓ C(O2, A)

3. M(O,A) \ SL(A,K) ✓ M(O2, A)

4. M(O2, A) \ SL(A,K) = ;
5. M(O2, A) ✓ M(O,A)

6. M(O2, A) = M(O,A) \ SL(A,K)

Proof. Let L 2 V \ V(O [Ã) be a concept symbol.

1. We prove C(O2, A) ✓ C(O,A) by showing that if M ✓ Ã and O[una(A)[
M has a model, then O2 [una(A) [M has a model as well.
Let I be a model of O[una(A)[M . Let J be the modification of I with
LJ = KI [{aI}. By construction, J |= O [{L(a),K v L} [una(A) is
obvious. We will show that also J |= M[K/L].
If � 2 M[K/L] and L does not occur in �, then � 2 M , and J |= � derives
from I |= � and the construction of J .
If L(b) 2 M[K/L], then K(b) 2 M , I |= K(b) and KI ✓ LJ yields
J |= L(b).
If ¬L(b) 2 M[K/L], then ¬K(b) 2 M ✓ Ã, I |= ¬K(b), aI 6= bI (as
K(a),¬K(b) 2 Ã and I |= una(A)) and LJ = KI [{aI} yields J |=
¬L(b).
Consequently, J |= (O2 [una(Ã) [M)[K/L,K0/K], therefore (Observation
4.3) O2 [una(A) [M has a model as well.

2. We prove C(O,A) \ SL(A,K) ✓ C(O2, A) by showing that if M ✓ Ã
does not contain a literal of the form K(b) and M 62 C(O2, A), then M 62
C(O,A).
Let M ✓ Ã, M 62 C(O2, A), such that M does not contain a literal of the
form K(b). Then (Observation 4.3) there is a model I of O [{L(a),K v
L} [una(A) [M[K/L]. We will show that I |= M .
If � 2 M and K does not occur in �, then � 2 M[K/L], and I |= � derives
from I |= M[K/L].
If � 2 M and K occurs in �, then � = ¬K(b) for some constant b, since
literals of the form K(b) do not occur in M . Then ¬L(b) 2 M[K/L],
I |= ¬L(b), therefore bI 62 LI ◆ KI (because of I |= K v L) and
therefore I |= ¬K(b).
Consequently, I |= O [una(A) [M , thus M 62 C(O,A).

33

3. Assume M 2 M(O,A) \ SL(A,K) and X ⇢ M . According to part 2 of
this lemma, M 2 C(O2, A). We will show that X 62 C(O2, A), yielding
M 2 M(O2, A).
M 2 M(O,A) means that O[una(A)[M |= ? and that M is (inclusion)
minimal in this respect. With X ⇢ M this yields that O [una(A) [X is
consistent.
Let I be a model of O[una(A)[X. Let J be the modification of I with
LJ = KI[{aI}. By construction we get J |= O[{L(a),K v L}[una(A).
We will show that J |= X[K/L].
If � 2 X[K/L] and L does not occur in �, then � 2 X and J |= � derives
from I |= � and the construction of J .
If � 2 X[K/L] and L occurs in �, then � = ¬L(b) for some constant
b 2 V, since literals of the form L(b) do not occur in X[K/L]. In this
case, ¬K(b) 2 X ✓ Ã, I |= ¬K(b), aI 6= bI (since K(a),¬K(b) 2 Ã and
I |= una(A)) and LJ = KI [{aI} yields J |= ¬L(b).
Thus, (O2 [una(A) [X)[K/L,K0/K] is consistent, therefore (Observation
4.3) O2 [una(A) [X is consistent, which means X 62 C(O2, A).

