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Abstract. Resolving conflicts based on ambiguities in the public vocabulary is one
of the challenges in semantic integration. Though different suggestions for resolv-
ing (ambiguity) conflicts with semantic integration operators exist, there is still a
need for clear formalizations of adequacy criteria for the operators. In this article,
adequacy criteria for semantic integration similar to rationality postulates of clas-
sical belief revision but adjusted to the semantic integration scenario are formal-
ized. The criteria are intended to capture integration settings in which the integra-
tion candidates are well developed ontologies with a shared public vocabulary. In
such cases, both ontologies have to be preserved in some form in the integration
result and have to be recoverable from the integration result. Additionally, the inte-
gration result has to be consistent and provide connections between the integrated
ontologies. The criteria are applied by evaluating a small collection of integration
operators that solve conflicts deriving from ambiguities in the public vocabulary.
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1. Introduction

An ontology for some domain is an important means for knowledge sharing among com-
munication partners. It provides formal descriptions of relevant concepts, relations and
individuals of the domain. Additionally, in most cases an ontology is represented in some
formalism for which tractable reasoning mechanisms exist [1]. Though an ontology is
intended to enable communication, in practice there may be many possibly heteroge-
neous ontologies. Heterogeneities between ontologies can lead to conflicts (mismatches)
prohibiting the seamless interoperability between the communication partners. Semantic
integration is concerned with the problem of making information from different knowl-
edge sources interoperable by integrating them—taking into account the possible hetero-
geneity of the knowledge sources.

There are different types of mismatches. One of the mismatches on the ontology
level are ambiguities. Ambiguous terms occur frequently in natural languages but can be
found in formal representations of ontologies, too. E.g., in one bibliographical ontology
Article may denote all documents that are published in a journal. In another bibliograph-
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ical ontology Article may denote the wider concept of all documents that were published
in a journal, proceedings or in a collection ([2], p. 4). In this article, the focus is on con-
flicts that can be explained by ambiguities in the public vocabulary. Here, a symbol in
the public vocabulary is termed ambiguous if it belongs to different terminologies in the
sense that it has different specifications in different ontologies.

In the semantic-integration literature, different strategies for yielding interoperabil-
ity of heterogeneous ontologies are suggested. Though in most cases it is reasonable to
claim that the strategies yield adequate integration results, there is still a need to formally
explicate the underlying principles or adequacy criteria. Formal principles for semantic
integration provide a means for specifying the properties of a given strategy and form the
basis for comparing different integration strategies. Depending on the integration setting,
different adequacy criteria may result. In the intended setting of this article, two ontolo-
gies are integrated. The ontologies are meant to be used in the same domain, hence it is
assumed that the ontologies are kindred. Furthermore, the ontologies are well-tried and
well developed and especially have no internal conflicts. Both ontologies have a shared
public vocabulary which can lead to ambiguity conflicts between them. Due to the simi-
larity condition an adequate integration result for this setting has to provide connections
between the ontologies. As the initial ontologies are free from conflicts also the out-
come should be free from conflicts. Moreover, as the ontologies are well developed, an
adequate integration result should preserve both ontologies in some form.

I formalize the adequacy criteria in the line of postulates which have proved of value
in classical belief revision [3]. The postulates axiomatize classes of binary integration
operators suitable for the intended integration setting by explicating the properties for the
integration operators. As the whole set of postulates formalizing the adequacy criteria
is inconsistent, I define (two) classes of integration operators based on uniform reinter-
pretation that fulfill (two different) subsets of the postulates and thereby show that the
subsets of the whole set of postulates are consistent. Additionally, I use the postulates to
analyze a selection of integration operators proposed in the literature and compare them
with the uniform-reinterpretation operators.

2. The Role of Semantic Mappings in Semantic Integration

Research on (ontology-based) semantic integration is centered on the formal representa-
tion of semantic mappings, the reasoning with semantic mappings, and the discovery of
semantic mappings [1].

One representation format for semantic mappings is given by bridging axioms [2].
In [2] ontologies are represented in different name spaces so that the vocabularies of the
ontologies are disjoint. Bridging axioms are defined as sentences in some superset of
the ontologies’ vocabularies that relate corresponding terms of the ontologies. The on-
tologies and bridging axioms together constitute a theory which allow to apply a uni-
form reasoning procedure. In operationalizing the principles for adequate integration I
use bridging axioms to map corresponding concepts and roles of different ontologies.

Another representation format for semantic mappings, called views, is used in the
ontology integration systems framework [4]. Views are functions that map concepts and
roles of a global ontology to corresponding concepts and roles of local ontologies. In
the formulation of the preservation criterion for semantic integration, I use substitutions



that relate concepts and roles of the original ontology and its preserved version in the
integration result. The substitutions are comparable with views.

A third kind of semantic mapping implicitly contained in the framework of Qi et
al. [5], which is outlined in Section 5, are weakening functions. These functions map
axioms to other (weaker) axioms rather than symbols to other symbols.

