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oezguer.oezcep@tu-harburg.de

30.04.2012

Abstract

In semantic integration scenarios, the integration of an assertion from some sender into the
knowledge base (KB) of a receiver may be hindered by inconsistencies due to ambiguous use of
symbols; hence a revision of the KB is needed to preserve its consistency. This paper analyzes the
new family of implication based revision operators, which exploit the idea of revising hypotheses
on the semantic relatedness of the receiver’s and sender’s symbols. In order to capture the
specific inconsistency resolution strategy of these operators, the novel concept of uniform sets,
which are based on prime implicates, is elaborated. According to two main results of this paper
these operators lend themselves to practical use in systems for semantic integration: First, the
operators are finitely representable. Second, the non-sceptical versions of these operators can
be axiomatically characterized by postulates, which provide a full specification of the operators’
effects.
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1 Introduction

Belief revision (Alchourrón et al. (1985)) deals with the problem of integrating an assertion stem-
ming from an agent (sender) into a knowledge base of another agent (receiver). If the receiver trusts
the incoming information—and classical belief revision in contrast to non-prioritized belief revision
(Hansson (1999a)) assumes he does—the integration may trigger a revision of the knowledge base.
The reason is that the trigger may be incompatible with the knowledge base; hence some of its
formulas have to be eliminated in order to keep it consistent. Classical belief revision explains the
incompatibility with false information in the knowledge base. Therefore, the elimination of formu-
las in the knowledge base is an adequate means. But if the diagnosis for the incompatibility is not
false information but ambiguous use of symbols, a different strategy seems more appropriate. For
example, suppose an agent (the receiver) thinks the terminus “frugal” is meant to denote something
very rich or praiseful though it really means “poor”. He has different sentences in his KB in which
he uses “frugal” in this sense. Another agent, the sender, uses “frugal” in a correct sense; so, a
trigger sentence stemming from the sender may lead to inconsistencies with the receiver’s KB. In
order to resolve the inconsistencies, it would not be a good idea to eliminate only one sentence
of the KB that contains “frugal” and that is involved in the conflict; because the next time the
receiver integrates a (different) trigger from the sender, the false interpretation of “frugal” may
again lead to inconsistencies.

An appropriate means to deal with conflicts caused by ambiguous use of symbols between
different agents is first to state hypotheses on the semantical relatedness of symbols from different
agents and second to eliminate some of the hypotheses that are involved in the conflict. This is
the general approach of semantic integration based on semantic mappings (or bridging axioms)
for heterogeneous knowledge bases (Noy (2004)). Every KB is assigned a unique name space, and
semantic mappings associate symbols of different name spaces. In the case of the example above this
means distinguishing between the use of “frugal” in the receiver’s name space and in the sender’s
name space and initially hypothesizing that the uses are equivalent. If the integration of a trigger
containing “frugal” into the receiver’s KB leads to inconsistency, a proper strategy for resolving the
conflict is eliminating the equivalence hypothesis and possibly replacing it by a weaker hypothesis
compatible with the trigger (e.g., by hypothesizing that the sender’s use is wider (narrower) than
the receiver’s use).

Based on this strategy for inconsistency resolution, this paper investigates a new class of op-
erators for revising propositional KBs with propositional triggers. The hypotheses used in these
operators are implications of the form p′ → p or p→ p′ where p′ stands for the p in the name space
of the receiver, and p is the p of the sender. These operators generalize the revision operators of
Delgrande and Schaub (2003) who consider biimplications of the form p↔ p′ only. Using implica-
tions rather than biimplications allows for a more fine-grained analysis of what caused the conflict
between the sender’s trigger and the receiver’s KB; hence—as demonstrated with examples in this
paper—implication based revision preserves more sentences of the receiver’s KB in the revision
result than the biimplication based revision. The way in which the hypotheses for elimination are
chosen is similar to the way how partial meet revision operators (Alchourrón et al. (1985)) choose
formulas for elimination. In fact, as will be shown in this paper, the implication based operators
can also be simulated by classical partial meet revision operators, but with a main switch con-
cerning the arguments of the revision: The revised knowledge base is a set of hypotheses and the
trigger is a union of an internalized version of the original knowledge base and the original trigger
(Proposition 15).

Though the technical definitions of the revision operators of this paper and of Delgrande and
Schaub (2003) are similar, the theory developed in this paper deviates considerably from that of
Delgrande and Schaub (2003). One of the main innovative features of the theory developed in
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this paper is a formal specification and analysis of the uniformity property which distinguishes the
implication (and biimplication) based operators from classical belief-revision operators: Classical
belief revision eliminates only sentences in the KB which are identified as culprits for an inconsis-
tency; on the other hand, the elimination of, e.g., the hypothesis p′ → p amounts to (uniformly)
eliminating a whole bunch of formulas of the KB, namely those containing p positively. The main
idea of the analysis is first to equivalently represent the KB by its most atomic components (prime
implicates) and then describe the effect of the implication based operators on the prime implicates
by uniform closure conditions.

The implication revision operators provide a useful abstract implementation model for semantic
integration scenarios in which conflicts caused by ambiguous use of symbol between heterogeneous
KBs have to be resolved. Though the definitions of the operators are based on infinite sets, they
can be described equivalently by finite operators that are more appropriate for implementation
means (see Th. 11). This the first main result of this paper. Moreover, anyone implementing the
choice versions of these operators gets a whole declarative specification of their properties (including
uniformity): as a second main result (Th. 25) this paper describes a novel set of axiomatic postulates
which are fulfilled by the operators and which characterize these operators in the sense that all
other operators fulfilling them are representable as implication based choice revision operators.

The paper is structured as follows. The second section provides background on propositional
logic and belief revision. The third section discusses the revision operators of Delgrande and
Schaub (2003). The following section introduces the implication based revision operators and
shows that these are indeed different from the operators of Delgrande and Schaub. Moreover, the
finite representability by a partial polarity flipping operator is proved and the representability by
classical partial meet revision is shown. The last section before the section on related work and the
conclusion gives an axiomatic characterization of non-sceptical implication based revision operators
by postulates.

2 Logical Preliminaries

This section introduces notation and concepts from propositional logic and belief revision that are
used in the paper.

2.1 Propositional Logic

Let P be a set of propositional symbols and form(P) be the set of propositional logical formulas
over P denoted by lower greek letters α, β.... More formally: All symbols in P as well as the
constants > and ⊥ are formulas. And if α, β are formulas, so are ¬α, α ∧ β, α ∨ β, α → β and
α ↔ β. Finite sets of formulas are called knowledge bases or belief bases and are denoted by B
as well as primed and indexed variants of B (e.g. B1, B

′, B̄).
∧
B denotes the conjunction of all

formulas in B. symb(B) is the set of propositional symbols in B. Formulas that are propositional
symbols or negations of propositional symbols are called literals. A disjunction of literals is called
a clause. A formula is in conjunctive normal form (CNF) iff it is a conjunction of clauses. A
clause p1 ∨ · · · ∨ pn is also represented as set the {p1, . . . , pn} of its literals. With respect to this
representation a clause is a subclause of another clause iff it is a subset of this clause. A disjunction
of conjunctions of literals is a formula in disjunctive normal form (DNF).

An interpretation or assignment I ∈ Int(P) is a function that assigns truth values 0, 1 to
propositional symbols in P. The definition can be recursively extended to formulas α, so that I(α)
denotes the truth value of α under I. If I(α) = 1, then we also write I |= α and say that I models
α or is a model of α. I[p/x] for x ∈ {0, 1} denotes the variant of I that maps p to x. I |= B for a
set B is a short notation for I |=

∧
B. The set B is consistent iff it has a model. A set B entails
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a formula α, denoted B |= α, iff all models of B are models of α. Define the set of consequences
of B over the set of propositional symbols S by CnS(B) = {α ∈ form(S) | B |= α}. If the set of
propositional symbols is clear, it is not written as an index. Moreover, if the symbol index is left
out in some context, then the consequences have to be understood with respect to the maximal
set of propositional symbols of discussed in the context. If two sets B1 and B2 have the same sets
of consequences of formulas in form(S), write B1 ≡S B2. The truth value of a formula α depends
only on the symbols occurring in it, therefore Int(S) is also considered as a set of interpretations,
where S ⊆ P and α ∈ form(S).

Given a formula α ∈ form(P) and a subset S ⊆ P of symbols, the clausal closure of α w.r.t. S
is the set clauseClS(α) of clauses that have only symbols from S and that follow from α.

2.2 Consequences Relative to a Symbol Set

I define two operators ΘS and Θ′S that, given a formula α and a set S of symbols S ⊆ P, compute a
formula axiomatizing all consequences of α that do not contain symbols in S. For Θ′S , the argument
α has to be transformed in DNF while ΘS does not presuppose such a transformation. These
operators will be used as technical aids for calculating belief-revision results based on hypothesis.