4. Assume K(b) 2 Ã for some constant b 2 V, and K(b) 62 M ✓ Ã, such that
M 62 C(O2, A). We will show that M [{K(b)} 62 C(O2, A) ◆ M(O2, A).
Let I be a model of O2[una(A)[M . Let J be the modification of I with
KJ = KI [{bI}. We will show that J |= O2 [una(A) [M [{K(b)}.
Remember O2 = O[K/K0] [{K(a),K 0 v K}.
Since I |= O[K/K0] and K does not occur in O[K/K0], J |= O[K/K0]. Ob-
viously, J |= {K(a),K 0 v K}, thus J |= O2. Also J |= una(A), since
I |= una(A). Regarding the question whether J |= M [{K(b)}, we have
to consider only those literals from M that are of the form ¬K(c) for
some constant c 2 V , because I |= M and KI ✓ KJ , J |= K(b) by
construction of J .
Let ¬K(c) 2 M . Since K(b),¬K(c) 2 Ã and I |= una(A), bI 6= cI . Since
¬K(c) 2 M and I |= M , I |= ¬K(c). By construction of J , this means
that J |= ¬K(c) as well.
Thus, J |= O2 [una(A) [M [{K(b)}, and M [{K(b)} 62 C(O2, A).

5. M(O2, A) ✓ C(O,A) is given by part 1 of this lemma. Assume X ⇢ M 2
M(O2, A). We will show X 62 C(O,A). Therefore M 2 M(O,A).
Since X 62 C(O2, A), O2[una(A)[X has a model, therefore (Observation
4.3) O [{L(a),K v L} [una(A) [X[K/L] has a model.
Let I be a model of O [{L(a),K v L} [una(A) [X[K/L]. We will show
I |= X. For this, we have to consider literals from X based on K only
(since I |= X[K/L]). However, a literal of the form K(b) does not occur in
X ⇢ M (according to part 4 of this lemma).

34

If ¬K(b) 2 X then I |= ¬L(b) and, since I |= K v L, also I |= ¬K(b).
Consequently, I |= O [una(A) [X and X 62 C(O,A).

6. M(O2, A) = M(O,A) \ SL(A,K) derives as a combination of parts 3, 4,
and 5 of this lemma.

Lemma 5. Let V be a vocabulary, K,K 0 2 V concept symbols, a 2 V a constant.
Let O be an ontology, and A a sequence of literals with finite Ã, such that
V(O [Ã) ✓ V \ {K 0}, ¬K(a) 2 Ã, and O3 = O[K/K0] [{¬K(a),K v K 0}.

1. C(O3, A) ✓ C(O,A)

2. C(O,A) \ SL(A,¬K) ✓ C(O3, A)

3. M(O,A) \ SL(A,¬K) ✓ M(O3, A)

4. M(O3, A) \ SL(A,¬K) = ;
5. M(O3, A) ✓ M(O,A)

6. M(O3, A) = M(O,A) \ SL(A,¬K)

Proof. Analogous to the proof of 4 in the obvious way.

Proof of Lemma 1 (p. 21).
Let V be a vocabulary, K,K 0 2 V concept symbols, a 2 V a constant. Let O

be an ontology, and A a sequence of literals with finite Ã, V(O[Ã) ✓ V \{K 0},
and ↵ 2 Ã.

1. CL(O [{↵}, A) ✓ CL(O,A) \ {↵} results from Definition 8.3 and Lemma
3.2.

2. If K(a) 2 Ã, then
CL(O[K/K0] [{K(a),K 0 v K}, A) ✓ CL(O,A) \ {K(b) | constant b 2 V}
is a direct consequence of Lemma 4.6 and Definition 8.3.

3. If ¬K(a) 2 Ã, then
CL(O[K/K0][{¬K(a),K v K 0}, A) ✓ CL(O,A)\{¬K(b) | constant b 2 V}
is a direct consequence of Lemma 5.6 and Definition 8.3.

Proof of Lemma 2 (p. 22). Let O be an ontology, A a sequence of literals with
finite Ã, ↵ 2 Ã, and An a finite prefix of A.

1. CL(O ⌦2 ↵, A) ✓ CL(O,A) \ {↵}
If O [↵ is consistent, then O ⌦2 ↵ = O [{↵} and the assertion derives
from Lemma 1.1.
If O [↵ is inconsistent, then the assertion derives from Lemma 1.2 and
1.3.

35

2. CL(O ⌦2 A
n, A) ✓ CL(O,A) \ Ãn

If O ⌦2 A
n [una(A) is inconsistent, then CL(O ⌦2 A

n, A) = ; according
to Observation 6.4 and Definition 8.3.
If O ⌦2 A

n [una(A) is consistent, then the assertion derives from Obser-
vation 5.4 and part 1 of this lemma by induction on n.