The last representation format for semantic mappings to be mentioned here is em-
bedded in the general framework of distributed systems (DS) [6] or the more specific
framework of distributed description logics [7]. A distributed system consists of local
ontologies and ontology alignments, which are defined as the whole set of semantic map-
pings between two ontologies. Different from bridging axioms, the semantic mappings
between the local ontologies are not axioms in a global ontology but additional com-
ponents relating corresponding concepts and roles in the local ontologies. Therefore, a
DS needs a reasoning procedure different from the reasoning procedures of the local on-
tologies. In [6] and [7] the semantic basis for the reasoning procedures is established by
defining special distributed semantics for distributed systems which also explicate the
semantic role of the semantic mappings. In the case of distributed semantics, it does not
matter whether the local ontologies share a vocabulary or not. There is no distinction
between a public vocabulary for communication between the ontologies and a private
vocabulary. Hence, ambiguities in a public vocabulary cannot occur.

There are different methods to establish semantic mappings. One method is based on
shared upper ontologies like DOLCE [8]. Upper ontologies are meant to provide a com-
mon understanding of general terms which can be used by lower level domain-specific
ontologies extending the upper ontologies. If ontologies are built on a common upper
ontology, the number of ambiguity conflicts may be reduced in comparison with the case
where no common upper ontology exists. But still ambiguities can occur between terms
not explicated in the upper ontology. Therefore, additional mechanisms are necessary for
resolving ambiguity conflicts.

Another method for establishing mappings uses heuristics, [9], [10], [11] or machine
learning techniques [12]. The heuristics are guided by, e.g., natural-language descrip-
tions, concept descriptions or structural or logical properties of the ontologies. Adequate
semantic integration demands an integration result which displays clear connections to
the original ontologies and relates (parts of) the integrated ontologies. Hence, whatever
kind of heuristics is used, it has to facilitate the construction of semantic mappings that
realize these connections and relations.

3. Adequacy Criteria for Ontology Integration Operators

A formal representation of adequacy criteria for integration strategies in some integra-
tion setting has the advantage of specifying exactly the properties an integration strat-
egy has or should have. Additionally, different strategies for the same integration setting
can be compared with regard to the formal adequacy criteria. Postulates as used in the
area of belief revision have proved useful for specifying properties of revision strategies.
Grounded in the pioneering work of Alchourrón, Gärdenfors and Makinson [3] (AGM),
belief revision was designed to capture rational change of beliefs by proposing postu-
lates that have to be fulfilled by contraction resp. revision functions. The basic AGM
postulates in the adapted form described in [5] are the starting point for the following



postulates for semantic integration but have to be adapted and extended for the intended
integration setting.

In the integration setting for which the following postulates are intended, an agent
holding an ontology O1 wants to integrate a kindred ontology O2 received from a dif-
ferent agent into his ontology O1. Both ontologies are defined over a common public
vocabularyV of non-logical symbols, formally expressed with V(O1),V(O2) ⊆ V. As
there may be symbols in V that have different specifications in O1 and O2 ambiguity
conflicts in the public vocabulary can occur and have to be resolved. That an ontology
is free from conflicts can formally be described by the concept of consistency. The set
Mod(O) denotes the set of models of O, i.e., the set of interpretations that make all sen-
tences of O true. An ontology is consistent (free from conflicts) iff it has a model. The
outcome of the integration is denoted by O1 ◦O2 where ◦ is a binary integration operator.
As both ontologies, O1 and O2, are assumed to be well developed, there is a strong need
to preserve both ontologies in O1 ◦ O2.

The preservation of the ontologies can be formalized with the help of substitutions.
Substitutions are functions mapping non-logical symbols to terms of the same type. As
I intend to use substitutions for the preservation of ontologies in integration settings
with ambiguity conflicts, I define the subclass of Ambiguity Resolution Substitutions.
Let Vp be a (public) vocabulary and let V′ be a disjoint (private) vocabulary, Vp ∩

V′ = ∅. The set of Ambiguity Resolution Substitutions ARS(Vp,V
′) (or just ARS) is

the set of injective substitutions that map a non-logical symbol in Vp either to itself or
to a new non-logical symbol (of the same type) in V′. E.g., σ ∈ ARS (Vp,V

′) could
map a concept symbol K1 ∈ Vp to itself K1 = σ(K1) or to another concept symbol
K′1 = σ(K1) ∈ V′. The set of symbols s ∈ Vp for which σ(s) , s is called the support

of σ. Substitutions are extended to sentences and sets of sentences in the usual way. The
ontology σ(O) or alternatively Oσ is called a substitution variant of O.

The following postulates are intended to describe operators that are guaranteed to
resolve terminology-dependent inconsistencies between two ontologies without loosing
(parts of) the ontologies. An operator ◦ fulfills a postulate if and only if the postulate is
true for all input ontologies O1 and O2.

As ontologies provide a conceptualization of a domain, the mere syntactic difference
in the representation of an ontology should not lead to semantic changes of the integra-
tion strategies referring to the ontology. This criterion is expressed by the extensionality

postulates (O1.1) and (O1.2). Additionally, the criterion is underlying the other postu-
lates as they refer to the models of the ontologies and not to their syntactic structure.

(O1.1) IfV(O1) =V(O′1) and Mod(O1) = Mod(O′1),
then Mod(O1 ◦ O2) = Mod(O′1 ◦ O2)

(O1.2) IfV(O2) =V(O′2) and Mod(O2) = Mod(O′2),
then Mod(O1 ◦ O2) = Mod(O1 ◦ O′2)

If two ontologies are compatible, there is no reason to assume that their terminolo-
gies are different. In this case (like for AGM-revision-operators) an adequate way to
integrate the ontologies is to form their union.