Let α be a formula, DNF(α) a formula equivalent to α represented as a set of clauses and
S ⊆ P. Furthermore, we assume that DNF(α) is reduced in the formula that it does not contain a
contradictory dual clause. Θ′S(α) results from DNF(α) by substituting all literals over S in DNF(α)
by the logical constant >: or equivalently: delete all literals in DNF(α) that contain a symbol of
S. The empty dual clause is interpreted as >. Note that this is not the same as substituting all
occurrences of symbols of S in DNF(α) by >. This would lead to wrong results and would also not
justify the fact that have to transform the result into DNF. For example let α = (p∧ q)∨ (r ∧¬s).
Then α is already in DNF and one gets Θ′{s}(α) = (p ∧ q) ∨ (r ∧ >) ≡ (p ∧ q) ∨ r and Θ′{s,r}(α) =

(p ∧ q) ∨ (> ∧ >) ≡ >. ΘS is based on substituting symbols in S by truth value assignments. Let
I ∈ Int(S) be given, then the formula αI is defined as follows: Substitute all occurrences of p ∈ S
in α where pI = I(p) = 1 by >, else ⊥ is substituted for p. For example, let α = (p ∧ q) ∨ (r ∧ s)
and S = {p, r} and I ∈ Int(S) with I : p 7→ 1 , I : r 7→ 0, then αI = (> ∧ q) ∨ (⊥ ∧ s). Now
ΘS is defined as follows: Let S ⊆ symb(α). Then ΘS : α 7→

∨
I∈Int(S) αI . For arbitrary S ⊆ P let

ΘS(α) = Θsymb(α)∩S(α). The following facts concerning Θ′S and ΘS can be easily proved.

Proposition 1. α |= Θ′S(α) and α |= ΘS(α)

Proof. Let I be an assignment for α with αI = 1. Then (DNF(α))I = 1. Hence there is a dual
clause kl in DNF(α) s.t. klI = 1. Per definition there is a subclause kl′ ⊆ kl in Θ′S(α). Therefore
(Θ′S(α))I = 1. If αI = 1 , then (αI)

I = 1 and hence (ΘS(α))I = 1.

Proposition 2. Let S ⊆ P. For all formulas α over P and ΘS ∈ {Θ′S ,ΘS}: CnP\S(α) =
CnP\S(ΘS(α))

Proof. Proof of ”‘⊇”’: Consequence of Prop. 1.
Proof of ”‘⊆”’: Let Θ = Θ. Let β /∈ CnP\S(Θ′S(α)). Then there is an assignment I1 for∨
I∈Int(S) αv such that I1 |=

∨
I∈Int(S) αI and I1 |= ¬β. The first relation implies that there is

a I ∈ Int(S) such that I1 |= αI . Define a new assignment I2 with pI2 = pI for all p ∈ S and
pI2 = pI1 for all other symbols.Then I2 |= ¬β, I2 |= α follow and hence β /∈ CnP\S(α).

Now let Θ = Θ′. We have to show: For all δ with symb(δ) ⊆ P \ S it is the case that if α |= δ,
then also Θ′S(α) |= δ. This assertion is equivalent to the assertion that for δ with symb(δ) ⊆ P \ S
it is the case that if Θ′S(α) ∪ {¬δ} has a model, α ∪ {¬δ} has a model, too. Let I be a model of
Θ′S(α)∪{¬δ}. That means that there exists a dual clause kl′ in Θ′S(α) with (kl′)I = 1. In DNF(α)
there is a dual clause kl, such that substituting all literals of S in kl by > results in kl′. Let I ′ be
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a modification of I defined by: for all p /∈ S let pI
′

= pI . For all p ∈ S let pI
′

= 1 if p ∈ kl and
pI

′
= 0 if ¬p ∈ kl. (We may assume that not at the same time p,¬p ∈ kl. Then klI

′
= 1 and hence

αI
′

= 1 follows. Because I changes at most symbols in S , it is also the case that (¬δ)I′ = 1.

As a corollary to Proposition 1 and 2 the logical equivalence of Θ′S(α) and ΘS(α) follows.

Corollary 3. Θ′S(α) ≡ ΘS(α).

Proof. As α |= Θ′S(α) and CnP\S(α) = CnP\S(ΘS(α)), ΘS(α) |= Θ′S(α). Similarly α |= ΘS(α) and
CnP\S(α) = CnP\S(Θ′S(α)) imply that Θ′S(α) |= ΘS(α). So, Θ′S(α) ≡ ΘS(α).

Note, that ΘS(α) can be described by the quantified boolean formula (QBF) ∃S.α.

2.3 Belief Revision

Belief revision as initiated by the pioneering work of Alchourrón, Gärdenfors and Makinson (AGM)
Alchourrón et al. (1985) has evolved into a wide subfield of knowledge representation that deals
with the dynamics of knowledge bases in a logical framework. Classical belief-revision functions à
la AGM operate on a logically closed set called belief set and a formula which triggers the revision
of the belief set into a new belief set. In belief-base revision (Hansson (1991)) the objects that
are revised are called belief bases. They do not have to be logically closed; so, different syntactical
representations of equivalent belief bases may lead to different outcomes.

AGM Alchourrón et al. (1985) construct belief-revision functions based on the concept of re-
mainder sets Alchourrón and Makinson (1981). Given a set B ⊆ form(P) and formula α ∈ form(P)
define B’s remainder sets modulo α, B⊥α, by: X ∈ B⊥α iff X ⊆ B, X 6|= α and for all X̄ ⊆ B
with X ⊂ X̄ it follows that X̄ |= α. A dual concept will be used in this paper: Let B

`

α, the dual
remainder sets modulo α, denote the set of inclusion maximal subsets X of B that are consistent
with α, i.e., X ∈ B

`
α iff X ⊆ B, X ∪ {α} is consistent and for all X̄ ⊆ B with X ⊂ X̄ the

set X̄ ∪ {α} is not consistent. The notion of dual remainders is extended to arbitrary belief bases
B1 as second argument by defining B

`

B1 as B

` ∧
B1. An AGM selection function γ for B is

defined for all α as follows: If B

`

α 6= ∅, then ∅ 6= γ(B

`

α) ⊆ B

`

α. Else set γ(∅) = {B}. If for
all X ∈ Pow(Pow(form(P))) the cardinality of γ(X) is 1, then γ is called a maxi-choice selection
function. Using this notion of selection function and the dual concept of remainder sets, classical
partial meet revision ∗γ is defined by: B ∗ α =

⋂
γ(B

`

α) ∪ {α}.
An analysis of belief-revision functions involves the investigation of postulates that they fulfil

and the invention of representation theorems for the functions. That is, for a class of belief-revision
functions one seeks a set of postulates such that 1) all belief-revision functions fulfil the postulates;
and 2) all other functions fulfilling the postulates can be represented by belief-revision functions
from the given class.

Some postulates for belief-base revision operators ∗ that I will refer to in this paper are given
below.

(BR1) B ∗ α 6|= ⊥ if α 6|= ⊥.

(BR2) B ∗ α |= α .

(BR3) B ∗ α ⊆ B ∪ {α}.

(BR4) For all β ∈ B either B ∗ α |= β or B ∗ α |= ¬β.

(BR5) If for all B̄ ⊆ B: B̄ ∪ {α} |= ⊥ iff B̄ ∪ {β} |= ⊥, then (B ∗ α) ∩B = (B ∗ β) ∩B.
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Postulate (BR1) is the consistency postulate (Alchourrón et al. (1985)); it says that the revision
result has to be consistent in case the trigger α is consistent. Postulate (BR2) is the success
postulate (?); the revision must be successful in so far as α has to be in the revision result. (BR3)
is called the inclusion postulate for belief-base revision (Hansson, 1999b, p. 200). The revision
result of operators fulfilling it are bounded from above. Postulate (BR4) is the tenacity postulate
Gärdenfors (1988); it states that the revision result is complete with respect to all formulas of B
(Gärdenfors (1988)). Postulate (BR5) is the logical uniformity postulate for belief-base operators
(Hansson (1993b)). It says that the revision outcomes are determined by the subsets (in)consistent
with the trigger. The logical uniformity postulate generalizes the right extensionality postulate for
revision operators, which states that the revision outcomes of equivalent triggers α, β lead to the
same revision result: B ∗ α = B ∗ β if α ≡ β. In contrast to Hansson, I specified the postulate as
“logical” as I will use the notion of uniformity later on in a different sense.

3 Revision Based on Hypotheses

One example for belief-revision operators that are based on hypotheses are the operators of Del-
grande and Schaub (2003). The general idea is to internalize the symbols of the knowledge base
thereby dissociating the name spaces of the receiver, who holds the knowledge base, and the sender,
who is the holder of a another knowledge base from which the trigger stems. Both name spaces
are related by one special form of formula (bridging axiom), namely the biimplication. In order
to resolve inconsistencies the internalized knowledge base stays untouched, but some subset of the
biimplications are eliminated. After the elimination the name space dissociation is abandoned by
retaining only those formulas of the old vocabulary. I recapitulate the definitions of the operators
and their properties because the revision operator I will introduces is an extension, which uses
implications p′ → p and p→ p′ as hypotheses.