Proof of Corollary 1 (p. 22). Let V be a vocabulary, K 2 V a concept symbol,
a, c 2 V constants, A = h↵iii2{1,...,n} a finite sequence of literals over V, O an
ontology over V.

1. Let O0 = (O ⌦2 K(a)) ⌦2 A. Assume O [{K(a)} is inconsistent and
O0 [una(Ã [{K(a),K(c)}) is consistent.
Let A0 = h↵iii2{1,...,n+2} be the extension of A with ↵n+1 = K(c),↵n+2 =
K(a). Thus, A = (A0)n. According to Definition 2, O2 = (O ⌦2 K(a)) =
O[K/K0] [{K(a),K 0 v K} (for some K 0 not occurring in O) and accord-
ing to Lemma 1.2, CL(O2, A

0) ✓ CL(O,A0) \ {K(b) | constant b 2 V}.
Therefore, K(c) /2 CL(O2, A

0).
By assumption, O0 = O2⌦2A. According to Lemma 2.2 we get CL(O0, A0) ✓
CL(O2, A

0) \ Ã. Therefore K(c) /2 CL(O0, A0). According to Definition
8.3, {K(c)} /2 M(O0, A0). As O0 [una(Ã [{K(a),K(c)}) is consistent,
; /2 C(O0, A0). Therefore (by Definition 8.2), {K(c)} /2 C(O0, A0), which
means that O0 [{K(c)} is consistent.

2. Corresponding to part 1 of this proof considering ¬K(a) and ¬K(c) in-
stead of K(a) and K(c).

3. Let 1 j k n, such that ↵j = K(a) and ↵k = K(c) or ↵j = ¬K(a)
and ↵k = ¬K(c). Let O0 = O⌦2A. Assume O0[una(A) is consistent and
O ⌦2 A

j�1 [{↵j} is inconsistent.
As O0 [una(A) is consistent, O ⌦2 Ak�1 [una(A) is consistent as well
according to Observation 5.4. Parts 1 and 2 of this corollary yield that
O ⌦2 A

k�1 [{↵k} is consistent.

Proof of Corollary 2 (p. 22).
Derives from Lemma 2.2, Definition 1.3, Observations 6.3 and 6.4.

Proof of Theorem 1 (p. 23).
Let O be a consistent ontology, A a sequence of literals with finite Ã such

that for every n 2 N the set O ⌦2 A
n [una(An) is consistent.

Let Ak be a prefix of A with Ã = Ãk. Let i � k be such that all literals of
Ã that occur at least once after k occur between k and i. Because of Lemma
2.2 and Ã = Ãk, CL(O⌦2 A

k, A) = ;. According to Observation 6.4 this means
that O ⌦2 A

k [Ã is consistent. Thus, after step k only expansions can occur.
Because of Observation 1.4, O ⌦2 A

i = O ⌦2 A
k [{↵k+1, . . . ,↵i}. Because of

36

the choice of i it identifies an upper bound for the step at which the sequence
of ontologies stabilizes.

Definition 10. For a set of formulae M and a concept symbol K let MK =
{� 2 M | � contains K} be the subset of formulae of M that syntactically
contain K.

Observation 7. Let O be an ontology over vocabulary Vc [Vp with Vc \Vp = ;
and A a finite sequence of literals over Vc, such that (O ⌦2 A) [una(A) is
consistent. Let K 2 Vc be any concept symbol that has been reinterpreted during
the integration of A into O using the weak revision operator of type 2.

1. There is a concept symbol K# 2 Vp, such that

• (O ⌦2 A)K ✓ {K v K#} [Ã or
• (O ⌦2 A)K ✓ {K# v K} [Ã.

2. If K 2 Vc has been reinterpreted twice, then there is another concept
symbol K 0 2 Vp \ {K#}, such that

• (O ⌦2 A)K# ✓ {K v K#,K 0 v K#} [Ã[K/K#] or

• (O ⌦2 A)K# ✓ {K# v K,K# v K 0} [Ã[K/K#]

Proof.
1. Consequence of Definition 2.