(O2) If O1 ∪ O2 is consistent, then Mod(O1 ◦ O2) = Mod(O1 ∪ O2)

Terminology-dependent conflicts between the ontologies occur because they share
a common public vocabulary. A resolution of the conflicts should preserve as much of



the terminologies and of the shared vocabulary as possible. Otherwise the integrated
ontology O1 ◦O2 would not support communication (integration) based on the interface
vocabulary. The monotony postulate (O3.1) says that all sentences derivable in O1 are
derivable in the resulting ontology and thus expresses a strict form of preservation of O1.
The success postulate (O3.2) expresses a strict form of preservation of O2 in the sense
that all sentences derivable in O2 are still derivable after the integration.

(O3.1) Mod(O1 ◦ O2) ⊆ Mod(O1)
(O3.2) Mod(O1 ◦ O2) ⊆ Mod(O2)

Since the integration result O1 ◦ O2 should be consistent if possible (see Postulate
(O6) below) the criteria formalized by (O3.1) and (O3.2) cannot be fulfilled by an inte-
gration operator at the same time unless O1 ∪O2 is consistent. Hence (O3.1) and (O3.2)
are not principles for all semantic integration operators but suggest the definition of two
alternative types of operators (see Section 4). In the case of conflicts, the integration
process has to abandon parts of O1 or O2.

As the ontologies are well developed and well-tried, it is desirable to preserve both
ontologies in some form. One way to preserve an ontology is to transfer it to a substi-
tution variant in a different name space. The preservation postulates (O4.1) and (O4.2)
demand the existence of substitutions such that the substitution variants of O1 resp. O2

are contained in the resulting ontology.

(O4.1) There is a substitution σ1 with: Mod(O1 ◦ O2) ⊆ Mod(O1σ1)
(O4.2) There is a substitution σ2 with: Mod(O1 ◦ O2) ⊆ Mod(O2σ2)

Postulate (O4.1) can be considered as a generalization of the monotony postulate (O3.1)
(letting σ1 be the identity function) and (O4.2) as a generalization of the success pos-
tulate (O3.1). Although there are no operators that fulfill (O3.1) and (O3.2) in the pres-
ence of (O6), it is possible to define operators that fulfill (O3.1) and (O4.2) or (O3.2)
and (O4.1) in the presence of (O6). The feature of preserving both ontologies in the in-
tegration result is the essential point at which integration operators differ from classical
belief-revision and update operators. Belief-revision and update operators fulfill success,
i.e., integrate O2 as a whole, but only at cost of loosing parts of the ontology O1. The
preservation postulates demonstrate that the goal of semantic integration is different from
the goals of belief revision and belief update. Belief revision aims at solving conflicts
due to false information. Belief update aims at solving conflicts due to outdated infor-
mation. Semantic integration (based on reinterpretation) aims at solving conflicts due to
ambiguous use of terms.

The following postulates represent additional generalizations of (O3.1) and (O3.2).
Postulates (O5.1) and (O5.2) require the existence of substitutions such that the old on-
tologies O1 and O2 can be recovered by applying the substitution to the integration result.
These postulates are termed substitution recovery postulates.

(O5.1) There is a substitution σ1 with: Mod((O1 ◦O2)σ1) ⊆ Mod(O1)
(O5.2) There is a substitution σ2 with: Mod((O1 ◦O2)σ2) ⊆ Mod(O2)

If an operator fulfills both preservation postulates, (O4.1) and (O4.2), then for any
ontologies O1 and O2 that can be integrated there are substitutions σ1, σ2 such that
Mod(O1 ◦ O2) ⊆ Mod(O1σ1) ∩ Mod(O2σ2) = Mod(O1σ1 ∪ O2σ2). Consequently, the



existence of σ1, σ2 such that O1σ1 ∪ O2σ2 is consistent is a necessary condition for
the consistency of the integration result. This condition expresses the fact that there are
no vocabulary-independent conflicts between the ontologies. Two ontologies O1,O2 are
called reinterpretation compatible iff substitutions σ1, σ2 exist such that O1σ1 ∪O2σ2 is
consistent. The weakened consistency postulate (O6) makes reinterpretation compatibil-
ity of O1 and O2 a sufficient criterion for the consistency of the result.

(O6) If O1 and O2 are reinterpretation compatible, then O1 ◦ O2 is consistent

If two ontologies are reinterpretation compatible, then each ontology is consistent. As in
the central cases of semantic integration the integrated ontologies are consistent, there is
no need for postulates that specify the operator for inconsistent O1 or inconsistent O2.

Belief-revision and belief-update operators fulfill stronger versions of (O6). Belief-
revision operators guarantee consistency of the result if O2 is consistent. Belief-update
operators guarantee consistency if O1 and O2 are consistent [13].

Postulates (O1.1), (O2), (O3.2) correspond to the AGM postulates named extension-
ality, vacuity and success [3]. Postulate (O6) is a weakening of the consistency postulate
of AGM. Postulates (O4.1), (O4.2) and (O5.2), (O5.2) are additional postulates capturing
the ideas of preservation and substitution recovery.

4. Uniform Reinterpretation Operators

The aim of this section is to operationalize the postulates discussed in Section 3. I will
show that there exist (two) subsets of the postulates that are fulfilled by (two) different
reinterpretation operators, respectively.

