
On the Conservativity and Stability of

Ontology-Revision Operators Based on

Reinterpretation

Özgür L. Özçep and Carola Eschenbach

Department for Informatics (AB WSV), MIN Faculty, University of Hamburg
Vogt-Kölln-Str. 30, D-22527 Hamburg, Germany

{oezcep,eschenbach}@informatik.uni-hamburg.de

Abstract. This article deals with the problem of integrating possibly
conflicting information into an ontology. We define and analyze a fam-
ily of ontology-revision operators that resolve conflicts by reinterpreting
concept symbols occurring in the triggering information. The analysis of
the iterated application of the operators focusses on issues of conserva-
tivity and stability of the ontology extension.

1 Introduction

Communication between natural or artificial agents relies on using shared terms
with shared meanings. This precondition, however, cannot always be established
in advance. While human users of natural language have flexible means to handle
situations where different uses of the same term become obvious, such mecha-
nisms of reinterpretations are not well studied for artificial agents. In this article,
we are concerned with the specific case of heterogeneity between terminologies,
where different agents use the same term with different meanings (conf. [1]) and
where this ambiguity is discovered while the sender agent gives information that
conflicts with the information the receiver holds. The approach aims at handling
the communication between agents that hold kindred ontologies where conflicts
are the exception rather than the rule. Therefore no preprocessing stage of align-
ing the terminologies in advance is assumed.

The specification of the terminology used in communication is based on an
ontology the agent holds. For agents whose ontologies are consistent and well-
tried the treatment of observed heterogeneities should not lead to the loss of
(parts of) its former ontology. Therefore, we are faced with the problem of es-
tablishing a semantic mapping between the receiver’s (internal) ontology and
the sender’s terminology during the exchange of information using the terms
rather than the exchange of information about the terminologies. In this article
we will focus on a lifting process where the incoming information is handled as
a sequence of facts and the ontology of the sender is not communicated.

We outline the theoretical basis on which to generate semantic mappings as
the product of applying a consistency resolving change operator to an ontology,

2

represent semantic mappings as description logical formulas in the object lan-
guage and use them like other logical formulas as premises for inferences needed
to calculate the outcome of the change operators.

The ontology-revision operators defined and analyzed in this article are moti-
vated by ideas from the area of belief revision. Along with a treatment of iterated
revision (iterated application of an revision operator), we will discuss stability
aspects for the operators.

A concrete application of the analyzed ontology-revision operators could be to
embed them into an information processing system IPS. More concretely imagine
a software agent that holds an ontology OR. The IPS formulates a query (e.g.,
‘List all cheap books on thermodynamics’) and sends it as a request to another
agent (the sender) that offers services concerning the request, e.g., services that
are needed for online book stores. The sender processes the request, generates a
response by using its own ontology OS , and sends the response as a sequence of
information. The IPS processes the sequence by applying the revision operator
(incrementally) and thereby resolves conflicts that possibly occur due to the
difference between OR and OS , thereby, e.g., discovering that the concept cheap
has different meanings in OS and OR.

2 Ontology-revision Operators: Definitions

Following M. Grove’s idea of so called sphere-based belief revision outlined in
[2], Wassermann/Fermé ([3]) constructed operators for expanding, revising and
contracting a set of concept descriptions by a concept description. As ontologies
deal with concepts, [4] adapted these ideas in order to define ontology-revision
operators that get as input an ontology O and a sentence α, also called the
trigger information, and that have as output a new ontology. Two different types
of operators !1 and !2 were defined in a local and global variant respectively.
In this article only the global variants will be dealt with.

For the definition of the operators some preliminary notation is necessary.
Throughout this article an ontology will be understood as a finite set of sentences
over a description logical (DL) language. We will use the DL syntax to describe
ontologies and the trigger information, no special DL will be assumed to be given
in advance.

An ontology will be denoted by O and indexed or primed variants. An ontol-
ogy over a language L is a set of sentences in which all non-logical symbols, i.e.,
the concept symbols, constants and role symbols, are among those in L. L(O)
describes exactly the non-logical symbols occurring in O. Writing α ∈ L for a
sentence α means that all non-logical symbols of α are in L. Concept descrip-
tions will be denoted by C and indexed or primed variants. Concept symbols (or
atomic concept descriptions) will be denoted by K, S, T and indexed or primed
variants. Constants will be denoted by a, b, c . . . and indexed variants. O[K1/K2]

is the outcome of uniformly substituting K1 by K2 in O. Sentences of the form
K(a) (for K a concept symbol) will be called positive literals, sentences of the

3

form ¬K(a) will be named negative literals and the union of these sets of sen-
tences will be simply named literals. Mod(O) is the set of models of O.

The (global) operators of [4] are defined with reference to the most specific
concept assigned by an ontology to a constant. C is a most specific concept (msc)
for a in the ontology O iff O |= C(a) and for all C′ such that O |= C′(a) it is
true that O |= C # C′. The existence of a most specific concept depends on the
ontology O and the underlying description logic.1 We assume that there is some
systematic way (e.g. an ordering over concept descriptions) to pick out for every
constant a a unique most specific concept in an ontology O. This unique most
specific concept will be denoted by mscO(a) and we will talk about the most
specific concept of a constant in an ontology (or regarding an ontology).