2. Consequence of Definition 2 in combination with Corollary 1.

Proof of Theorem 2 (p. 24).
Let K 2 Vc be any concept symbol that has been reinterpreted twice during

the integration of A into O using the weak revision operator of type 2. Let
K 00 2 Vp be the concept symbol, such that (according to Observation 7.1)
(O ⌦2 A)K ✓ {K v K 00,K 00 v K} [Ã.

Since I |= (O⌦2 A)[una(A) and J is the same as I for all symbols except
K and K 00, J |= una(A) and J |= � for any � 2 O ⌦2 A that does not contain
K or K 00.

J |= ÃK derives from KJ = IA
K , {aI | K(a) 2 Ã} ✓ IA

K , and {aI | ¬K(a) 2
Ã} \ IA

K = ;.
According to Observation 7.1, (O⌦2 A)K ✓ {K v K 00}[Ã or (O⌦2 A)K ✓

{K 00 v K} [Ã. The construction yields J |= (O ⌦2 A)K in either case.
Since K has been reinterpreted twice (according to Observation 7.2) there is

a concept symbol K 0 such that, (O ⌦2 A)K00 ✓ {K v K 00,K 0 v K 00} [Ã[K/K00]

or (O ⌦2 A)K00 ✓ {K 00 v K,K 00 v K 0} [Ã[K/K00]. Since I |= (O ⌦2 A)K00 , the
construction also guarantees that J |= (O ⌦2 A)K00 in either case.

37

Lemma 6. Let ML(V) be a propositionally complete description logic without
nominals, i.e. a description logic that provides concept constructors for inter-
section, union, and negation, but does not provide any concept constructor based
on constants. Let the vocabulary V provide constants and atomic concepts but
no role symbols. Correspondingly, no concept description based on ML(V) does
employ a concept constructor based on roles or constants.

Let O be a description-logic ontology based on ML(V) with finite ABox.
Let explO(x) =def u{D | D(x) 2 O} be a conjunction of all concepts explicitly
asserted for x in O.

Then for any concept description C based on ML(V), constant x 2 V, and
sequence A of literals over V,

1. O |= C(x) iff O |= explO(x) v C.

2. If mscO(x) exists, then O |= explO(x) ⌘̇ mscO(x).

3. O [una(A) is consistent iff O is consistent and una(A) is consistent.

Proof.
1. The definition of expl yields O |= explO(x)(x). Therefore, if O |= explO(x) v

C, then also O |= C(x).
Now assume O |= C(x), an interpretation I, such that I |= O, and d 2
explO(x)

I . We will show that d 2 CI .

Let J be the modification of I, such that J (x) = d. We first want to
show that J |= O. As J differs from I only regarding x, we just have to
consider those ↵ 2 O that use x. According to the restrictions assumed
on the syntactic structure of O, the constant x can occur in O only in
ABox axioms of the form D(x), where D is a description that does not
contain x. Let ↵ = D(x) 2 O. Then |= explO(x) v D by definition of
expl. J |= D(x) iff xJ = d 2 DJ = DI . As d 2 explO(x)

I ✓ DI , this is
the case.
Thus, J |= O. As O |= C(x), this means J |= C(x), i.e., d = xJ 2
CJ = CI , since x does not occur in C. Consequently O |= C(x) iff
O |= explO(x) v C.

2. As O |= mscO(x)(x), we get O |= explO(x) v mscO(x) from part 1 of this
lemma. As O |= explO(x)(x), we derive |= mscO(x) v explO(x) from the
definition of msc. Therefore O |= explO(x) ⌘̇ mscO(x).

3. It is obvious that both O and una(A) are consistent, if O [una(A) is
consistent.
Assume that both O and una(A) are consistent and let J be an interpre-
tation, such that J |= O. Let I be the Herbrand interpretation defined
as follows: �I is the set of all constants of V, for all constants x: xI = x
and for all concept symbols K: KI = {x 2 �I | xJ 2 KJ }.

38

As una(A) is consistent and contains statements of the form x 6 .= y only,
I |= una(A) is a direct consequence of the definition of I. By induction
on the formation of complex concepts, one can show that for all concepts
C based on ML(V), the condition CI = {x 2 �I | xJ 2 CJ } holds.
On this basis, the proof of I |= O is straight forward.