The postulates of Section 3 do not presuppose an exact specification of the represen-
tation format for ontologies. For this and the following section I assume that an ontology
is represented as a finite set of sentences in a description logical (DL) language.2 But it is
equally possible to represent the ontologies with predicate logics as the definitions of the
operators below do not depend on the use of DLs. In a DL language, the set of non-logical
symbols, denoted byV or indexed variants, consists of constants, denoted by a, b, c and
indexed variants, concept symbols, denoted by K and indexed variants, and role symbols,
denoted by R and indexed variants.V(O) is the set of all non-logical symbols occurring
in O.Vc is the set of all constants,VCR the set of all concept and role symbols occurring
in V. Concept descriptions are built using concept constructors and are denoted by the
meta-variables C,D and indexed variants. The set of concept constructors used in this
article contains concept negation ¬, concept conjunction ⊓, and concept disjunction ⊔.

The sentences of an ontology can be classified as TBox axioms, which express ter-
minological knowledge, and the ABox axioms, which express world knowledge. TBox
axioms are of the form C ⊑ D (All C are D), so called GCIs (General Concept Inclu-
sions), or of the form R1 ⊑ R2 for role symbols R1,R2, so called role inclusion axioms.
The ABox axioms are of the forms C(a) (a is a C) or R(a, b) (a is R-related to b).

The core idea for the definition of reinterpretation operators is developed in [15].
The operators of [15] get as first argument an ontology and as second argument a literal,
i.e., a sentence of the form K(a) or ¬K(a) for a concept symbol K.

2For details regarding the definitions and the syntax of DLs see [14].



In this article, I extend the operators of [15] to ontology-integration operators allow-
ing ontologies as second arguments. Therefore, not only one symbol but a set S of sym-
bols has to be considered for disambiguation. Additionally, not only concept symbols but
also role symbols or constants are considered as candidates for disambiguation.

In order to develop the definition of the uniform-reinterpretation operators, let O1

and O2 be two ontologies with a common vocabulary V ⊇ V(O1 ∪ O2). Let V12 =

V(O1) ∩ V(O2) denote the shared set of non-logical symbols. Further, let V′ be a new
vocabulary of private symbols,V′∩V = ∅. Further, let S ⊆ V12 be a subset of the set of
common non-logical symbols and let ρS ∈ ARS (V,V′) be a substitution with support S.

If O1 ∪O2 is inconsistent and O1 and O2 are reinterpretation compatible, the incon-
sistency can be explained by ambiguous symbols S ⊆ V12 in the shared vocabulary. The
inconsistency can be resolved by decoupling the ontologies O1 and O2 with respect to S ,
either yielding O1 ∪ O2ρS or O2 ∪ O1ρS . In the first decoupling, the terminology of O1

is preserved. For O2, the first decoupling results in a shift in the meaning of the common
symbols in S , they are reinterpreted. In the second decoupling, the terminology of O2 is
preserved and a shift in the meaning of the common symbols in S for O1 results. As the
substitution ρS is applied to all occurrences of symbols in O1 resp. O2 that stem from S

the reinterpretation operators are termed uniform. A successful decoupling should select
a symbol set S ⊆ V12 such that the decoupled ontologies O1 ∪O2ρS resp. O2 ∪O1ρS are
consistent. The set MRS(O1,O2) of Minimal Reinterpretation Symbols

MRS(O1,O2) = {S ⊆ V12 | Mod(O1 ∪O2ρS ) , ∅ and for all S 1 ⊂ S :

Mod(O1 ∪O2ρS 1 ) = ∅} (1)

describes all inclusion-minimal symbol sets that lead to a consistent union of decoupled
ontologies. A direct consequence of the definition is that MRS(O1,O2) = MRS(O2,O1)
and that MRS(O1,O2) = {∅} iff O1 ∪ O2 is consistent. The set MRS(O1,O2) is empty
iff O1 and O2 are not reinterpretation compatible. In this case the reinterpretation oper-
ators cannot resolve the inconsistency between O1 and O2. (Compare Postulate (O6)).
Choosing inclusion-minimal symbol sets realizes the idea of reinterpreting only those
symbols that are involved in a conflict. As there are no formal criteria which of the sets
in MRS(O1,O2) have to be chosen, the operator definition will be parameterized by a
selection function γ. A selection function γ is a function that maps a set to a subset,
such that γ(∅) = ∅ and for all sets M , ∅: ∅ , γ(M) ⊆ M. So, if MRS(O1,O2) is not
empty, a selection function γ picks a non-empty subset of all inclusion-minimal sym-
bol sets S that result in a consistent decoupling of O1 and O2. The union of these sets
results in S ∗ =

⋃

γ(MRS(O1,O2)) which is the set of all disambiguated symbols in the
reinterpretation process.

As O1 and O2 are assumed to be kindred ontologies, the reinterpretation operators
relate the different readings for the disambiguated symbols in S by special terminological
axioms which function as bridging axioms. The axioms relate a concept resp. role symbol
s to a new private concept resp. role symbol σ(s). For concept and role symbols s ∈ S

the set {s ⊑ σ(s) | s ∈ SCR} contains a lower bound for σ(s) and {σ(s) ⊑ s | s ∈ SCR}

contains an upper bound for σ(s). The set A(S , σ) of all possible bounds additionally
contains identities for constants in S.