Definition 1. Let O be an ontology over a DL-Language L, α = K(a) a sen-
tence in L with K a concept symbol and let a be a constant for which mscO(a)
exists. Let K ′ be a new concept symbol not occurring in O∪{α}. Then the global
operators of type 1 and 2 (for positive literals) are defined resp. by2

O !1 K(a) =

O ∪ {K(a)} if O ∪ {K(a)} is consistent,
O ∪ {K # K ′, K ′ # K % mscO(a) ,

K ′(a)} else
(1)

O !2 K(a) =

O ∪ {K(a)} if O ∪ {K(a)} is consistent,
O[K/K′] ∪ {K ′ # K, K # K ′ % mscO[K/K′]

(a) ,
K(a)} else

(2)

The operators !1 and !2 are similar as one can obtain !2 by changing the
roles of K ′ and K in the definition of !1. The case that the union of the trigger
information α and the ontology O is consistent is handled by both operators in
the same way by adding α to O. If O ∪ {α} is inconsistent, the inconsistency
is ascribed to the fact that the occurrences of K in O and in α respectively
have different meanings, i.e., denote different concepts. This difference in the
meanings is represented via disambiguating K by introducing a new symbol K ′

that denotes the other concept.
The operators !1 and !2 differ regarding which concept (the concept repre-

sented in O vs. the concept represented in α) is denoted by the new symbol K ′.
The type-1 operator !1 substitutes the occurrence of K in the trigger informa-
tion by a new symbol K ′ while O is not changed. We will also say that K in α
is reinterpreted. The type-2 operator !2 substitutes the occurrences of K in the
ontology O by a new symbol K ′, while preserving α. We will also say that K in
O is reinterpreted. The difference between !1 and !2 can also be described by
saying that !1 preserves the terminology of the ontology O while !2 adapts to
the terminology of the sender of α.

As a consequence, O is not changed by applying !1 and α is put in a rein-
terpreted form into the resulting ontology. The operator !1 fulfills the condition
1 [5] describes a family of description logics for which the most specific concept exists

and an algorithm for determining the most specific concept.
2 [4], p. 87

4

of monotonicity (see below) but only a weak form of the success postulate men-
tioned in the classic belief revision postulates of AGM.3 The operator !2, on the
other hand, fulfills the success axiom, i.e., α ∈ O !2 α, but not monotonicity.

Both operators declare upper and lower bounds in which the old symbol
K and the new symbol K ′ occur. In case of !1 the bounds are given for K ′

depending on K and in case of !2 the bounds are given for K depending on K ′.
A limitation of the definitions for !1 and !2 is the fact that they deal only

with positive literals. In order to widen the applicability of the operators, we
extend the definitions of the operators to deal also with negative literals.4

Definition 2. Let O be an ontology over a DL-Language L, K a concept symbol,
and let a be a constant in L for which mscO(a) exists. Let K ′ be a new concept
symbol not occurring in O ∪ {¬K(a)}. Then the global operators of type 1
and 2 (for literals) are defined according to Def. 1 for the positive cases and
for the negative cases by

O !1 ¬K(a) =

O ∪ {¬K(a)} if O ∪ {¬K(a)} is consistent,
O ∪ {K ′ # K, K & ¬mscO(a) # K ′ ,

¬K ′(a)} else
(3)

O !2 ¬K(a) =

O ∪ {¬K(a)} if O ∪ {¬K(a)} is consistent,
O[K/K′] ∪ {K # K ′, K ′ & ¬mscO[K/K′]

(a) # K ,
¬K(a)} else

(4)

The use of most specific concepts in the definitions results from the construc-
tion in [4], in which the global operators (defined above) originate as generaliza-
tions of the local operators—using the most specific concept as a common bound
for all local operators.

By weakening the specification, yielding definitions for the operators ⊗1 and
⊗2, we get rid of the reference to most specific concepts. The analysis of the
operators ⊗1 and ⊗2 aims at preparing the analysis of the stronger operators
!1 and !2 and will show that these weak operators also have some undesirable
properties.

Definition 3. Let O be an ontology over a DL-Language L, K a concept symbol
and let a be a constant in L. Let K ′ be a new concept symbol not occurring in
O∪{K(a)}. Then the weak global operators of type 1 and 2 (for literals)
are defined by

O ⊗1 K(a) =

{

O ∪ {K(a)} if O ∪ {K(a)} is consistent,
O ∪ {K # K ′, K ′(a)} , else

(5)

O ⊗1 ¬K(a) =

{

O ∪ {¬K(a)} if O ∪ {¬K(a)} is consistent,
O ∪ {K ′ # K,¬K ′(a)} else

(6)

3 [6], p. 513
4 The extension of the definitions to other types of trigger information is more complex

since it needs to handle more than one candidate for reinterpretation.