Corollary 4. Let V be a vocabulary without role symbols and O,O1, O2 be
ontologies based on ML(V), and let ↵ be a literal over V. Then

1. O �expl

i ↵ ⌘ O �i ↵.

2. If O1 ⌘ O2, then O1 �expl

i ↵ ⌘ O2 �expl

i ↵.

Proof of Theorem 3 (p. 25).
Let Vc and Vp be vocabularies such that Vc \ Vp = ;, a, b, c, d 2 Vc be

constants, and B,C,D,E 2 Vc be concept symbols. Let the ontology O, the
finite sequence A, and the infinite sequence A0 (the infinite repetition of A) be
given by

O = {¬B(a),¬C(a),¬D(a),¬E(a),¬B(b),¬C(b),¬B(c),¬C(c),¬D(c),¬E(c),

¬B(d),¬C(d),¬D(d),¬E(d)}
A = h↵iii2{1,...,16} = hC(a), B(a), B(b), B(d), E(b), D(b), D(a), D(c),¬B(c),

¬C(c),¬C(d),¬C(b),¬D(d),¬E(d),¬E(a),¬E(c)i
A0 = h↵iii2N, with ↵i = ↵i+16 for all i 2 N

In this case, and for any literal ↵ with V(↵) ✓ Vc

O �expl

2 A |= ↵ iff O |= ↵
O �2 A |= ↵ iff O |= ↵

and
M(O �2 A,A0) =

M(O �expl

2 A,A0) = M(O,A) = M(O,A0)
= {{B(a)}, {C(a)}, {D(a)}, {B(b)}, {D(c)}, {B(d)}}

The (infinite) sequence A0 is the systematic repetition of the sequence A.
After each round of 16 steps, the same set of literals over Vc are consequences of
the resulting ontology and the same set of conflicting literals is re-established.
Therefore, the sequence of ontologies generated during the integration process
does not stabilize.

As O and A conform to the restrictions described in Corollary 4, the sequence
of ontologies generated by �2 and �expl

2 consist of equivalent ontologies. We
spare the readers the lengthy listing of determining O�expl

2 A. Nevertheless, we
discuss the basic steps to motivate the resulting structure.

The set of assertions concerning a in O is {¬B(a),¬C(a),¬D(a),¬E(a)} ✓
O. Correspondingly, the first statement C(a) from A conflicts with O and the
integration result is

39

O1 = O[C/C0] [{C(a), C 0 v C,C v C 0 t ¬B,C v C 0 t ¬C 0, C v C 0 t ¬D,C v
C 0 t ¬E}.

To show the content of the derived ontologies in a more compact form, we
make use of the facts that an axiom like X v Y t Z is equivalent to the axiom
X u ¬Y v Z and that the set of axioms {X v Y,X v Z} is equivalent to
{X v Y u Z}. Correspondingly, O1 ⌘ O[C/C0] [{C(a), C 0 v C, (C u ¬C 0) v
(¬B u ¬D u ¬E)}.

The second statement of A is B(a). This conflicts with O1 as ¬B(a) 2 O1.
The result of integrating B(a) is
O2 ⌘ O1

[B/B0] [{B(a), B0 v B, (B u ¬B0) v (¬C 0 u ¬D u ¬E u C)}
As O1

[B/B0] |= (C u ¬C 0) v (¬D u ¬E)

O2 ⌘ O1
[B/B0] [{B(a), B0 v B, (B u ¬B0) v (C u ¬C 0)}.

The axiom (B u ¬B0) v (C u ¬C 0) expresses that the difference between B
and B0 is subsumed by the difference between C and C 0. Consequently,
O2 ⌘ O[C/C0][B/B0] [{C(a), B(a), C 0 v C,B0 v B, (C u ¬C 0) v (¬B0 u ¬D u
¬E), (B u ¬B0) v (C u ¬C 0)}.

The third and fourth statements from the trigger sequence (B(b), B(d)) do
not conflict with O2 (resp. O3) and
O4 = O2 [{B(b), B(d)} ⌘ O[C/C0][B/B0] [{C(a), B(a), B(b), B(d), C 0 v C,
B0 v B, (C u ¬C 0) v (¬B0 u ¬D u ¬E), (B u ¬B0) v (C u ¬C 0)}.