A(S , σ) = {s ⊑ σ(s), σ(s) ⊑ s | s ∈ SCR} ∪ {s = σ(s) | s ∈ Sc} (2)



Given an ontology O, a set of symbols S and a substitution σ with support S, the
set MB(S , σ,O) (set of Maximal sets of Bounds) contains all inclusion-maximal sets of
bounds that can be consistently added to O. To describe the set MB(S , σ,O) formally,
I use a construction similar to the remainder-sets construction in partial-meet revision
[16]. For sets of sentences A, B let A V B denote the set of inclusion maximal subsets of
A that are compatible with B.

A V B = {X ⊆ A | Mod(X ∪ B) , ∅ and for all Y ⊆ A : If X ⊂ Y,

then Mod(Y ∪ B) = ∅} (3)

So MB(S , σ,O) can be defined by

MB(S , σ,O) = A(S , σ) V O (4)

A second selection function γ2 is used to select a subset of the maximal sets of
bounds. Similar to the approach in partial meet revision, the set of bounds to be added is
the intersection of inclusion maximal sets selected by γ2.

Using the notation above, type-1 and type-2 operators can be defined.

Definition 1 Let γ1, γ2 be selection functions and let γ = (γ1, γ2). Let V,V′ be dis-

joint vocabularies, and let O1,O2 be ontologies with V(O1 ∪ O2) ⊆ V. Let S ∗ =
⋃

γ1(MRS(O1,O2)) and let ρS ∗ ∈ ARS (V,V′) be a substitution with support S ∗. Then

the weak uniform-reinterpretation operators of type-1 respectively of type-2 based on γ
and ρS ∗ are defined by:

O1 ⊗
γ,ρS ∗

1 O2 = O1 ∪ O2ρS ∗ ∪
⋂

γ2

(

MB(S ∗, ρS ∗ ,O1 ∪ O2ρS ∗ )
)

(5)

O1 ⊗
γ,ρS ∗

2 O2 = O2 ∪ O1ρS ∗ ∪
⋂

γ2

(

MB(S ∗, ρS ∗ ,O2 ∪ O1ρS ∗ )
)

(6)

A direct consequence of the definition is the interdefinability of ⊗γ,ρS ∗

1 and ⊗γ,ρS ∗

2 , i.e.,

O1 ⊗
γ,ρS ∗

1 O2 = O2 ⊗
γ,ρS ∗

2 O1. The main observation concerns the fulfillment of the postu-
lates.

Observation 1 Let O1,O2 be ontologies, let γ1, γ2 be selection functions, let S ∗ =
⋃

γ1(MRS(O1,O2)) and let ρS ∗ be a substitution with support S ∗. Then

1. ⊗γ,ρS ∗

1 fulfills (O1.1), (O1.2), (O2), (O3.1), (O4.1), (O4.2), (O5.1), (O5.2) and

(O6) but does not fulfill (O3.2) (success).

2. ⊗γ,ρS ∗

2 fulfills (O1.1), (O1.2), (O2), (O3.2), (O4.1), (O4.2), (O5.1), (O5.2) and

(O6) but does not fulfill (O3.1) (monotony).

The effect of the operators can be illustrated with a small example on bibliographic
ontologies. Let two ontologies be given by

O1 = {Article ⊑ ∀publ.Journ, Journ ⊑ ¬Proceed,

publ(med01, procFOIS 08), Proceed(procFOIS 08)} (7)

O2 = {Article(med01)} (8)



Assume that the holder of O1 integrates O2 with a weak type-2 operator, i.e., decides to
preserve O2 in its original form. According to O1, all articles are published in journals,
and journals are different from proceedings. The ABox-part says that med01 is published
in the proceedings of FOIS08. The TBox of O2 is empty. The ABox-part says that med01
is an article. These two ontologies are not compatible. The set of minimal reinterpreta-
tion symbols MRS(O2,O1) consists of the sets {med01} and {Article}, i.e., reinterpreting
the constant med01 or the concept symbol Article of O1 is sufficient to get decoupled
consistent ontologies.

Deciding to reinterpret med01—thereby introducing a new symbol med01′ =
ρ{med01}(med01) for the constant med01 of O1—means that med01 is thought to be am-
biguous. This choice can be formalized by a selection function γ1 with γ1

1(MRS(O2,O1)) =
{{med01}}. The choice fits to situations where med01 is used in O1 to denote a publica-
tion in the proceedings of FOIS08 and med01 is used in O2 to denote the follow-up ar-
ticle published in a journal. The weak operators do not relate constants, so for all bound
selection functions γ1

2 the integration result is

O1 ⊗
(γ1

1 ,γ
1
2),ρ{med01}

2 O2 = O1[med01/med01′] ∪ O2 (9)

The choice to reinterpret Article fits to situations in which both ontologies speak about
the same publication in the proceedings of FOIS2008 but in which Article in O2 is used
in a broader sense than Article according to O1. This can be formalized by a selection
function γ2

1 with γ2
1(MRS(O2,O1)) = {{Article}}. The unique maximal consistent set of

bridging axioms is {Article′ ⊑ Article}, so all selection functions γ2
2 fulfill γ2

2({{Article′ ⊑

Article}}) = {Article′ ⊑ Article}. The integration result is

O1 ⊗
(γ2

1 ,γ
2
2),ρ{Article}

2 O2 = O1[Article/Article′] ∪ {Article′ ⊑ Article} ∪ O2 (10)

By broadening the set of potential bounds A(S , σ) it is possible to define stronger
versions of the operators. For the following comparison with [5] it is sufficient to adapt
the strong operators of [15], which are defined only for literals as second arguments.
In adapting the definitions of [15], I use nominals, i.e., concept descriptions {a} whose
extension consists exactly of the individual denoted by a. As only the type-2 operators
will be compared with the operators of [5], the definitions of the type-1 operators are
skipped. A concept literal is either a concept symbol K or a negated concept symbol ¬K.
The meta-variable K̂ is used for concept literals.