5

O ⊗2 K(a) =

{

O ∪ {K(a)} if O ∪ {K(a)} is consistent,
O[K/K′] ∪ {K ′ # K, K(a)} else

(7)

O ⊗2 ¬K(a) =

{

O ∪ {¬K(a)} if O ∪ {¬K(a)} is consistent,
O[K/K′] ∪ {K # K ′,¬K(a)} else

(8)

The operators !i and ⊗i for (i ∈ {1, 2}) can be considered as special cases
of the operators ⊕sel

i defined (for positive literals) according to (9) and (10):

O ⊕sel
1 K(a) = O ⊗1 K(a) ∪ {K # K ′ % sel({C | O |= C(a)})} (9)

O ⊕sel
2 K(a) = O ⊗2 K(a) ∪ {K ′ # K %

(

sel({C | O |= C(a)})
)

[K/K′]
} (10)

The operator ⊕sel
i has a selection function sel as a parameter that, in order to

warrant consistency, selects one concept M = sel({C | O |= C(a)}) from the set
of concepts C instantiated by a in O. If sel is such that M =), one gets the
operator ⊗2. If sel is such that M = mscO(a), one gets the operator !2.5

In this article we will focus on the operators !i and ⊗i for (i ∈ {1, 2}) thereby
avoiding the additional complexity due to the selection function sel.

One of the main questions of this article is how the operators behave in case
a finite sequence of literals A = (α1, α2, . . . , αn) or an infinite sequence of trigger
information is to be integrated into an ontology. To formulate this question, we
use some additional notation: Let ◦ ∈ {!1,!2,⊗1,⊗2} be an operator, A =
(α1, α2, . . . , αn) a finite sequence of literals. Then O ◦ A =def (. . . (O ◦ α1) ◦
α2) . . .) ◦ αn describes the outcome of iterated applications of the operator ◦ to
the resulting ontologies and the trigger information of the sequence A. In case
the sequence A is known and has length n we will use O◦(n) instead of O ◦ A
and even shorter O(n) if it is clear from the context which operator is meant
(or if it is not relevant for which operator repeated application is considered). If
A = (α1, . . . , αi, . . .), then let O◦(i) = (. . . (O ◦ α1) ◦ . . . ◦ αi). If A is a sequence
of length n, then Ai (for i ≤ n) is the prefix of A of length i.

For simplicity we will treat sequences of literals like sets of the literals when-
ever the order is irrelevant. Thus we write α ∈ A or A ⊆ O or O∪A. The symbol
‘◦1’ will be used as metavariable for type-1 operators, i.e., ‘◦1’ stands for !1 or
⊗1, and ‘◦2’ will be used as metavariable for type-2 operators, i.e., ‘◦2’ stands
for !2 or ⊗2.

3 Monotonicity and Non-monotonicity

A simple observation directly resulting from the definitions of the operators is
the following:

Observation 1. Let O be an ontology over L, α ∈ L and A a sequence of
literals. Let ◦1 be a type-1 operator and ◦2 be a type-2 operator. Then:

5 The selection function sel has a role similar to the role of the selection functions
defined in [6] for use in partial meet revision and its special cases maxi-choice and
full meet revision.

6

1. O ⊆ O ◦1 α (monotonicity of ◦1)
2. For all n ∈ IN: O ⊆ O◦1(n) (monotonicity of iterated ◦1)
3. O ⊗i α ⊆ O !i α, for i ∈ {1, 2} (!i is at least as strong as ⊗i)
4. α ∈ O ◦2 α (success for ◦2)
5. O ◦ α = O ∪ {α} iff O ∪ {α} is consistent.
6. O ⊆ O ◦ A = O ∪ A iff O ∪ A is consistent.
7. O ◦ α is consistent.6

8. If Mod(O1) = Mod(O2), then Mod(O1 ◦ α) = Mod(O2 ◦ α) (syntax indepen-
dence)

9. If O ∪ {α} is inconsistent and K ′ is the new symbol introduced in O ◦2 α
resp. O ◦1 α, then: (O ◦2 α)[K/L,K′/K] = (O ◦1 α)[K′/L], for L -= K ′ /∈ L(O ∪
{α}) and α = K(a) or α = ¬K(a).

Assertions 1.4,1.5, 1.7 and 1.8 of the observation are four adapted variants from
six of the AGM postulates.7 The other two postulates deal with the revision of
belief sets/propositions with complex information which we cannot (yet) simu-
late in our setting as we defined the operators only for literals.

While type-1 operators are monotone, type-2 operators can be non-monotone,
e.g. O -⊆ O ◦2 α if O ∪ {α} is inconsistent.

In the case of inconsistency, one can say a little bit more about the behavior of
type-1 operators: The integration of α into O results in a conservative extension.
According to the usual logical use of the term a theory O′ in a language L′ is
called a conservative extension of the theory O in a language L ⊆ L′ iff for
all sentences α in L: O |= α iff O′ |= α.8 The following proposition states
conservativity:

Proposition 1. Let O be an ontology over a language L, and α ∈ L be a literal.
Then: If O ∪ {α} is inconsistent, then O !1 α and O ⊗1 α are conservative
extensions of O.

Proof. See p. 13.

In the consistency case one cannot guarantee O ◦1 β to be a conservative exten-
sion, only the property of monotonicity holds. As a consequence it is not the case
that for all n: O◦1(n) is a conservative extension of O. Additionally the following
observations can be made:

Observation 2. For an ontology O over L and literals α, αi, αj ∈ L:

1. The outcome of applying ◦1 to a sequence A of literals depends on the order
of the elements in A. In case of O |= ¬(αi ∧ αj) for αi, αj ∈ A and i < j it
is possible that αi wins/survives when resolving the conflict in step j.