All of the following steps follow these two patterns. Either there is no conflict
(steps 3, 4, 7, 8, 11, 12, 15, 16) and a simple expansion occurs, or a conflict
occurs (steps 1, 2, 5, 6, 9, 10, 13, 14) where the difference between the two
readings is subsumed by the difference between the readings of other ambiguous
terms disambiguated in an earlier step. This ordering of differences is established
since no ontology derived during the integration sequence can prove that the
individuals named by the constant can be distinguished based on the concepts
involved.

The resulting ontology O16 = O16
A [O16

T consists of an ABox O16
A and a

TBox O16
T . The ABox consists of entries from O and A in their initial form or a

variant derived by substitution. While all entries from O appear in O16
A in the

variant using simple primes (derived in the first reinterpretation of the concept
symbol), the positive items from A appear in O16

A in the variant using double
primes (derived in the second reinterpretation of the concept symbol).
O16

A = O[C/C0,B/B0,D/D0,E/E0][{C 00(a), B00(a), B00(b), B00(d), E00(b), D00(b), D00(a),
D00(c)} [{¬B(c),¬C(c),¬C(d),¬C(b),¬D(d),¬E(d),¬E(a),¬E(c)}

The resulting TBox O16
T = O16

T1[O16
T2 can be decomposed into the part (O16

T1)
with the axioms relating only two readings of one term and the part (O16

T2) with
the axioms relating the two readings and another concept.
O16

T1 = {B0 v B00, B v B00, C 0 v C 00, C v C 00, D0 v D00, D v D00, E0 v E00, E v
E00}.

The axioms of O16
T2 can be mapped to an equivalent set of axioms O16

T3 as
described above.
O16

T2 ⌘ O16
T3 = {(E00 u ¬E) v (D00 u ¬D), (D00 u ¬D) v (C 00 u ¬C),

(C 00 u ¬C) v (B00 u ¬B), (B00 u ¬B) v (D00 u ¬D0), (D00 u ¬D0) v (E00 u ¬E0),

40

(E00u¬E0) v (B00u¬B0), (B00u¬B0) v (C 00u¬C 0), (C 00u¬C 0) v (¬B0u¬E0u
¬D0)}

Let for each X 2 {B,C,D,E}, X⇤ stand for ¬X u¬X 0 uX 00 and Y = B⇤ u
C⇤uD⇤uE⇤. Then O16

T2 |= (E00u¬E) v Y . As ¬D0(a), D00(a),¬E(a),¬D0(c), D00(c),¬E(c) 2
O16

A , we can derive O16 |= Y (a) and O16 |= Y (c). As ¬B0(d), B00(d),¬C(d),¬E(d) 2
O16

A , we can also derive O16 |= Y (d). As ¬B0(b), B00(b),¬C(b) 2 O16
A , we can

derive O16 |= (E00u¬E0uD00u¬D0uB⇤uC⇤)(b), but O16[{D(b)}[una(A) 6|=
¬E(b), O16 6|= E(b), and O16 6|= D(b).

This proves that for any literal ↵ with V(↵) ✓ Vc

O �expl

2 A |= ↵ iff O |= ↵
and
M(O �expl

2 A,A0) = M(O,A0)
As V(O) ✓ Vc and O contains only literals, this means that O16 |= O. The

difference between O and O16 derives from the richer private vocabulary used
by O16. However, as the constants used in A are not distinguishable by O16

regarding this vocabulary, further iterations of integrating A will yield exactly
the same sequence of conflicts and similar sequences of solution.

Appendix II: Example
Example 5. An agent (receiver) using an ontology OR wants to buy a cheap
book on thermodynamics in an online bookshop (sender) that uses the ontology
OS.

In this case, the receiver does not have any information on the announced
books beforehand but just general terminological specifications. Both ontologies
agree regarding notions such as costs-less-than-n-Euros. However, they disagree
on the specification of Cheap, i.e., in their judgements on value for money.

A sequence A of literals stemming from the sender is integrated into the
receiver’s ontology using �expl

2 . The sender gives details on the type and price
of the books (th1 is a hardcover book that costs between 5 and 8 Euros, th2 is a
booklet with a price between 3 and 5 Euros) as well as its own value-for-money

41

judgement (th1 is cheap, but th2 is not cheap).