Definition 2 Let O be an ontology over the vocabulary V ∪ V′ with V ∩ V′ = ∅,

K ∈ V be a concept symbol and K̂ be a concept literal with V(K̂) = {K}. Let σ be a

substitution with support {K}. The strong uniform-reinterpretation operators of type 2 ⊙C
2

that reinterpret the concept symbol are defined for literals by

O ⊙C
2 K̂(a) =

{

O ∪ {K̂(a)} if O ∪ {K̂(a)} is consistent,

Oσ ∪ {K̂(a), σ(K̂) ⊑ K̂, K̂ ⊑ σ(K̂) ⊔ {a}} else
(11)

The additional axiom K̂ ⊑ σ(K̂) ⊔ {a} contributes to the strength of the operator. It says
that a denotes the only individual that is K̂ but not σ(K̂). For an analysis of weak and
strong operators for triggering literals and iterated applications confer [15].



5. Other Approaches to Integration

In the following, the postulates given in Section 3 are used to compare the belief-revision-
oriented frameworks of Delgrande and Schaub [17] and Qi, Liu and Bell [5] and the
semantic-integration-oriented framework of Goeb, Reiss, Schiemann and Schreiber [18]
with the uniform-reinterpretation approach.

5.1. Private and Public Vocabularies in Belief Revision

The idea of using different vocabularies (private vs. public) in the integration process is
not new to the belief-revision literature. Delgrande and Schaub [17] use this idea to define
two belief-revision operators ∔,∔c. The belief-revision operators ∔ (skeptical revision)
and ∔c (choice-revision) take as input two propositional knowledge bases over a public
vocabulary V of proposition variables. Inconsistencies between the knowledge bases
O1,O2 are resolved by completely decoupling O1 and O2. All proposition variables p

in O1 are substituted by new symbols p′ ∈ V′ where V′ is a private vocabulary with
V′ ∩ V = ∅. The decoupling yields the knowledge base O1ρV ∪ O2. The decoupled
knowledge bases are related by adding maximal sets of biimplications p ↔ p′ between
the old symbols p and the new symbols p′ that are consistent with the O1ρV ∪O2. In the
case of ∔ the intersection of all maximal sets of biimplications are added to the decoupled
knowledge bases, in the case of ∔c one maximal set selected by a selection function c is
added to the decoupled knowledge bases. The result of the addition is closed with respect
to a classical inference operator and intersected with the set of sentences containing only
proposition variables from the public vocabulary.

The operators ∔,∔c and the uniform-reinterpretation operators have many proper-
ties in common. For example, both classes of operators introduce a new private vocab-
ulary in order to resolve conflicts. Moreover, the biimplications used in the definitions
of ∔,∔c can be considered as bridging axioms. But there are some essential differences.
Delgrande and Schaub define ∔,∔c for propositional knowledge bases which are not suit-
able for representing ontologies. Furthermore, [17] only considers biimplications p↔ p′

and not implications p → p′ which would directly correspond to subsumption relations
C ⊑ C′ between concept symbols used in the definitions of the reinterpretation oper-
ators. Lastly, the revision outcomes with respect to ∔ or ∔c are knowledge bases over
the public vocabulary V. The new symbols are introduced only as auxiliary variables
for the revision procedure and do not occur in the revision result. Therefore the revision
operators ∔,∔c do not fulfill the preservation or substitution-recovery postulates for the
first argument. But, ∔,∔c fulfill extensionality in both arguments, vacuity, success and
weakened consistency.

Observation 2 The revision operators ∔,∔c defined in [17] fulfill (O1.1), (O1.2), (O2),

(O3.2), (O4.2), (O5.2) and (O6) but they do not fulfill (O4.1), (O5.1).

5.2. Non-uniform Reinterpretation

Goeb et al. [18] describe an algorithm for the integration of a sender’s ontology O2 into
a receiver’s ontology O1. Their framework tackles ontology integration in a very similar
way as the uniform-reinterpretation operators. The main distinction relies in the non-



uniformity of the operators described in [18]. For the following, let TBi denote the TBox,
ABi the ABox of Oi, i ∈ {1, 2}. The outcome of the integration is denoted by O⊛.

The algorithm has two main steps. In the first step, the ontologies are completely
decoupled with respect to the common vocabularyV(O1)∩V(O2). This is similar to the
decoupling in the case of the operators ∔,∔C in [17]. For every concept and role symbol
s (but not constants) two new symbols are introduced, a symbol σ1(s) for the receiver’s
symbol s, and a symbol σ2(s) for the sender’s symbol s. The symbols are related in so
called triangles, i.e., subsumption relations of the form σ1(s) ⊑ s and σ2(s) ⊑ s for
σ1, σ2 ∈ ARS . After the reinterpretation, s denotes a super-concept of the receiver’s and
sender’s s-concepts. The super-concept s neither belongs to the terminology of the re-
ceiver nor does it belong to the terminology of the sender. As there may be symbols with
respect to which no decoupling is necessary for yielding consistency some symbols are
re-translated into their original form. The decoupling is reduced to a inclusion-minimal
set S ∈ MRS(O1,O2) of symbols that cannot be consistently re-translated.