For a given set of propositional symbols P let P ′ denote the set {p′ | p ∈ P} of internal or
internalized propositional symbols. Similarly B′ denotes the pendant of B where all symbols p
are substituted by the corresponding internalized variant p′. In order to save space, I will use the
following abbreviations for p ∈ P: ←→p = p ↔ p′, −→p = p → p′ and ←−p = p′ → p. A belief-change
scenario 〈B1, B2, B3〉 consists of three sets Bi (i ∈ {1, 2, 3}) of formulas over the set of propositional
symbols P. B1 is the initial knowledge base of the receiver, B2 is a knowledge base that must be
contained in the change result and B3 is a knowledge base that is not allowed to be in the change
result. Classical revision of B with α is modelled by the belief-change scenario 〈B, {α}, ∅〉; classical
contraction of B with α is modelled by the belief-change scenario 〈B, ∅, {α}〉. A belief-change
extension (Delgrande and Schaub, 2003, p. 9) (bc extension for short) of the belief change scenario
〈B1, B2, B3〉 is a set of the form

CnP(B′1 ∪B2 ∪ EQi)

where EQi ⊆ EQ = {←→p | p ∈ P} is an inclusion maximal set of biimplications (equivalences)
fulfilling the following integrity condition

Cn(B′1 ∪B2 ∪ EQi) ∩ (B3 ∪ {⊥}) = ∅

If no such EQi exists, then form(P) is set as the only belief-change extension.
In case of classical belief revision represented by 〈B, {α}, ∅〉 the set of bc extensions Ei have the

form Ei = CnP(Bσ ∪EQi ∪{α}), where ⊥ /∈ Cn(B1σ ∪B2 ∪EQi). Let (Ei)i∈I be the family of all
bc extensions in the belief-change scenario 〈B, {α}, ∅〉. A selection function c over the index set I
selects exactly one index c(I) ∈ I. Two revision operators are defined, choice revision uc based on
a selection function c and sceptical revision u.
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Definition 4. (Delgrande and Schaub, 2003, p. 11)

O uc α = Ek (for c(I) = k)

O u α =
⋂
i∈I

Ei

The definition of a selection function according to Delgrande and Schaub (Delgrande and
Schaub, 2003, p. 11) differs from the notion of a selection function in AGM style (Alchourrón
et al. (1985)). Though it may appear as if Delgrande’s and Schaub’s selection function c depends
not only on B but also on the trigger α, their article seems to suggest the opposite. I reconstruct
their notion of selection function in the following way: Consider the power set of all biimplications
over the symbols P, i.e., consider Pow(EQ) and let Ind be an index set for Pow(EQ). A selection
function c is a function that for all non-empty subsets I ⊆ Ind chooses one element of I, i.e.,
c(I) ∈ I. This definition guarantees that one has to use the same index I set for the belief sets of
belief-change scenarios 〈B, {α}, ∅〉 and 〈B, {β}, ∅〉 with equivalent triggers α and β.

Though the revision results under both operators uc,u are not finite, Delgrande and Schaub
can show that these operators are finitely representable. That is more formally, operators ◦fin can
be defined such that they operate on a finite knowledge base B as there left argument, a formula α
as their second argument and output a finite knowledge base B ◦fin α. Additionally the following
closure condition holds:

Cn(B) ◦ α = Cn(B ◦fin α)

The corresponding finite operators are based on substituting propositional symbols by their nega-
tion, thereby flipping the polarity of the symbols. Let B = 〈B, {α}, ∅〉 be a bc scenario and EQi a
set of biimplications. The formula dαei results from α by substituting all occurrences of proposi-
tional symbols p ∈ P\symb(EQi) with their negation ¬p. Let (Ei)i∈I be the family of bc extensions
over B and c a selection function with c(I) = k. Then Delgrande and Schaub define the flipping
operators by dBe =

∨
i∈I
∧
β∈Bdβei and dBec =

∧
β∈Bdβek and finite revision operators by:

B ufin
c α = d(B, {α}, ∅)ec ∧ α

B ufin α = d(B, {α}, ∅)e ∧ α

The finite representability is stated in Theorem 5.

Theorem 5. (Delgrande and Schaub, 2003, p. 17)

B uc α ≡ B ufin
c α

B u α ≡ B ufin α

The reason for the compact representation ofuc relies on the benign interaction of biimplications
with the negation symbol. First one can easily prove that B ≡P B[p/p′] ∪ {←→p }. On the other
hand, if a biimplication ←→p is not in the revision result Buc α, the maximality of Ek (for c(I) = k)
underlying the result implies that B′ ∪Ek ∪ {α} ∪ {←→p } |= ⊥, i.e., B′ ∪Ek ∪ {α} |= ¬←→p . But ¬←→p
is equivalent to ¬p↔ p′, which explains the flipping.

This theorem evokes a new perspective on what has caused the inconsistency between the
knowledge base and the trigger: a flip in the polarity of a propositional symbol. By re-flipping the
propositional symbols that caused the inconsistency the result becomes consistent. A remarkable
point here is that the flip of a propositional symbol concerns all its occurrences in the formula, it is
a kind of uniform flipping. This uniformity can be interpreted as a systematic use of the proposition
in just the opposite sense. For example, think of an agent (the receiver) who thinks the terminus
“frugal” is meant to denote something very rich or praiseful though it really means “poor”. If the
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trigger uses “frugal” in a correct sense, this may lead to inconsistencies. In order to resolve the
inconsistencies, all occurrences of “frugal” have to be substituted by its negation.

The operators of Schaub and Delgrande rely on the elimination of biimplications. The biimpli-
cations can be considered as hypotheses on the relation of symbols of different name spaces Özçep
(2008). Holding to a biimplication ←→p = p ↔ p′ means believing that the propositional symbol p
of the receiver (holder of B) has the same meaning as the propositional symbol p of the sender. If
this biimplication is eliminated during the revision process, this can be interpreted as diagnosing
the inter-ambiguity of p between the sender and the agent as the culprit for the inconsistency. This
perspective on Delgrande’s and Schaub’s operators as operators for the revision of hypotheses can
be stated even more concretely. It can be shown that for both operators there exist classical partial
meet revision operators (Alchourrón et al. (1985)) that act on a set of hypotheses (an enriched set
of hypotheses, respectively). This result is given in the following proposition, my first contribution
in this paper. It states that the choice revision uc can be modelled as partial meet revision of the
set EQ. In case of the sceptical operator u the disjunctive closure (Hansson (1993a)) of EQ is
used as set of hypotheses that is revised. Hereby, the disjunctive closure of a set B is defined by
DC(B) = B ∪ {α1 ∨ · · · ∨ αn | αi ∈ B}. In both cases the result of the partial meet revision has to
be relativized to the non-internalized set of symbols P.

Proposition 6. Let 〈B, {α}, ∅〉 be a bc scenario, (Ei)i∈I the set of bc extensions and (EQi)i∈I the
set of biimplications on which the Ei are based. Let c be a selection function according to Delgrande
and Schaub (2003).

1. There is a maxichoice selection function γ for EQ s.t.:

B uc α = CnP(EQ ∗γ (B′ ∪ {α})) (1)

2. There is a selection function γ for DC(EQ) s.t.:

B u α = CnP(DC(EQ) ∗γ (B′ ∪ {α})) (2)

Proof. “Representation of uc”: Let γ be defined by γ(EQ

`

(B′ ∪ {α})) = {EQi} for i = c(I).
Then per definition: EQ ∗γ (B′ ∪ {α}) =

⋂(
γ(EQ

`

(B′ ∪ {α}))
)
∪ B′ ∪ {α} = EQi ∪ B′ ∪ {α}.