2. There is a subset A′, such that: O∪A′ ⊆ O◦1(n) and O◦1(n) is a conservative
extension of O ∪ A′.

6 This can be proved as a corollary to Prop. 1.
7 Compare the (re-)formulation of the postulates in [7].
8 [8], p. 208 and [9], p. 625.

7

3. The monotonicity of ◦1 preserves conflicts: If O ∪ {α} is inconsistent, then
O(n) ∪ {α} is also inconsistent. Thus, if O ∪ {α} is inconsistent, repeated
occurrences of α in A never result in O(n) |= α for any n ∈ IN.

The operators of type 2 are not monotone. Therefore the analysis of the type-
2 operators is more complicate. But in combination with the fact that the success
condition is fulfilled stability (in a intuitive sense defined below) is provable (at
least for the weak type-2 operators). From now on we will concentrate on type-2
operators.

4 Detailed Analysis

4.1 Restricted Conservativity

The following proposition states restricted conservativity properties for the op-
erators !2 and ⊗2. More precisely, (14) and (18) state conservativity for all
sentences β that do not contain one of the concept symbols K, K ′ (directly)
involved in the reinterpretation. Assertions (11) and (15) express conservativity
for those sentences that are literals and in which the reinterpreted symbol K
occurs with the same prefix (negation vs. no negation symbol) as in the trigger-
ing information. Similarly (12) and (16) express conservativity (only in case of
the strong operator !2) for those sentences that are literals and in which the
reinterpreted symbol K occurs with a different (complementary) prefix as in the
triggering information. Assertions (13) and (17) express the fact that the weak
operator ⊗2 does not preserve literals in which the reinterpreted symbol K oc-
curs with a different prefix than the prefix of the occurrence of K in the trigger
information.

Proposition 2. Let a and c be constants, K be a concept symbol, O be an
ontology such that mscO(a) exists. Let L = L(O ∪ {K(a), K(c)}). Then for all
formula β ∈ L \ {K, K ′}:

– If O |= ¬K(a), then:

O ◦2 K(a) |= K(c) iff O ∪ {a -= c} |= K(c) (11)

O !2 K(a) |= ¬K(c) iff O |= ¬K(c) and O |= ¬mscO(a)(c) (12)

O ⊗2 K(a) -|= ¬K(c) (13)

O ◦2 K(a) |= β iff O |= β (14)

– If O |= K(a), then:

O ◦2 ¬K(a) |= ¬K(c) iff O ∪ {a -= c} |= ¬K(c) (15)

O !2 ¬K(a) |= K(c) iff O |= K(c) and O |= ¬mscO(a)(c) (16)

O ⊗2 ¬K(a) -|= K(c) (17)

O ◦2 ¬K(a) |= β iff O |= β (18)

8

Proof. See p. 13.

The operators !2 and ⊗2 nearly fulfill the same restricted conservativity
assertions. The crucial difference is expressed by (12) and (13) (for positive
literals) and (16) and (17) (for negative literals). Because of this we can infer
more about ⊗2 than is expressed in Prop. 2. This will be stated in Sect. 4.2 on
stability.

The conservativity properties expressed in Prop. 2 are called ‘restricted’ be-
cause of two reasons: 1) Conservativity holds only for a subset of the sentences
(the set of literals) and 2) the ‘if’-directions of two of the proposed assertions
((11), (15)) hold only with additional assumptions concerning the uniqueness
of constants. These additional assumptions will be called ‘local unique name as-
sumptions’ and abbreviated by ‘UNA’. They express for some (not all) constants
occurring in the ontology and the trigger information the condition that they
denote different entities.9

The local unique name assumptions have a crucial role in the question of
stability which we deal with in the next subsection.

4.2 Stability

The main setting we consider is that of an agent holding some ontology O and
receiving a sequence A of trigger information (all being literals) and integrating
them into its ontology by using an operator of type 2. If the trigger information
stems from the same source ontology and this ontology is consistent, also A is
consistent. We focus on cases for which A contains only a finite set of different
literals and for which some literals can occur infinitely often in A. As the oper-
ators of type 2 fulfill success the question arises whether there is a step during
integrating A from which on the ontology does not change anymore. Formally
asked, the question is: Is there some i ∈ IN such that O◦2(i+m) = O◦2(i) for all
m ∈ IN?

For the weak operator ⊗2 stability holds under some local unique name
assumptions. Stability in general does not hold without a (local) UNA. This can
be demonstrated by a simple example.

Example 1. Consider the ontology O = {R(c, a), (≤ 1R)(c), R(c, b)}. Then O |=
a = b. If A is the infinite sequence (K(a),¬K(b), K(a),¬K(b), . . .) (having finite
different literals), then stability cannot occur. In other words: If according to the
ontology of the receiver one object is denoted by two different constants a, b but
according to the ontology of the sender a, b denote different objects, then this
mismatch cannot be solved by an operator of type 2.

The stability question for !2 is a bit more complex because of the additional
bound containing the most specific concept. The problematic fact in case of !2

9 It is not enough to replace the UNA a != c in (11) and (15) by O !|= a = c. The
following, e.g., is not true in general: O !|= a = c and O |= K(c) iff O⊗2K(a) |= K(c).
A counterexample is given by O = {¬K ≡ one−of({a})}.

9

is that information integrated in one step i may disappear in a later step i + m
and perhaps be replaced by its negation in another (or the same) step. This is
demonstrated by the following example.