OR = {Cheap ⌘̇ CostLt_5,
CostLt_3 v CostLt_5,CostLt_5 v CostLt_8}

OS = {Cheap ⌘̇ (CostLt_5 u SoftC) t (CostLt_8 u HardC) t
(CostLt_3 u Booklet),
CostLt_3 v CostLt_5,CostLt_5 v CostLt_8,
SoftC v ¬HardC,Booklet ⌘̇ ¬(SoftC t HardC),

HardC(th1),¬CostLt_5(th1),CostLt_8(th1),
Booklet(th2),¬CostLt_3(th2),CostLt_5(th2)}

A = hHardC(th1),¬CostLt_5(th1),CostLt_8(th1),
Booklet(th2),¬CostLt_3(th2),CostLt_5(th2),
Cheap(th1),¬Cheap(th2)i

Integrating this sequence using the operator �expl

2 needs two reinterpretation steps
involving the concept symbol Cheap.

OR �expl

2 A = {Cheap0 ⌘̇ CostLt_5,
CostLt_3 v CostLt_5,CostLt_5 v CostLt_8,
HardC(th1),¬CostLt_5(th1),CostLt_8(th1),
Booklet(th2),¬CostLt_3(th2),CostLt_5(th2),
Cheap00(th1),Cheap0 v Cheap00,Cheap00 v Cheap0 t ¬CostLt_5,
Cheap00 v Cheap0 t HardC,Cheap00 v Cheap0 t CostLt_8,
¬Cheap(th2),Cheap v Cheap00,Cheap00 v Cheap t CostLt_5,
Cheap00 v Cheap t Booklet,Cheap00 v Cheap t ¬CostLt_3}

The resulting ontology OR �expl

2 A allows the derivation of ¬Cheap(th2) and
of Cheap(th1) (using Cheap00(th1), ¬CostLt_5(th1), and Cheap00 v Cheap t
CostLt_5). Thus, it agrees with OS regarding the value-for-money judgements.
Furthermore, the additional bridging axioms introduced to relate the different
readings of the term Cheap result in an approximation of the meaning of the
common symbol within the sender’s ontology, as both OS and OR�expl

2 A have the
following statements as consequences: books that cost less than 3 Euros are cheap
(CostLt_3 v Cheap), cheap books cost less than 8 Euros (Cheap v CostLt_8),
books under 5 Euros that are not booklets are cheap (CostLt_5 u ¬Booklet v
Cheap), and cheap books that are not hardcover books cost less then 5 Euros
Cheap u ¬HardC v CostLt_5.

References
[1] Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson. On the

logic of theory change: partial meet contraction and revision functions.

42

Journal of Symbolic Logic, 50:510–530, 1985.

[2] Franz Baader. Description logic terminology. In F. Baader, D. Calvanese,
D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors, The De-
scription Logic Handbook, pages 495–505. Cambridge University Press,
2002.

[3] Mukesh Dalal. Investigations into a theory of knowledge base revision:
Preliminary report. In Proceedings of the Seventh National Conference
on Artificial Intelligence (AAAI-88), pages 475–479, St. Paul, Minnesota,
August 1988. AAAI Press.

[4] James P. Delgrande, Didier Dubois, and Jérôme Lang. Iterated revision
as prioritized merging. In P. Doherty, J. Mylopoulos, and C.A. Welty,
editors, Proceedings of the Tenth International Conference on Principles
of Knowledge Representation and Reasoning (KR-2006), pages 210–220.
AAAI Press, 2006.

[5] James P. Delgrande and Torsten Schaub. A consistency-based approach
for belief change. Artificial Intelligence, 151(1–2):1–41, 2003.

[6] Giorgos Flouris, Dimitris Manakanatas, Haridimos Kondylakis, Dimitris
Plexousakis, and Grigoris Antoniou. Ontology change: classification and
survey. The Knowledge Engineering Review, 23(2):117–152, 2008.

[7] Peter Gärdenfors. Knowledge in Flux: Modeling the Dynamics of Epis-
temic States. MIT Press, Bradford Books, Cambridge, MA, 1988.