Hence CnP(EQ ∗γ (B′ ∪ {α})) = Cn(EQ ∗γ (B′ ∪ {α})) ∩ form(P) = Ei = B uc α.
“Representation of u”: Let H = DC(EQ) ∗γ (B′ ∪ {α}) and γ be defined by:

γ(H) = {X ∈ H | X ∩ EQ is maximal in

{X ′ ∩ EQ | X ′ ∈ H}}

Let (EQ∨j )j∈J be the family of sets in γ(DC(EQ)

`

(B′ ∪ {α})). It follows from the definition of a
disjunctive closure and the definition of a dual remainder set that for all i ∈ I there is a j ∈ J s.t.
EQi ⊆ EQ∨j , EQ∨j ∩ EQ = EQi and

EQ∨j ⊆ Cn(EQi) (3)

On the other hand, from the definition of γ it follows that for all j ∈ J there is an i ∈ I such that

EQ∨j ⊇ EQi (4)

Now I show “Buα ⊇ CnP (DC(EQ) ∗γ (B′ ∪ {α}))”: Let β ∈ CnP(DC(EQ) ∗γ (B′ ∪ {α})), that is
β ∈ form(P) und (

⋂
j∈J EQ

∨
j )∪B′∪{α} |= β. Therefore, for all j ∈ J we have EQ∨i ∪B′∪{α} |= β

and EQ∨j |= (
∧
B′ ∧ α) → β. Together with 3 it follows that for all i ∈ I we have: EQi |=
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(
∧
B′ ∧ α) → β, hence (

∧
B′ ∧ α) → β ∈ Cn(EQi) ⊆ Cn(EQi ∪ B′ ∪ {α}) = Ei for all i ∈ I. In

consequence, for all i ∈ I one has β ∈ Ei and, finally, β ∈
⋂
i∈I Ei = O u α.

Now I show the other subset relation “B u α ⊆ CnP(DC(EQ) ∗γ (B′ ∪ {α}))”: Let β ∈ B u α =⋂
i∈I Ei, i.e., β ∈ form(P), and for all i ∈ I it is the case that EQi ∪ B′ ∪ {α} |= β and hence

EQi |= (
∧
B′ ∧ α) → β. Because of compactness of propositional logic there is a finite subset

EQfi ⊆ EQi for every i ∈ I such that EQfi |= (
∧
B′ ∧ α) → β. As B is finite so is the index set

I. Let I = {1, . . . , k}. There are only finitely many sets EQi and finitely many Ei. Therefor the

disjunction
∨
i∈I EQ

f
i is defined and the following equation holds:∨

i∈I
EQfi |= (

∧
B′ ∧ α)→ β (5)

For all i ∈ I, let ni = |EQi| denote the cardinality of EQfi and Ni = {1, . . . , ni}. Every set EQi,

i ∈ I, can be represented by EQi ≡
∧ni
j=1(pij ↔ p′ij). Using the law of distribution,

∨
i∈I EQ

f
i can

be transformed equivalently to a conjunction of disjunctions of biimplications :

∨
i∈I

EQfi ≡
∧

(j1,...,jk)∈N1×···×Nk

k∨
i

(pji ↔ p′ji) (6)

According to (4), for all j ∈ J there is a i ∈ I with EQ∨j ⊇ EQi. But for all (j1, . . . , jk) ∈ N1×· · ·×
Nk we have (pji ↔ p′ji) ∈ EQi and therefore for all (j1, . . . , jk) ∈ N1 × · · · ×Nk we have

∨k
i (pji ↔

p′ji) ∈ EQ
∨
j , too. Hence, for all j ∈ J it is the case that EQ∨j |=

∧
(j1,...,jk)∈N1×···×Nk

∨k
i (pji ↔ p′ji).

Using the equivalence (6) it follows that for all j ∈ J it is the case that EQ∨j |=
∨
i∈I EQ

f
i . Using

the entailment relation (5) one can conclude that EQ∨j |= (
∧
B′ ∧ α) → β. In the end one gets

β ∈ CnP (DC(EQ) ∗γ (B′ ∪ {α}))—as desired.

The representability of u can be demonstrated with a simple example.

Example 7. Let be given P = {p, q}, EQ = {←→p ,←→q }, B = {p ∧ q} and α = ¬p ∨ ¬q. It follows
that

EQ

`

(B′ ∪ {α}) = {{←→p }, {←→q }}
B u α = CnP(p↔ ¬q)

On the other hand we can calculate that

γ(DC(EQ)

`

(B′ ∪ {α})) = {{←→p ,←→p ∨←→q },
{←→q ,←→p ∨←→q }}

DC(EQ) ∗γ (B′ ∪ {α}) = {←→p ∨←→q } ∪B′ ∪ {α}
= {←→p ∨←→q , p′, q′,¬p ∨ ¬q}

Using Θ{p′,q′} the consequences w.r.t. P are computed.

CnP
(
{←→p ∨←→q , p′, q′,¬p ∨ ¬q}

)
=

CnP
(
Θ{p′,q′}[(

←→p ∨←→q ) ∧ p′ ∧ q′ ∧ (¬p ∨ ¬q)]
)

=

CnP
(
((p↔ >) ∨ (q ↔ >)) ∧ > ∧ > ∧ (¬p ∨ ¬q)

)
=

CnP(p↔ ¬q) = B u α

9



4 Using Implications as Hypotheses

By using the set of implications Impl = {−→p ,←−p | p ∈ P} as set of hypotheses instead of the set of
biimplications EQ = {←→p | p ∈ P} new classes of revision operators result. The notion of belief
extension is adapted accordingly, i.e., a set CnP(B∪{α}∪X) is an implication based belief extension
iff X ∈ Impl

`

(B′ ∪ {α}). (Remember that

`

denotes the operator for dual remainder sets defined
in Section 2.3). Let (Impli)i∈I be the set of all implication based consistent belief set extensions of
the bc scenario 〈B, {α}, ∅〉 and c be a selection for I with c(I) = k. The new operators are defined
as follows:

Definition 8. The implication based choice revision uImpl
c and the implication based sceptical

revision uImpl are defined by :

B uImpl
c α = Implk (for c(I) = k)

B uImpl α =
⋂
i∈I

Impli

The maximality of the Impli has the effect that for every p ∈ P at least one of p → p′, p′ → p
is contained in Impli.

Proposition 9. Let (Impli)i∈I be the set of all implication based consistent belief set extensions of
the bc scenario 〈B, {α}, ∅〉. Then for all i ∈ I and all p ∈ symb(B) one of −→p = p→ p′,←−p = p′ → p
is contained in Impli.

Proof. Suppose that neither of of −→p ,←−p is contained in Impli. The maximality of Impli implies
that B′ ∪ Impli ∪ {α} |= ¬−→p ∧ ¬←−p and so B′ ∪ Impli ∪ {α} |= ⊥, which contradicts the fact that
B′ ∪ Impli ∪ {α} is consistent.

As in the case of the Delgrande/Schaub revision operators I can finitely represent the results
by an operation on the knowledge base. For convenience, I assume that only the connectors ∧,∨
and ¬ are allowed in the formulas; this is no real restriction as this set of connectors is functionally
complete.

An occurrence of a propositional symbol is syntactically positive iff it occurs in the scope of an
even number of negation symbols, otherwise the occurrence is syntactically negative. I also speak of
the (positive, negative) polarity of a propositional symbol’s occurrence. In contrast to the polarity
switching in case of Delgrande’s and Schaub’s finite operators, the operator of partial flipping
does not change the polarity of all occurrences of a symbol p but only of those of a particular
polarity—depending on which implication −→p or ←−p is missing in the given set of implications.

Definition 10. Let (Impli)i∈I be the family of belief extensions for a belief-change scenario B =
(B, {α}, ∅) and let Implk be an implication based belief extension chosen by the selection function,

c(I) = k. Then define the operator of partial flipping dBeImpl
k = dBeImpl

c in the following way: If
p → p′ /∈ Implk, then switch the polarity of the negative occurrences of p in

∧
B (by adding ¬ in

front of these occurrences). Similarly, if p′ → p /∈ Implk, then switch the polarity of the positive

occurrences of p in
∧
B (by adding ¬ in front of these occurrences). Let dBeImpl =

∨
i∈IdBe

Impl
i .

With this definition at hand, the following representation theorem follows:

Theorem 11.

B uc α ≡ d(B, {α}, ∅)eImpl
c ∧ α

B u α ≡ d(B, {α}, ∅)eImpl ∧ α

10



case form form implications

in dBeImpl
k in B in Implk

I p p p′ → p, p→ p′

II p p p′ → p
III p ¬p p′ → p
IV ¬p ¬p p′ → p, p→ p′

V ¬p ¬p p→ p′

VI ¬p p p→ p′

Table 1: Cases for literals

Proof. One can assume that B is a formula in DNF. Let c(I) = k. I show that B′∪ Implk ∪{α} ≡P
dBeImpl

k ∪ {α} by proving the two implicit directions.

‘Right to left’: Let B′ ∪ Implk ∪ {α} |= β for β ∈ form(P). I have to show dBeImpl
k ∪ {α} |= β.

Let be given a model I |= dBeImpl
k ∪{α}. Then there is a dual clause cl in dBeImpl

k such that I |= cl.
For every literal li in cl one of the cases mentioned in Table 1 holds.