In the second step of the algorithm, additional consistent re-translations are applied.
But this time the re-translations do not have to be uniform, i.e., different occurrences of
the same symbol may be treated differently with respect to the decision to re-translate or
not. The outcome of the re-translation can formally be described by applying substitu-
tions to different parts of the ontologies. Let

Σ
S
1 = {σ : S −→ σ1(S ) ∪ S | For all s ∈ S : σ(s) = s or σ(s) = σ1(s)} (12)

denote the set of substitutions that possibly substitute less symbols with new ones than
σ1. Similarly ΣS

2 is defined. Using this notation, the following representation of the on-
tology O⊛ results. There are

• symbol sets S1, S2 ⊆ S ;
• substitutions τAB1

∈ Σ
S1

1 and τAB2
∈ Σ

S2

2 , such that τAB1
(s) < S for all s ∈ S1 and

τAB2 (s) < S for all s ∈ S2;
• partitions of the TBoxes TB1 =

⊎

1≤i≤k TB1i and TB2 =
⊎

1≤i≤l TB2i;
• substitutions τ11, . . . , τ1k ∈ Σ

S1

1 and τ2i, . . . , τ2l ∈ Σ
S2

2

such that

O⊛ =
⋃

1≤i≤k

T1iτ1i ∪
⋃

1≤i≤l

T2iτ2i ∪ (AB1)τAB1
∪ (AB2)τAB2

∪

{τAB1
(s) ⊑ s | s ∈ S1} ∪ {τAB2

(s) ⊑ s | s ∈ S2} (13)

The representation of O⊛ in Eq. (13) says that for all α ∈ O1 a substitution variant (for
a substitution in ΣS1

1 ) occurs in O⊛. Accordingly, for all α ∈ O2 there exists a substitu-
tion variant in O⊛. The substitutions τAB1 , τAB2 are uniform semantic mappings for the re-
ceiver’s resp. the sender’s ABox. The sets {τAB1

(s) ⊑ s | s ∈ S1} and {τAB2
(s) ⊑ s | s ∈ S2}

can be considered as bridging axioms. The fact that (AB1)τAB1 ⊆ O⊛ means that a sub-
stitution variant of the receiver’s ABox as a whole is contained in O⊛. Accordingly,
(AB2)τAB2 ⊆ O⊛ means that a substitution variant of the sender’s ABox as a whole is con-
tained in O⊛. But note that in general it cannot be guaranteed that substitution variants
of the receiver’s or sender’s ontology are contained in O⊛. Consequently, the operators
of [18] do not fulfill the preservation postulates (O4.1), (O4.2) or recovery postulates
(O5.1), (O5.2). Hence, also (O3.1), (O3.2) are not fulfilled.



Due to the non-uniform reinterpretations realized by the different substitutions τ1i

and τ2 j neither the left (O1.1) nor the right (O1.2) extensionality postulates are fulfilled.
Thus, only postulates (O2) and (O6) are fulfilled by the operators of [18].

Observation 3 The integration operator described in [18] fulfills (O2) and (O6) but it

does not fulfill (O1.1), (O1.2), (O3.2), (O3.1), (O4.2), (O4.1), (O5.2) and (O5.1).

5.3. Ontology Revision Based on Weakening Axioms

The framework of Qi, Liu and Bell [5] provides binary belief-revision operators for
the revision of an ontology with another ontology.3 The ontologies are represented by
multisets of description logical axioms. The operators do not introduce new symbols.
Rather, axioms α of the first ontology are mapped (weakened) to axioms (α)w such that
Mod(α) ⊆ Mod((α)w). The weakenings can be considered as semantic mappings that
map axioms of one ontology to other axioms. Some axioms are mapped onto themselves,
other axioms are mapped to weaker axioms. As Qi, Liu and Bell consider two differ-
ent types of weakening, also two binary operators are defined, a revision operator ◦w
and a refined revision operator ◦rw. For a comparison with the uniform-reinterpretation
operators, I focus on ◦w.4

The weakening (·)w on which ◦w relies is based on the idea of exception lists. GCIs
α of the form C ⊑ D are weakened to GCIs (α)w of the form C ⊓ ¬{a1} ⊓ . . . ,⊓¬{an} ⊑

D, which means that all Cs, except for the individuals a1, . . . , an, are Ds. An ABox-
axiom is mapped to itself or radically weakened to the tautology ⊤, which amounts
to deleting it. A degree function d(·) counts the number of exceptions. The degree of
C ⊓ ¬{a1}, . . . ,⊓¬{an} ⊑ D is n, the degree of an ABox-axiom α is 0 if it is mapped to
itself and 1 if it is mapped to the tautology ⊤. O′ is a weakened ontology of O1 with
respect to O2, formally O′ ∈ Weakw

O2
(O1), iff O′ ∪ O2 is consistent and there exists a

bijection f from O1 to O′ such that for all α ∈ O1 the axiom f (α) is a weakening of α.
The degree d(O′) of O′ is the sum of the degrees of its axioms. The operator ◦w is defined
by

O1 ◦w O2 = {O2 ∪ Oi | Oi ∈ WeakwO2
(O1) and there exists no

Oj ∈ WeakwO2
(O1) such that d(Oj) < d(Oi)} (14)

The revision result contains unions of O2 with d-minimal weakenings of O1. The set is
interpreted as the disjunction of the ontologies it contains.