Example 2. Let the ontology O and the sequence A be given by

O = {¬K(a1), L(a1), L(a2)}

A = (α1, α2, α3, α4) = (¬K(a2), K(a1),¬L(a1),¬L(a2))

Applying the definition of !2 results in

O !2 A ≡ {¬K ′(a1), L
′(a1), L

′(a2),¬K ′(a2), K(a1), K
′ # K,

K # K ′ % L′,¬L(a1), L # L′, L′ & (¬K ′ % ¬K)) # L,¬L(a2)}

Consequently O !2 A |= ¬α1, i.e., the trigger information α1 from the first step
is abandoned in a later step and its negation follows from O !2 A. Thus success
for α1 is not warranted.

This example does not show that stability cannot hold for !2, but it shows
that we cannot prove it by proving O(i) -|= ¬α1.

The main result of this article is the stability of ⊗2 and can be proved as
a corollary to the following theorem. The unique name assumption used in the
theorem is defined for a sequence A by

una(A) = {a -= b | K(a),¬K(b) ∈ A, for a concept symbol K} .

Defining una(A) in this way, also expresses the assumption that the set of literals
in A is consistent.

Theorem 1. Let O be a consistent ontology over L. Then for all finite sequences
A of literals in L:
If (O ⊗2 A) ∪ una(A) is consistent, then (O ⊗2 A) ∪ una(A) ∪ A is consistent as
well.

Sketch of Proof. We need some additional notation. For a sequence A = (αi)i∈I

and a concept symbol K let

AK = {αj | j ∈ I, αj = K(aj) for some constant aj}

be the set of literals contained in A in which K occurs positively. Accordingly

A¬K = {αj | j ∈ I, αj = ¬K(aj) for some constant aj}

is the set of literals contained in A in which K occurs negatively. Let A(K) =
AK ∪ A¬K . With OK = {β ∈ O | β contains K} we describe that part of the
ontology O that syntactically contains K. Let K = {Ki | i ∈ I} be the set of all
concept symbols in L for some I ⊆ IN.

The main ideas in the proof outlined in the following are first to separate
the ontologies in different parts according to the concept symbols and second to

10

check the following two facts: 1) If a conflict resolution for a literal αi = K(a) is
done in step i, then a conflict resolution for a literal αj (integrated in step j > i)
containing the same concept symbol K can only occur if αj has the form ¬K(b).
(Accordingly if αi = ¬K(a), then αj must have the form K(b).) 2) There can
be at most two conflict resolutions with respect to the same concept symbol.

The proof is done by induction on the length of the sequence A. In fact the
assertion proved by induction is stronger than the one formulated in the theorem,
and it contains the assertion of the theorem as (the last) conjunctive part. The
assertion is:

For all finite sequences A of length n: There are two disjoint sets of concept
symbols K′

n and K′′
n that are disjoint from K and have the form K′

n = {K ′
i |

i ∈ I ′n} and K′′
n = {K ′′

i | i ∈ I ′′n} for I ′′n ⊆ I ′n ⊆ I. And there is a substitution σn

defined by Kiσn = K ′
i if i ∈ I ′n and Kiσn = Ki else, such that the following five

assertions hold:

1. Oσn ⊆ O(n)

This expresses the fact that the (original) ontology O in some way is pre-
served along the integration. It can be found in the resulting ontology O(n)

by applying the substitution σn which maps the concept symbols of the old
ontology onto the corresponding (primed new) symbols of the new ontology
and thereby acts like a semantic mapping.

2. All concept symbols contained in O(n) are contained in K ∪K′
n ∪K′′

n.
3. O(n) can be represented by

O(n) = Oσn ∪

no revision
︷ ︸︸ ︷

⋃

i∈I\I′

n

A(Ki) ∪

simple revision
︷ ︸︸ ︷

⋃

i∈I′

n\I′′

n

(

O(n)
Ki

∪ (A(Ki) \ O(n)
Ki

)σn

)

∪

⋃

i∈I′′

n

(

O(n)
Ki

∪ O(n)
K′′

i
∪

(

A(Ki) \ O(n)
Ki

\ O(n)
K′′

i [K′′

i /Ki]

)

σn

)

︸ ︷︷ ︸

twofold revision

As the comments under and over the cambered brackets suggest, there can be
maximally two conflict resolutions with respect to the same concept symbol.

4. For all i ∈ I:
(a) If i /∈ I ′n, then A(Ki) ⊆ O(n).
(b) If i ∈ I ′n \ I ′′n , then (A(Ki) \ O(n)

Ki
)σn ⊆ O(n) and there is exactly one

T-box axiom in O(n) of the form K ′
i # Ki (case (A)) or Ki # K ′

i (case
(B)).
(A) In this case additionally

O(n)
Ki

⊆ {K ′
i # Ki}∪A(Ki) and if O(n) |= ¬Ki(aj), then Ki(aj) /∈ A.

(B) In this case additionally
O(n)

Ki
⊆ {Ki # K ′

i}∪A(Ki) and if O(n) |= Ki(aj), then ¬Ki(aj) /∈ A.
(c) If i ∈ I ′′n , then there is K ′′

i ∈ K′′
n such that (A(Ki)\O

(n)\O(n)
K′′

i [K′′

i /Ki]
)σn ⊆

O(n) and there is exactly one T-box axiom of the form K ′′
i # Ki (case

(A)) or of the form Ki # K ′′
i (case (B)).