So there are 6 different types of literals in cl; this justifies the following representation of cl in
dBeImpl

k .

kl = p11 ∧ · · · ∧ p1n1
∧ p21 ∧ · · · ∧ p2n2

∧ p31 ∧ · · · ∧ p3n3

∧¬p41 ∧ · · · ∧ ¬p4n4
∧ ¬p51 ∧ · · · ∧ ¬p5n5

∧¬p61 ∧ · · · ∧ ¬p6n6

Define a new interpretation I ′ in the following way:

• I ′(p′1i ) = I ′(p1i ) = 1 = I(p1i );

• I ′(p′2i ) = I ′(p2i ) = 1 = I(p2i );

• I ′(p′3i ) = 0 6= I(p3i ) = 1; I ′(p3i ) = I(p3i ) = 1;

• I ′(p′4i ) = I ′(p4i ) = 0 = I(p4i );

• I ′(p′5i ) = I ′(p5i ) = 0 = I(p5i );

• I ′(p′6i ) = 1 6= I(p6i ) = 0; I ′(p6i ) = I(p6i ) = 0;

• if r is a propositional symbol in P with r 6= pji and r′ 6= p′ji , let I ′(r′) = I(r);

From the construction of I it follows that I ′�P = I�P and I ′ |= B′ ∪ Implk ∪ {α}. So I ′ |= β and
hence I |= β.

‘Left to right’: Now suppose that dBeImpl
k |= β and let I |= B′ ∪ Implk ∪ {α}. That is, there is

a dual clause cl′ in B′ of the form

p′11 ∧ · · · ∧ p′1n1
∧ p′21 ∧ · · · ∧ p′2n2

∧ ¬p′31 ∧ · · · ∧ ¬p′3n3

∧¬p′41 ∧ · · · ∧ ¬p′4n4
∧ ¬p′51 ∧ · · · ∧ ¬p′5n5

∧p′61 ∧ · · · ∧ p′6n6

It follows that I(p1i ) = I(p2i ) = 1 and I(p2i ) = I(p5) = 0. (Because of the types of the literals and
the fact that the hypotheses are made true.) Moreover, as p3i → p′3i and p′6i → p6i are not in Implk,
the maximality of Implk implies B′ ∪ Implk ∪ {α} |= p3i ∧ ¬p′3i and B′ ∪ Implk ∪ {α} |= ¬p6i ∧ ¬p′6i .
Therefore we also have I(p3i ) = 1 and I(p6i ) = 0. Finally, this implies I |= dBek ∧ α, hence I |= β.
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A simple example shows that uImpl
c is different from the original operators uc, u.

Example 12. Let be given P = {p, q}, B = {p ↔ q}, and α = ¬(p ↔ q). The two inclusion
maximal sets of biimplications are EQ1 = {←→p } und EQ2 = {←→q }. Let I = {1, 2} and c1(I) = 1,
c2(I) = 2. Using Θ{p′,q′} or the representation theorem we can calculate the outcomes: B uc1 α =

B uc2 α = B u α = CnP(p↔ ¬q)
On the other hand, the inclusion maximal sets of implications are as follows. Impl1 = CnP({←→q ,−→p }),

Impl2 = CnP({←→q ,←−p }), Impl3 = CnP({−→q ,←→p }), and Impl4 = CnP({←−q ,←→p }). These lead to four
different choice revisions. Let I = {1, 2, 3, 4} and c(I) = i. Then the revision results with respect
to the four different implication based revisions are:

B uImpl
c1 {α} = B uImpl

c4 {α} = CnP(¬p ∧ q)
B uImpl

c2 {α} = B uImpl
c3 {α} = CnP(p ∧ ¬q)

For illustration, the calculation of the equation B1 := B uImpl
c1 {α} = CnP(¬p ∧ q) is given below.

B1 = CnP({p′ ↔ q′,¬(p↔ q),←→q ,−→p })
= CnP(Θ{p′,q′}((p

′ ↔ q′) ∧ ¬(p↔ q) ∧←→q ∧ −→p ))

= CnP((¬(p↔ q) ∧ q) ∨ (¬(p↔ q) ∧ ¬q ∧ ¬p))
= CnP ((¬(p↔ q) ∧ q)) = CnP (q ∧ ¬p)

In particular, uImpl
c1 results in outcomes different from the outcomes of uc1 ,uc2 und u.

As in the case of choice revision, the use of implications as (enhanced) set of hypotheses has
different affects on sceptical revision than the use of biimplications. Consider the following example.

Example 13. Let be given B and α as the following formulas in complete DNF

B = (¬p ∧ q ∧ r ∧ ¬t) ∨ (p ∧ ¬q ∧ r ∧ t)
α = (p ∧ ¬q ∧ r ∧ ¬t) ∨ (¬p ∧ q ∧ ¬r ∧ t)︸ ︷︷ ︸

I:=

The maximal sets of biimplications are given by EQ1 = {←→r ,←→t } and EQ2 = {←→r ,←→p ,←→q }. For
neither of these sets the model corresponding to I is implied. More concretely, using Theorem 5,
one calculates:

B u α = (dBe1 ∨ dBe2) ∧ α
= ((p ∧ ¬q ∧ r ∧ ¬t) ∨ (¬p ∧ q ∧ r ∧ t) ∨

(¬p ∧ q ∧ r ∧ t) ∨ (p ∧ ¬q ∧ r ∧ ¬t)) ∧ α
≡ (p ∧ ¬q ∧ r ∧ ¬t)

Contrary to this, there is a maximal set of implications Impl1 that together with B′ ∪ {α} implies
I, namely Impl1 = {←→t ,−→p ,←−q ,−→r }. So one can calculate:

B uImpl
1 α = ((¬p ∧ q ∧ ¬r ∧ ¬t) ∨ (¬p ∧ q ∧ ¬r ∧ t))

∧ α
≡ ¬p ∧ q ∧ ¬r ∧ t

Now, B uImpl
1 α |= B uImpl α; hence I is a model of B uImpl α but not a model of B u α.
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But al least it can be shown that the implication based sceptical revision operator is logically
weaker than the biimplication based sceptical revision operator.

Proposition 14. The implication based sceptical revision operator uImpl is logically weaker than
the biimplication based sceptical revision operator u, i.e., B u α |= B uImpl α.

Proof. The proposition can be proved by using the semantic characterization of Delgrande’s and
Schaub’s operators by the symmetric difference of models (Delgrande and Schaub, 2003, Theorem
4.7, p.14). Let be given a belief-change scenario B, α a formula (the trigger) and let (Impli)i∈I be
the implication based belief extensions and (Ej)j∈J the (biimplication based) set of belief extensions
for B. We can assume that B is in complete DNF so that its disjuncts directly correspond to its
models. For example, if p∧ q∧¬r is a disjunct of B and {p, q, r} is the set of all symbols occurring
in B, then the corresponding model is I(p) = 1, I(q) = 1, I(r) = 0. We can identify I with the set
of positive literals occurring in it, in our example I corresponds to the set {p, q}.

We will use a procedure that uses the semantic characterization of Delgrande’s and Schaub’s
operators by the symmetric differences of models for our proof. The symmetric difference of two
sets X1, X2 is defined by X1 ∆X2 = X1 ∪X2 \ (X1 ∩X2). Let ∆min(B,α) = min⊆{I1∆I2 | I1 |=
B, I2 |= α}. Then it holds that (Delgrande and Schaub, 2003, Theorem 4.7, p.14):

{{p ∈ P | ←→p /∈ EQj} | j ∈ J} = ∆min(B,α) (7)

The procedure we consider is a transformation  . Let a formula in complete DNF be given and

let p be a symbol of B. We define B
←→p
 B′ in the following way: For all dual clauses in B

that contain p or ¬p add one clause that contains p in the opposite polarity. For example, if

B = (p ∧ q ∧ r) ∨ (¬p ∧ ¬q ∧ r), then B
←→p
 B′, where B′ = B ∨ ¬p ∧ q ∧ r ∨ p ∧ ¬q ∧ r. Note, that

this has the same effect as applying θp to B. Similarly, define B
−→p
 B′ in the following way: for all

dual clauses containing ¬p add one in which ¬p is switched to p. And last define B
←−p
 B′ in the

following way: for all dual clauses containing p add one in which ¬p is switched to p. For every

set EQj = EQ \ {←→p1 , . . .←→pk } has a derivation B
←→p1 B′

←→p2 B(3) · · ·
←→pk B(k) such that Bk contains

models of α; additionally every derivation based on a subset of {←→p1 , . . .←→pk } does lead to a formula
that has no models of α. A similar remark holds for maximal sets of implications.

Now to the proof of ‘Buα |= BuImplα’: Let I |= Buα. We have to show that I |= BuImplα.

There is a set EQj = EQ \ {←→p1 , . . . ,←→pk } such that B
←→p1 B′

←→p2 B(3) · · ·
←→pk B(k) is a derivation

of a formula B(k) containing I. So there is at least one J |= B from which I was derived by
switching p1, . . . , pk. There is a set Impli such that Impli = EQj ∪ Impl′i where Impl′i is a set of
implications of symbols in {p1, . . . , pk}. Impl′i does not contain both {px → p′x, p

′
x → px} for any

x ∈ {1, . . . , k} as this would contradict the maximality of EQj . Because of this and the fact that
all proposition symbols in all dual clauses in B occur either syntactically positive or negative, the
derivation induced by Impli has the same effect on J as the derivation induced by EQj leading to
I. Therefore I |= B uImpl α.