The main common idea of the approach presented in [5] and the approach of uniform
reinterpretation is that of weakening. E.g., let O1 = {K1 ⊑ K2,K1(a)} and O2 = {¬K2(a)},
then {K1 ⊓ ¬{a} ⊑ K2,K1(a),¬K2(a)} ∈ O1 ◦w O2. The axiom K1 ⊑ K2 is weakened to
K1 ⊓ ¬{a} ⊑ K2.

The reinterpretation operator ⊙C
2 applied to the same ontologies results in O1 ⊙

C
2

¬K2(a) = {K1(a),K1 ⊑ K′2,¬K′2 ⊑ ¬K2,¬K2 ⊑ ¬K′2⊔{a}}. (Here ρ{K2}(K2) is abbreviated
by K′2). As in the case of ◦w the weakened axiom K1 ⊑ K2 ⊔ {a} follows from O1 ⊙

C
2

¬K2(a). The perspective on weakening in [5] is a little bit different from the perspective
on weakening for the uniform-reinterpretation operators. Because ◦w weakens axioms

3Qi et al. do not use the term ontology but only description logical knowledge bases.
4The weakening underlying the operator ◦rw allows non-trivial weakenings of axioms of the form (∀R.C)(a)



while the reinterpretation operators weaken atomic concepts. For the example above one
sees that weakening K1 ⊑ K2 to K1 ⊓ ¬{a} ⊑ K2 realizes an implicit weakening of the
concept K2 to K2 ⊔ {a} as K1 ⊓ ¬{a} ⊑ K2 is logically equivalent to K1 ⊑ K2 ⊔ ¬{a}.
But it is not always possible to interpret the weakening of axioms as the weakening of
some atomic concept. The implicit weakening of a complex concept description D in
C ⊓ ¬{a} ⊑ D only concerns D as a whole, and not the weakening of an atomic concept.

As the consistency resolution in ◦w is guided by degree minimality and is not
terminology-oriented like the uniform-reinterpretation operators, axiom-oriented consis-
tency resolution is possible. Hence, different occurrences of the same concept symbol
can be handled differently in resolving the inconsistencies. For the example, note that
{⊤,K1 ⊑ K2,¬K2(a)} ∈ O1◦wO2, i.e., here, the axiom K1(a) ∈ O1 is weakened to⊤while
the axiom K1 ⊑ K2 ∈ O1 which also contains K1 is not weakened. Consequently, the
operator ◦w does not fulfill the postulates (O4.1) and (O5.1) which demand the preser-
vation and recovery of O1. The axiom-oriented resolution of conflicts is also responsi-
ble for non-extensionality in the left argument of ◦w. The following observation lists the
postulates (not) fulfilled by ◦w.

Observation 4 The operator ◦w of weakening-based revision fulfills (O1.2), (O2),

(O3.2), (O4.1), (O5.1) and (O6) but does not fulfill (O1.1), (O4.1) and (O5.1).

As Qi, Liu and Bell show, the weak revision operators fulfill a stronger version of (O6).
They can guarantee consistency of the integration result if O2 is consistent. In particular,
if O1 is inconsistent, the operator ◦w resolves the inconsistencies independently of O2.

6. Conclusion

Formal adequacy criteria for the integration of ontologies allow a precise specification
of the properties of integration strategies and provide a basis for a comparison of differ-
ent strategies for the same integration setting. The criteria are formalized in the article
by postulates in the same line as discussed in the area of belief revision [3]. Though
the classical AGM postulates are the core of the integration postulates, the set of ad-
ditional preservation and substitution-recovery postulates (O4.1), (O4.2), (O5.1) and
(O5.2), which accommodate for the setting’s presumption that both ontologies are well-
tried cannot be fulfilled by classical belief-revision and belief-update functions.

The uniform-reinterpretation operators of type 1 and type 2 show that there are two
maximal subsets of the postulates that can be fulfilled by two different classes of opera-
tors each of which guarantees a consistent integration result and the preservation and re-
covery of both ontologies as a whole. Both operators resolve possible conflicts between
the ontologies by mapping one of the ontologies in a different name space. The type-1
operators preserve the first ontology in its original form, the second ontology is trans-
lated to a substitution variant by using an ambiguity resolution substitution. In the case of
type-2 operators the second ontology is preserved and the first ontology is translated to
a substitution variant. The substitutions used in the operators function as semantic map-
pings between the public terminology used for communication and the private terminol-
ogy resulting from the integration process. Semantic mappings relating the concepts and
roles of the different ontologies are represented by inclusion axioms which have the role
of bridging axioms.



The revision operators of [17] and the weakening-based belief-revision operators
defined in [5] can guarantee a consistent integration result (O6) in which O2 is preserved
in its original form (O3.2). But only parts of O1 are preserved in the result, i.e., (O4.1),
(O5.1) are not fulfilled. The operators defined in [18] can guarantee a consistent inte-
gration result (O6). But, as the ambiguous terms are not reinterpreted uniformly neither
of the ontologies is preserved as a whole in the integration result, i.e., (O3.1), (O3.2),
(O4.1), (O4.2), (O5.1) and (O5.2) are not fulfilled.
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