11

(A) In this case additionally
– K ′′

i # K ′
i ∈ O(n) and O(n)

Ki
⊆ {K ′′

i # Ki} ∪ A(Ki)

– O(n)
K′′

i
⊆ {K ′′

i # K ′
i, K

′′
i # K ′

i} ∪ (A(Ki))[Ki/K′′

i]

– O(n) |= (A¬Ki)[Ki/K′′

i] ∪ (AKi ∩ O(n)
Ki

) ∪ (AKi \ O(n)
Ki

)σn

– If O(n) |= ¬Ki(aj), then Ki(aj) /∈ A and
– if O(n) |= Ki(aj), then ¬Ki(aj) /∈ A.

(B) In this case additionally
– K ′

i # K ′′
i ∈ O(n) and O(n)

Ki
⊆ {Ki # K ′′

i } ∪ A(Ki)

– O(n)
K′′

i
⊆ {Ki # K ′′

i , K ′
i # K ′′

i } ∪ (A(Ki))[Ki/K′′

i]

– O(n) |= (AKi)[Ki/K′′

i] ∪ (A¬Ki ∩ O(n)
Ki

) ∪ (A¬Ki \ O(n)
Ki

)σn

– If O(n) |= ¬Ki(aj), then Ki(aj) /∈ A and
– if O(n) |= Ki(aj), then ¬Ki(aj) /∈ A.

5. If (O⊗2A)∪una(A) is consistent, then also (O⊗2A)∪una(A)∪A is consistent.

The proof of the 5th assertion relies on the assertions before and is done by a
model construction which completes the proof. Let M be a model of (O⊗2 A)∪
una(A). We construct a model M′ of (O ⊗2 A) ∪ una(A) ∪ A as follows:

– dom(M′) = dom(M) = D; M′(a) = M(a) for all constants a;
– M′(R) = M(R) for all role symbols R; M′(K ′

i) = M(K ′
i) for all i ∈ I ′n

– M′(Ki) =

M(Ki) if i /∈ I ′n
M(K ′

i) \ {M(ai) | ¬Ki(aj) ∈ A} if i ∈ I ′n \ I ′′n and
Ki # K ′

i ∈ O(n)

M(K ′
i) ∪ {M(ai) | Ki(aj) ∈ A} if i ∈ I ′n \ I ′′n and

K ′
i # Ki ∈ O(n)

D \ {M(aj) | ¬Ki(aj) ∈ A} if i ∈ I ′′n

– M′(K ′′
i) =

{

M(K ′
i) \ {M(ai) | ¬Ki(aj) ∈ A} if K ′′

i # K ′
i ∈ O(n)

M(K ′
i) ∪ {M(ai) | Ki(aj) ∈ A} if K ′

i # K ′′
i ∈ O(n)

The theorem does not state success to be fulfilled with respect to a sequence A,
i.e., it is not generally the case that A ⊆ O ⊗2 A, but it states that a weakening
of success is true in the sense that O⊗2A is at least compatible with A. But note
that the interpretation of concept symbols that are subject to two revisions (Ki

with i ∈ I ′′n) solely depends on A and is completely independent of the original
ontology. Therefore, further investigations on the behavior of the more complex
operators of type 2 are called for.

As a corollary of the theorem the stability of ⊗2 (in the sense mentioned
above) results.

Corollary 1. Let O be a consistent ontology and A an infinite sequence of
literals containing a finite amount of different literals. Then if for all j ∈ IN
O(j) ∪ una(A) is consistent, there is a step i ∈ IN such that

O⊗2(i+m) = O⊗2(i) for all m ∈ IN.

12

5 Related Work

Among the approaches that deal with belief-revision techniques to solve problems
from the field of semantic integration, [10], [11] and especially [12] are most
closely connected to our approach.

The idea of reinterpreting concepts is similar to the idea of weakening A-box
axioms in [12] adapted from [10]. The authors of [12] describe revision operators
for revising a consistent DL knowledge base KB by a another knowledge base
KB′ that contains at least one A-box axiom involved in the inconsistency. In
the refined version of the revision operator, sentences of KB that are in conflict
with those in KB′ are replaced by some weakened versions. The leading idea
behind the weakening strategy is to consider the cases that lead to the conflict
as exceptions.

The main differences between [12] and our approach are that our conflict
resolution is done by weakening a concept rather than by weakening sentences
of the knowledge base. We focus on literals as triggering information whereby
the construction of [12] handles knowledge bases consisting of more complex
sentences. We consider iterated applications on a sequence of literals while [12]
considers the revision with a set of sentences. Finally our conflict resolution
involves a language extension that makes it possible to preserve the old ontology
(knowledge base) and declare relations between the old and the new concepts.