[8] Peter Gärdenfors. Belief revision: A vade-mecum. In A. Pettorossi, editor,
Proceedings of the Third International Workshop on Meta-Programming
in Logic (META-92), volume 649 of Lecture Notes in Computer Science,
pages 1–10. Springer, 1992.

[9] Moritz Goeb, Peter Reiss, Bernhard Schiemann, and Ulf Schreiber. Dy-
namic T-box-handling in agent-agent-communication. In Ch. Beierle and
G. Kern-Isberner, editors, Dynamics of Knowledge and Belief. Proceedings
of the Workshop at the 30th Annual German Conference on Artificial In-
telligence (KI-2007), pages 100–117. Fernuniversität in Hagen, September
2007.

[10] Adam Grove. Two modellings for theory change. Journal of Philosophical
Logic, 17:157–170, 1988.

[11] Sven Ove Hansson. A Textbook of Belief Dynamics. Kluwer Academic
Publishers, 1999.

[12] Hirofumi Katsuno and Alberto Mendelzon. On the difference between
updating a knowledge base and revising it. In J.F. Allen, R. Fikes, and
E. Sandewall, editors, Proceedings of the Second International Conference
on Principles of Knowledge Representation and Reasoning (KR-1991),
pages 387–394, San Mateo, California, 1991. Morgan Kaufmann.

43

[13] Kevin T. Kelly. Iterated belief revision, reliability, and inductive amnesia.
Erkenntnis, 50:11–58, 1998.

[14] Kevin T. Kelly. The learning power of belief revision. In I. Gilboa, editor,
Proceedings of the Seventh Conference on Theoretical Aspects of Rational-
ity and Knowledge (TARK-98), pages 111–124. Morgan Kaufmann, 1998.

[15] Ralf Küsters and Ralf Molitor. Computing most specific concepts in de-
scription logics with existential restrictions. LTCS-Report 00-05, LuFG
Theoretical Computer Science, RWTH Aachen, Germany, 2000.

[16] Eric Martin and Daniel Osherson. Scientific discovery based on belief
revision. Journal of Symbolic Logic, 62:1352–1370, 1997.

[17] Thomas Meyer, Kevin Lee, and Richard Booth. Knowledge integration
for description logics. In M.M. Veloso and S. Kambhampati, editors, Pro-
ceedings of the Twentieth National Conference on Artificial Intelligence
(AAAI-2005), pages 645–650. AAAI Press / The MIT Press, 2005.

[18] Donald J. Monk. Mathematical Logic. Springer, 1976.

[19] Natalya Fridman Noy. Semantic integration: A survey of ontology-based
approaches. SIGMOD Record, 33(4):65–70, 2004.

[20] Özgür L. Özçep. Ontology revision through concept contraction. In
S. Artemov and R. Parikh, editors, Proceedings of the Workshop on Ratio-
nality and Knowledge, 18th European Summerschool in Logic, Language,
and Information, Universidad de Malaga, pages 79–90, 2006.

[21] Özgür L. Özçep. Towards principles for ontology integration. In C. Es-
chenbach and M. Grüninger, editors, Proceedings of the Fifth Interna-
tional Conference on Formal Ontology in Information Systems (FOIS-
2008), pages 137–150, 2008.

[22] Guilin Qi, Weiru Liu, and David A. Bell. A revision-based approach to
handling inconsistency in description logics. In Proceedings of the 11th
International Workshop on Non-Monotonic Reasoning (NMR06), pages
124–132, 2006.

[23] Renata Wassermann and Eduardo Fermé. A note on prototype revision,
1999. Spinning Ideas. (Electronic Essays dedicated to Peter Gärdenfors
on his 50th Birthday). http://www.lucs.lu.se/spinning/.

[24] Dongmo Zhang and Norman Y. Foo. Convergency of learning process. In
B. McKay and J.K. Slaney, editors, Proceedings of the Fifteenth Australian
Joint Conference on Artificial Intelligence, volume 2667 of Lecture Notes
in Computer Science, pages 547–556. Springer, 2002.

44

	Introduction
	Related Work
	Basic Definitions: Description Logic and Ontologies
	Ontology-Revision Operators: Definitions
	Basic Properties of the Ontology-Revision Operators
	Conservativity
	Stability
	Stability of 2
	Weakness of 2
	Instability of expl2 and 2

	Conclusion