With techniques analogue to the ones in the proof of Proposition 6, the generalized operators
uImpl
c and uImpl can be represented as partial meet revisions of hypotheses—this time of course

using the set Impl as initial set of hypotheses.

Proposition 15. Let 〈B, {α}, ∅〉 be a bc scenario, (Ei)i∈I the set of bc extensions and (EQi)i∈I the
set of biimplications on which the Ei are based. Let c be a selection function according to Delgrande
and Schaub (2003).
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1. There is a maxichoice selection function γ for Impl such that: BuImpl
c α = CnP(Impl∗γ (B′∪

{α}))

2. There is a selection function γ for DC(Impl), such that: BuImpl α = CnP(DC(Impl) ∗γ (B′ ∪
{α}))

5 A Representation Theorem for Implication Based Choice Revi-
sion

Following the usual approach in classical belief revision (Alchourrón et al. (1985)), I will characterize

the non-sceptical implication based revision operators uImpl
c by a set of postulates. Referring to

the usual terminology in the belief revision literature (cf. Hansson (1999b)), the result of this
section can be termed as a representation result: there is a set of postulates such that the class of
revision operators uImpl

c represents (modulo equivalence) all revision operators fulfilling that set of
postulates.

The main distinctive feature of Delgrande’s and Schaub’s operatorsuc,u as well as ofuImpl
c ,uImpl

is that these operate on a finite set B of formulas as left argument, but do not depend on the spe-
cific representation of B. So in contrast to belief-base revision operators they are operators on
the knowledge level Newell (1982) and thus should be termed knowledge-base revision operators
(Eschenbach and Özçep (2010)). In order to adapt the postulates for belief-base revision one has
to replace all references to the set B and its subsets by syntax insensitive concepts.

The key for the adaptation is the use of prime implicates entailed by the knowledge base B.
Roughly, prime implicates are the most atomic clauses implied by B. In the following subsection
we recapitulate the definition of prime implicates prime(B) for a knowledge base B and restate
the fact that B is equivalent to prime(B) (Proposition 16). The idea of using the prime implicate
representation of a knowledge base has already been worked out in the literature (Pagnucco (2006),
Zhuang et al. (2007), Bienvenu et al. (2008)). (A dual approach based on prime implicants is
given by Perrussel et al. (2011).) But in contrast to the approach of this paper, the approaches of
Pagnucco (2006), Zhuang et al. (2007), Bienvenu et al. (2008) do not use prime implicates in the
formulation of the postulates; they define new belief-revision operators based on prime implicates
and show that they fulfill some classical postulates in AGM style.

A second adaptation concerns the uniformity of the operators uc,u as well of the operators
uImpl,uImpl. The conflicts between B and the trigger α are handled on the level of symbols and
not on the level of formulas. Therefore, in order to mirror this effect on the prime implicates one
has to impose a uniformity condition. This will be done implicitly by switching the perspective
even further from prime implicates to uniform sets of prime implicates (see Definition 18 below).

5.1 Prime Implicates and Uniform Sets

Let be given a set of propositional symbols P and a subset S ⊆ P thereof. Let α ∈ form(P). Let
α be a non-tautological formula. The set primeS(α) of prime implicates of α over S is defined in
the following way.

primeS(α) = {β ∈ clauseClS(α) | ∅ 6|= β and β has no

proper subclause in clauseClS(α)}

For tautological formulas α let primeS(α) = {p∨¬p}, where p is the first propositional symbol oc-
curring in α with respect to a fixed order of P. For knowledge bases let primeS(B) = primeS(

∧
B).

If S is clear form the context, then just write prime(α). The conjunction of all formulas in prime(α)
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is called the Dual Blake Canonical Form (DBCF) of α Armstrong et al. (1998). (The definition
of prime implicates according to Armstrong et al. (1998) does not explicitly exclude tautologies;
but their examples do not contain tautologies. Therefore we excluded tautological clauses, too).
An alternative definition which does not face the problems with the vocabulary and tautologies is
given by Marquis (2000). He defines the set of prime implicates as the set of the logically strongest
clauses (these are not restricted to a vocabulary). By choosing a representative for every prime
clause the set can be kept finite.)

Clearly, the set of prime implicates of a knowledge base B is equivalent to B itself. In the
following, let prime(·) = primeP(·) and B,B1, B2 ⊆ form(P).

Proposition 16. For knowledge bases B: prime(B) ≡ B.

Proof. Every formula can be transformed into CNF. Therefore clauseCl(B) ≡ B and so it is
sufficient to show prime(B) ≡ clauseCl(B). Clearly, prime(B) ⊆ clauseCl(B) and so trivially
clauseCl(B) |= prime(B). In order to show prime(B) |= clauseCl(B) we show that for every clause
β ∈ clauseCl(B) there is a pr ∈ prime(B) fulfilling pr |= β. If β is a tautology, then ∅ |= β.
Therefore suppose that β is not tautological. If β ∈ prime(B), then set pr = β. If β /∈ prime(B),
there is a β′ ∈ clauseCl(B), s.t. β′ is a proper subclause of β. Because β is finite, it has only finitely
many proper subclause s.t. a minimal subclause β′ can be chosen. There is a β′ ∈ clauseCl(B)
with: β′ is a proper subclause of β and there is no proper subclause β′′ ∈ clauseCl(B) of β′. In the
end, β′ ∈ prime(B).

An additional simple fact is given in the following proposition. It justifies the perspective on the
set of prime implicates as a canonical representation for the knowledge contained in the knowledge
base.

Proposition 17. If B1 ≡ B2, then prime(B1) = prime(B2).

Proof. Assume for contradiction, e.g., prime(B1) * prime(B2). (The other case is proved similarly.)
Then there is a prime implicate pl of B1 that is not a prime implicate with respect to B2. But
B2 |= pl, so there must be a prime implicate pl′ ( pl of B2. In particular B2 |= pl′, but then
also B1 |= pl′, which results in the contradicting assertion that pl cannot be a prime implicate of
B1.

The notion of uniform sets is introduced in order to capture the conflict resolution strategy
by the implication based revision operators. If, e.g., the hypothesis p′ → p is eliminated in the
conflict resolution process, then formulas of the knowledge base B, in which p occurs positively,
are not preserved in the revision result. In general, if a set of implication based hypotheses Im is
given, then B′∪Im preserves a subset of prime implicates of B which fulfills some closure condition
concerning the polarities of symbols. These sets of prime implicates can be characterized as uniform
sets according to the following definition.

Definition 18. Let B ⊆ form(P) be a knowledge base. A set X ⊆ prime(B) is called uniform
w.r.t. to B and implications, X ∈ U Impl(B) for short, iff the following closure condition holds: If
pr ∈ prime(B) is such that (a) symb(pr) ⊆ symb(X) and (b) for all symbols p in pr there is a
prp ∈ X that contains p in the same polarity, then pr is contained in X, i.e., pr ∈ X.

Example 19. Let B = {p∨ q, p∨ r ∨ s, r ∨ t, s∨ u}. Then prime(B) = B. Now, among all subsets
X ⊆ prime(B) only the set Y := {p ∨ q, r ∨ t, s ∨ u} is not uniform as it would have to contain
p∨ r ∨ s, too. Formally, U Impl(B) = Pow(prime(B)) \ {{p∨ q, r ∨ t, s∨ u}}. Note that only in case
of the non-uniform set Y one cannot find a set of implication based hypotheses Im such that Y is
exactly the set of prime implicates of B which are preserved by B′ ∪ Im.
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The following observation on the closure of the set of uniform sets follows directly from their
definition.

Proposition 20. For all X,Y ∈ U Impl(B) it is the case that X ∩ Y ∈ U Impl(B).

The union of uniform sets may not be uniform again. So let X ∪′Y denote the smallest uniform
set containing the uniform sets X and Y .

The interaction of uniform sets with implications, which will be used for the representation theo-
rem below, is stated in the following propositions. The first proposition states how prime implicates
interact with substitutions. (Uniform substitutions σ are (partial) functions from propositional
symbols to propositional formulas; σ(α) or ασ results from α by substituting for all propositional
symbols p all (!) its occurrences in α by the formula σ(p).)