6 Conclusion

The analysis of the type-2 operators yields restricted conservativity results and
a stability theorem (for the weak version ⊗2). The property of (restricted) con-
servativity in the inconsistency case is a form of informational conservativity as
mentioned in the discussion of rationality postulates10 for revision operators; this
property offers the possibility to use the operators in those areas of information
processing that include refinement as a main operation.11

The property of being stable makes the behavior of the (weak) operators
of type 2 predictable. Coming back to the intended application scenario of an
information processing system IPS with the embedded operator ⊗2, this means
that if we want a predictable behavior of the IPS, we should at least demand
two conditions to be fulfilled in the scenario: 1) There should be only finitely
many different literals in the sequence A of triggering literals. 2) The sequence A
should be consistent. Scenarios in which both conditions are likely to be fulfilled
are those in which A stems from a single sender whose knowledge base (ontology)
is consistent. Scenarios in which A consists of trigger information from different
senders consistency of A is likely not to be fulfilled. For those scenarios type-1
operators could be more appropriate than type-2 operators.

Theorem 1 only asserts compatibility of O ⊗2 A and A but not success for
the whole sequence A (in the sense that A ⊆ O ⊗2 A). This weakness could

10 [13], p. 52–61.
11 See [9] for a discussion of refinement.

13

be compensated by equipping an IPS with an additional memory in which all
literals of A are stored and put into O⊗2A after the last literal of A was received.

Example 1 demonstrated the importance of (local) unique name assumptions
without which stability is not warranted, and in fact the theorem presupposes
the unique name assumption una(A). So a correctly working IPS would have to
check the violation of the UNA and report it. (But this is not handled yet).

Appendix: Proofs

Proof of Prop. 1 (p. 6). Let ◦1 ∈ {!1,⊗1} and K ′ /∈ L.
If β is a sentence in L and O |= β, then also O ◦1 α |= β, because O ⊆ O ◦1 α.

Now suppose that O -|= β for β ∈ L. We show the proposition for positive literals
α = K(a). We have to show that O◦1K(a) -|= β. By assumption, there is a model
M |= O∪¬β over L. Define M′ for the language L′ = L∪ {K ′} as an extension
of M with dom(M) = dom(M′), M′(S) = M(S) for all symbols S different
from K ′ and M′(K ′) = M(K) ∪ {M(a)}. Then M′ |= O !1 K(a) ∪ {¬β} and
M′ |= O⊗1 K(a)∪{¬β} because per definition O!1 K(a) = O∪{K # K ′, K ′ #
K % mscO(a), K ′(a)} and O ⊗1 K(a) = O ∪ {K # K ′, K ′(a)} and:

– M′ |= O ∪ {¬β}, because K ′ /∈ L and M′ is the same as M for all symbols
in L, and M |= O ∪ {¬β};

– M′ |= (K # K ′) ∧ (K ′ # K % mscO(a)) ∧ (M′ |= K ′(a)) because of the
construction of M′.

The proof for negative literals α = ¬K(a) is done similarly by constructing a
new model M′ from a model M |= O∪{¬β} setting M′(K ′) = M(K)\{M(a)}.

Proof of Prop. 2 (p. 7). The proofs for the assertions in which ◦2 is mentioned,
i.e. (11), (14), (15), (18), will be done by proving it either for !2 or for ⊗2. The
proof for the other operator then follows as a corollary using Obs. 1.

In the proofs the substitution σ = [K/L, K ′/K] will be used. Because of the
fact that O ⊆ (O !2 K(a))σ (see Obs. 1.6), the transformations of the models
constructed in the proofs will be more readable. We will systematically use the
fact that for all formulas F that do not contain L, F has a satisfying model iff
Fσ has one.

Proof of (11): First assume O∪{a -= c} |= K(c). Then also O◦2K(a)∪{a -= c} |=
K ′(c) and since K ′ # K ∈ O ◦2 K(a) also O ◦2 K(a)∪ {a -= c} |= K(c). Now let
M be a model of O ◦2 K(a). If M(a) -= M(c), then M |= a -= c, and M |= K(c)
follows. If, on the other hand, M(a) = M(c), then because of K(a) ∈ O ◦2 K(a)
also M(c) ∈ M(K) results, i.e., M |= K(c).

Now assume O ∪ {a -= c} -|= K(c). Let M be a model of O ∪ {a -= c,¬K(c)}.
Consequently M(a) -= M(c) and M(c) /∈ M(K). We have to show O!2 K(a) -|=
K(c). Applying the substitution σ to both sides of the entailment results in the
task to show

O ∪ {L(a), K # L, L # K % mscO(a)} -|= L(c) (19)

14

Construct a new model M′ over L′′ = L ∪ {L} from M as follows: dom(M′) =
dom(M), M′(S) = M(S) for all symbols S ∈ L and M′(L) = M(K) ∪
{M(a)}. Then M′ is a model of O ∪ {¬K(c)} and additionally a model of
{L(a), K # K, L # K %mscO(a),¬L(c)} showing (19). Applying Obs. 1.3 results
in O ⊗2 K(a) -|= K(c).

Proof of (12): First assume O |= ¬K(c) and O |= ¬mscO(a)(c). Then O !2

K(a) |= ¬K ′(c) and because of ((K & ¬mscO(a)) # K ′) ∈ O !2 K(a) also
O !2 K(a) |= (¬K % mscO(a))(c) so that O !2 K(a) |= ¬K(c).

Now we want to show, if O -|= ¬K(c), then O !2 K(a) -|= ¬K(c) and if
O -|= ¬mscO(a)(c), then O !2 K(a) -|= ¬K(c).
Assume O -|= ¬K(c). Let M be a model of O ∪ {K(c)} and construct M′ as
an extension of M with M′(L) = M(K) ∪ {M(c)}. Then M′(c) ∈ M′(L) and
M′ |= (O !2 K(a))σ and so also M′ |= (O !2 K(a) ∪ {K(c)})σ resulting in
O !2 K(a) -|= ¬K(c).
Assume O -|= ¬mscO(a)(c). Let M be a model of O ∪ {mscO(a)(c)}. Construct
M′ as an extension of M by setting M′(L) = M(K)∪ {M(a),M(c)}. Then as
above M′ |= (O !2 K(a) ∪ {K(c)})σ and O !2 K(a) -|= ¬K(c) results.

Proof of (13): Let M |= O ⊗2 K(a); then the new model M′ defined by
dom(M′) = dom(M), M′(S) = M(S) for all symbols S different from K and
M′(K) = dom(M) is a model of O ⊗2 K(a) and of K(c). (Remember that
K ′ # K and K(a) are the only formula of O ⊗2 K(a) that involve K.)

Proof of (14): As K, K ′ /∈ β we have βσ = β. First assume O |= β. We have to
show O ◦2 K(a) |= β. Applying σ this reduces to showing (O ◦2 K(a))σ |= β. But
this is the case because of O ⊆ (O ◦2 K(a))σ and the monotonicity of |=.

Now assume O ◦2 K(a) |= β for !2 in place of ◦2, i.e., applying σ again
suppose that the following entailment holds:

O ∪ {L(a), K # L, L # K % mscO(a)} |= β (20)

Let M be a model over L(O ∪ {β}) of O. Extend M to M′ by setting M′(L) =
M(K) ∪ {M(a)}. Then M′ |= O ∪ {L(a), K # L, L # K % mscO(a)} and hence
M′ |= β. As M is the reduct of M′ to L(O ∪ {β}) also M |= β. We have shown
the assertion that if O !2 K(a) |= β, then O |= β. The assertion for ⊗2 in place
of !2 follows with Obs. 1.3.

The proofs of (15), (16) and (18) are similar. For (15) and (18) one constructs
M′ from a model M |= O∪{a -= c, K(c)} by setting M′(L) = M(K)\ {M(a)}.
For the proof of (16) one constructs the extension M′

1 of M1 |= O ∪ {K(c)} by
setting M′

1(L) = M1(K) \ {M1(a)}. And one constructs the extension M′
2 of

M2 |= O ∪ {mscO(a)(c)} by setting M′
2(L) = M2(K) \ {M2(a),M2(c)}

Proof of (17): Let M |= O ⊗2 ¬K(a); then the new model M′ defined by
dom(M′) = dom(M), M′(S) = M(S) for all symbols S different from K and
M′(K) = ∅ is a model of O ⊗2 K(a) and of ¬K(c).

15

References

1. Noy, N.F.: Semantic integration: A survey of ontology-based approaches. SIGMOD
Record 33(4) (2004) 65–70

2. Grove, A.: Two modellings for theory change. Journal of Philosophical Logic 17

(1988) 157–170
3. Wassermann, R., Fermé, E.: A note on prototype revision (1999) “Spinning

Ideas”. (Electronic Essays dedicated to Peter Gärdenfors on his 50th Birthday).
http://www.lucs.lu.se/spinning/.

4. Özçep, Ö.L.: Ontology revision through concept contraction. In Artemov, S.,
Parikh, R., eds.: Proceedings of the Workshop on Rationality and Knowledge,
18th European Summerschool in Logic, Language, and Information, Universidad
de Malaga, 7–11 August. (2006) 79–90

5. Küsters, R., Molitor, R.: Computing most specific concepts in description logics
with existential restrictions. LTCS-Report 00-05, LuFG Theoretical Computer
Science, RWTH Aachen, Germany (2000)

6. Alchourrón, C., Gaerdenfors, P., Makinson, D.: On the logic of theory change:
partial meet contraction and revision functions. Journal of Symbolic Logic 50

(1985) 510–530
7. Katsuno, H., Mendelzon, A.: On the difference between updating a knowledge base

and revising it. In Allen, J.F., Fikes, R., Sandewall, E., eds.: KR’91: Principles
of Knowledge Representation and Reasoning. Morgan Kaufmann, San Mateo,
California (1991) 387–394

8. Monk, D.J.: Mathematical Logic. Springer (1976)
9. Antoniou, G., Kehagias, A.: A note on the refinement of ontologies. International

Journal of Intelligent Systems 15(7) (2000) 623–632
10. Benferhat, S., Kaci, S., Berre, D.L., Williams, M.A.: Weakening conflicting in-

formation for iterated revision and knowledge integration. Artificial Intelligence
153(1–2) (2004) 339–371

11. Meyer, T., Lee, K., Booth, R.: Knowledge integration for description logics. In
Veloso, M.M., Kambhampati, S., eds.: AAAI, AAAI Press / The MIT Press (2005)
645–650

12. Qi, G., Liu, W., Bell, D.: A revision-based approach to handling inconsistency
in description logics. In: Proceedings of the 11th International workshop on Non-
Monotonic Reasoning (NMR06). (2006)

13. Gärdenfors, P., Rott, H.: Belief revision. In Gabbay, D., Hoger, C., Robinson,
J., eds.: Handbook of Logic in Artificial Intelligence and Logic Programming. Vol-
ume 4. Oxford University Press (1995) 35–132