Proposition 21. Let P and P ′ be disjoint sets of propositional symbols. Let B be a knowledge
base and σ be a uniform injective substitution for some subset S = {p1, . . . , pn} ⊆ P such that
σ(S) = {p′1, . . . , p′n} ⊆ P ′. Then: primeP∪P

′
(Bσ) ≡P primeP(Bσ)

Proof. Because primeP(Bσ) ⊆ primeP∪P
′
(Bσ) it follows that for every β ∈ form(P): If primeP(Bσ) |=

β, then primeP∪P
′
(Bσ) |= β. In order to show the other direction assume that β ∈ form(P) and

primeP(Bσ) 6|= β. For reading convenience let ΓA = primeP∪P
′
(Bσ) and ΓB = primeP(Bσ). It

needs to be shown that primeP∪P
′
(Bσ) 6|= β. There is a model I |= ΓB ∪{¬β}. So one has to show

that there is a model I ′ of ΓA ∪ {¬β}, too. The intended model can be constructed inductively by
constructing interpretations Ii such that:

I = I0 |= ΓB ∪ {¬β}
I1 |= primeP∪{p

′
1}(Bσ) ∪ {¬β}

. . .

I ′ = In |= primeP∪{p
′
1,...,p

′
n}(Bσ) ∪ {¬β}

= ΓA ∪ {¬β}

The interpretation Ii is constructed from Ii−1 just by modifying only the interpretation of p′i in
a minimal way. Let X denote all prime consequences in primeP∪{p

′
1,...,p

′
i}(Bσ) that do contain p′i

at most positively. If Ii−1(p′i) = 1, then Ii(p′i) = 1. Otherwise Ii−1(p′i) = 0. If there is an α ∈ X
such that Ii−1 |= ¬α, then define Ii(p′i) = 1. Else let Ii(p′i) = 0. Clearly Ii−1 |= ¬β (as only
the interpretation of p′i may have changed). Per definitionem Ii |= X. So the only thing to show
is that Ii |= pr for all prime implicates in primeP∪{p

′
1,...,p

′
i}(Bσ) with a negative occurrence of p′i.

Let pr = ¬p′i ∨M where M is a disjunction of literals not containing p′i. Assume that Ii |= p′i,
i.e., Ii(p′i) = 1. We have to show Ii |= M . There are two cases: Ii−1(p′i) = 1, then Ii−1 |= M
and hence Ii |= M . Otherwise Ii−1(p′i) = 0 and there is a α = p′i ∨ N ∈ X (where N denotes a
disjunction of literals) such that Ii−1 |= ¬α, i.e., Ii−1 |= ¬p′i ∧ ¬

∧
N and so Ii |= ¬N . Resolving

α with pr gives the clause cl = N ∨M that does not contain p′i. So there is a prime clause pr′′ in
primeP∪{p

′
1,...,p

′
i}(Bσ) that is a subclause of cl. But Ii−1 |= pr′′ and so Ii |= pr′′. As Ii |= ¬N , one

concludes Ii |= M .

The interaction of a set of implications Im with prime implicates is captured in the following
proposition. It states that all prime implicates of B′ ∪ Im that do not contain primed symbols are
prime implicates of B.

Proposition 22. Let P and P ′ be disjoint sets of propositional symbols. Let B be a knowledge
base and σ be a uniform injective substitution for a set S = {p1, . . . , pn} ⊆ P such that σ(S) =
{p′1, . . . , p′n} ⊆ P and let Im be a set of implication based hypotheses containing at most primed
symbols of σ(S). Then: primeP(Bσ ∪ Im) ⊆ primeP(B).
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Proof. The proof rests on a lemma (see below), which I mention only in the context of this proof
due to its technicality. The lemma refers to the function g(·, ·) which is defined in the following
way: Let im be an implication of the form −→p or ←−p . Let α be a formula. If im = −→p , then g(im, α)
stands for the assertion “p occurs semantically negative or not at all in α”. If im = ←−p , then
g(im, α) stands for the assertion “p occurs semantically positive in α or not at all”. An occurrence
is semantically positive (negative, resp.) in α iff for all interpretations I : If I[p/0] |= α (I[p/1] |= α,
resp.), then I[p/1] |= α (I[p/0] |= α, resp.).

Lemma 23. Let S = {p1, . . . , pn} and let Sn = P ∪ P ′ \ {p′1, . . . , p′n}. Let U ⊆ S be the symbols
pi ∈ S, such that {−→pi ,←−pi} ⊆ Im. For all pi ∈ (S ∩ symb(Im)) \U let im(pi) denote the implication
(either −→pi or ←−pi ) contained in Im. Let Z = clauseClSn(Bσ ∪ Im) for short. Then:

Z = {β ∈ clauseClSn(B) | There is a clause ε with:

ε ∈ clauseClSn(Bσ ∪ Im); ε |= β; ε does not

contain any symbol of S \ symb(Im) and

for all pi ∈ (S ∩ symb(Im)) \ U : g(im(pi), ε)}

We may assume that for all implications in Im there is no implication of the other direction, so
U = ∅. Let Im = {im1, . . . , imk}. Proof of ⊇: Let β ∈ clauseClSn(B) and let ε be a clause, s.t.:
ε ∈ clauseClVn(Bσ ∪ Im), ε |= β, ε has no symbol in {pk+1, . . . , pn} and for 1 ≤ i ≤ k it holds that
g(ba(pi), ε). Hence β ∈ clauseClVn(Bσ ∪ Im).

Proof. Proof of ⊆: Let β ∈ clauseClSn(Bσ ∪ Im). Because β ∈ form(Sn), (Bσσ−1 ∪ (Im)σ−1 |= β
follows, so B |= β; hence β ∈ clauseClSn(B). We have to show that an ε ∈ clauseClSn(Bσ ∪ Im)
exists that fulfils the mentioned conditions. Let ˜Im be an equivalent CNF of Im and let B̃ be an
equivalent CNF of B and let ˜(Bσ ∪ Im) be the formula B̃σ ∧ ˜Im. Assume β has the form β =
(li1∨· · ·∨liq). Because ˜(Bσ ∪ Im) |= β, ˜(Bσ ∪ Im)∪{¬β} is inconsistent. So B̃∧ ˜Im∧¬li1∧· · ·∧¬liq
can be resolved to the empty clause.

If β is already the clause ε which fulfils the desired conditions, then set ε = β. Else β contains
a symbol p for which (i) p ∈ {pk+1, . . . , pn} or there is i, 1 ≤ i ≤ k, s.t. p = pi and not g(imi, β).
Let as call such a symbol p a bad symbol. Let r denote the number of bad symbols in β. By
induction on the number j of bad symbols one can construct a sequence 〈βj〉0≤j≤r of clauses
βj ∈ clauseCl(Bσ ∪ Im) such that:

Bσ ∪ Im |= βr |= . . . |= β1 |= β0 = β

and every βj has exactly r− j bad symbols; in particular, βr has no bad symbols so that βr is the
desired ε. Assume that we have already constructed βj and in particular assume Bσ∪Im |= βj . Let
p be a bad symbol of βj . W.l.o.g we may assume that βj is not a tautology. We first consider the
case that p ∈ {pk+1, . . . , pn}. No literal ¬lij containing p, can be resolved with B̃σ ∧ ˜Im; resolving
¬lij with a complementary clause in (¬li1∧· · ·∧¬liq) would be possible only if βj were a tautology.
Similarly clauses with p are not used for the derivation of the empty clause. So there is a clause
βj+1, which is obtained from βj by eliminating literals containing p and for which Bσ ∪ Im |= βj+1

and βj+1 |= βj . Moreover βj+1 has exactly r − j − 1 bad symbols.
In the second case βj contains a symbol pi, 1 ≤ i ≤ k for which g(imi, βj) does not hold.

W.l.o.g. assume imi = pi → p′i. So βj does not contain p semantically negative. In particular βj
contains a literal lij that contains pi syntactically positive. Again Bσ ∪ Im ∪ {¬βj} is inconsistent
and so a derivation of the empty clause exists. The clause ¬lij contains pi negatively. It cannot
resolve with a clause in (B̃σ ∧ ˜Im). A resolution with a clause in in ¬li1 ∧ · · · ∧ ¬liq is not possible
either—otherwise βj would be a tautology. The clause βj+1 is obtained from βj by removing the
literal pi. Again βj+1 |= β and Bσ ∪ Im |= βj+1 and βj+1 r − j − 1 bad symbols.
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Now to the proof of the proposition. Let pr ∈ primeP(Bσ ∪ Im). Then pr ∈ clauseP(B).
We have to show pr ∈ primeP(B). Assume that not pr ∈ primeP(B). That would mean that
there is a clause cl ∈ clauseClP(B) that is a proper subclause of pr. There are two cases: a)
cl ∈ clauseClP∪P ′

(Bσ∪ Im); b) cl /∈ clauseClP∪P ′
(Bσ∪ Im). Both cases result in a contradiction.

Case a) contradicts the fact that pr is prime with respect to (Bσ ∪ Im). In case b) it holds that
Bσ∪ Im 6|= cl and cl |= pr. The first assertion and the lemma imply that cl contains a symbol p (i)
for which no hypothesis is contained in Im or (ii) for which a hypothesis is contained in the false
direction.

Case (i): The lemma implies that there is a clause cl′ such that cl′ ∈ clauseClP(Bσ ∪ Im); p
does not occur in cl′ and cl′ |= pr. Let pr′ be a clause resulting from pr by removing all literals
containing p. Then Bσ ∪ Im |= cl′ |= pr′. But this contradicts the primeness of pr w.r.t. Bσ ∪ Im.

Case (ii): W.l.o.g. assume that p′ → p ∈ Im. Then cl contains a syntactically negative
occurrence of p. Because of the lemma there is a clause cl′ ∈ clauseClP(Bσ ∪ Im) such that cl′

contains p only positively and Bσ∪Im |= cl′ |= pr. The symbol p can occur in pr at most positively.
Otherwise, it would be the case that the clause pr′, which results from pr by eliminating all literals
¬p, is implied by Bσ ∪ Im—contradicting the primeness of pr w.r.t. Bσ ∪ Im. But as cl |= pr,
also cl[p/⊥] |= pr[p/⊥]. As p occurs syntactically negative in cl, cl[s/⊥] is a tautology; but then
pr[s/⊥] is a tautology, too—contradicting the primeness of pr w.r.t. Bσ ∪ Im.

As a corollary to the propositions, one can deduce the main result of this subsection, Theorem
24. It is a proper justification for Definition 18—in the sense that it really captures the intended
concept. The theorem shows that for all B, Im one can find a uniform set X that is equivalent
to B′ ∪ Im. The set X exactly describes the collection of logical atoms (prime implicates) of the
receiver’s KB B that are preserved after dissociating the name spaces of the sender and receiver
(step from B to B′) and adding hypotheses on the semantical relatedness in Im.

Theorem 24. Let P and P ′ be disjoint sets of propositional symbols. Let B be a knowledge
base and σ be a uniform injective substitution for some subset S = {p1, . . . , pn} ⊆ P such that
σ(S) = {p′1, . . . , p′n} ⊆ P and let Im be a set of implication based hypotheses containing at most
primed symbols of σ(S). Then there is a uniform set X ∈ U Impl(B) such that: B′ ∪ Im ≡P X.

Proof. Due to Proposition 17 we have B′ ∪ Im ≡P∪P ′ primeP∪P
′
(B′ ∪ Im). Now, in order to use

Proposition 21 we have to present (B′ ∪ Im) as a set B1σ. The problem is that σ will substitute all
occurrences of the same symbol in B1, so we cannot set B1 = B ∪ Im, as then also the non-primed
symbols of Im would be substituted. So we proceed in the following way: For all symbols s in B
we take a new symbol sn. Let σ be the substitution where τ1(s) = sn, τ2(s

′) = sn for symbols s in
B. Now the set B1 = Bτ1 ∪ Imτ2. Let σ be the substitution such that for any sn is substituted by
s′. Then B1σ = B′∪ Im. Now because of Proposition 21 we get primeP∪P

′
(B1σ) ≡P primeP(B1σ).

But primeP(B1σ) is primeP(B′∪Im) and according to Proposition 22 this is a subset of primeP(B).
Hence we set X = primeP(B′ ∪ Im) which is easily seen to be a uniform set.

5.2 Postulates for Implication Based Revision

The following postulates for revision operators ∗ are adapted variants of the postulates mentioned
in the section on logical preliminaries. They are exactly the ones that characterize the implication
based choice revision operators.

(R1) B ∗ α 6|= ⊥ if B 6|= ⊥ and α 6|= ⊥.

(R2) B ∗ α |= α.
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(R3) There is a set H ⊆ U Impl(B) such that B ∗ α ≡
∧⋃′H ∧ α or B ∗ α ≡

∧⋃′H.

(R4) For all X ∈ U Impl(B) either B ∗ α |= X or B ∗ α |= ¬
∧
X.

(R5) For all Y ⊆ U Impl(B): If
⋃
Y ∪{α} |= ⊥ iff

⋃
Y ∪{β} |= ⊥, then {X ∈ U Impl(B) | B∗α |= X}

= {X ∈ U Impl(B) | B ∗ β |= X}.

Postulate (R1) can be termed the postulate of weak consistency; it says that the revision result has
to be consistent (satisfiable) in case both the trigger α and the knowledge base B are consistent.
The consistency postulate for AGM belief revision and belief base revision (BR1) is stronger as
it demands the consistency also in the case where only α is consistent. Postulate (R2) is a weak
success postulate; the revision must be successful in so far as the result has to imply α. It is weaker
than the postulate (BR2) for belief bases. (R3) is an adapted version of the inclusion postulate for
belief base revision (BR3). The classical inclusion postulate can be rewritten as: There is a B̄ ⊆ B
such that B ∗α = B̄ ∪{α} or B ∗α = B̄. In (R3) B is replaced by the set of uniform sets w.r.t. B,
and set identity is shifted to equivalence. Note that due to the definition of the ∪′-closure operator
the set

⋃
H ′ is a uniform set and hence the postulate (R3) can be reformulated as:

(R3’) There is a set H ∈ U Impl(B) such that B ∗ α ≡
∧
H ∧ α or B ∗ α ≡

∧
H.

Postulate (R4) can be called uniform tenacity. It is a very strong postulate, which states that all
uniform sets w.r.t. to B either follow from the result or are falsified. This postulate will capture
the maximality of the operator uImpl

c . Postulate (R5) is an adaptation of the logical uniformity
postulate for belief-base operators (BR5). It says that the revision outcomes w.r.t. to the revision
operator ∗ are determined by the uniform sets implied by the revision result.

As the representation theorem below shows, postulates (R1)–(R5) are sufficient to represent the
class of implication based choice revision operators modulo equivalence.

Theorem 25. A revision operator ∗ fulfils the postulates (R1)–(R5) iff it can be equivalently de-

scribed as uImpl
c for some selection function c.

Proof. ‘Left to right’: Let B,α be given. Clearly uImpl
c fulfils (R1) and (R2). Let Imk denote

the set of implications underlying the belief extension chosen by c and let Hk be the set of prime
implicates corresponding to Imk according to Theorem 24. The fulfilment of (R3) follows by letting
H = {Hk}. (R4) is fulfilled because B uk α |= Hk and for all other uniform sets H the maximality
of Hk implies B uk α |= ¬

∧
H. (R5) holds because if α and β are consistent with the same set of

uniform sets, they are consistent with same set of implications. The definition of selection function
guarantees that for α and β the same set of consistent implications and thus the same uniform set
is implied.

‘Right to left’: Let B,α be given. Let (Impli)i∈I be the set of belief extensions to the given

bc scenario. I show, there is a selection function c s.t. B ∗ α ≡ B uImpl
c α. It can be assumed

that B,α is consistent. According to (R3’) there is H ∈ U Impl(B) such that B ∗ α ≡ H ∧ α or
B ∗α ≡ H. As (R2) is fulfilled, B ∗α |= α and so B ∗α ≡ H ∧α. The set of implications (Impli)i∈I
induces a set (Hi)i∈I of uniform sets w.r.t. B. This follows from Theorem 24. Because B ∗ α
is consistent (according to (R1)) it follows that

∧
H ∧ α is consistent. Hence there is a Hk such

that H ⊆ Hk, because all Hi are maximal uniform sets consistent with α. Because of tenacity
B ∗α |= Hk or B ∗α |= ¬

∧
Hk. But in the last case one would have H ∧α |= ¬∧Hk or equivalently∧

H ∧
∧
Hk |= ¬α or equivalently Hk |= ¬α, contradicting the consistency of Hk with α. Therefore

B ∗ α |=
∧
Hk ∧ α and

∧
Hk ∧ α |= B ∗ α. So one can set c(I) = k. Then B ∗ α ≡ B uImpl

c α. Now
if β is such that the belief change scenario 〈B, β, ∅〉 has exactly the same set (Impli)i∈I of belief
extensions, then one has to guarantee that one chooses again Implk. Here comes uniformity to the
rescue: The set of uniform sets w.r.t. B that are consistent with B ∗ β and the set of uniform sets
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consistent with B ∗ α are the same. Therefore the logical uniformity postulate (R5) implies that
the same Hk is chosen.

6 Related Work

The work described in this paper follows in general the belief-revision tradition as initiated by the
pioneering work of Alchourrón, Gärdenfors and Makinson (AGM) (Alchourrón et al. (1985)), but
has main differences due to a different explanation of the inconsistencies. Moreover, classical belief-
revision functions à la AGM operate on a logically closed set called belief set and a formula which
triggers the revision of the belief set into a new belief set. In belief-base revision (Hansson (1991))
the revised KB is allowed to be an arbitrary not necessarily closed (finite) set of sentences called
belief bases. The negative property of belief-base revision of being syntax sensitive is remedied in
the case of knowledge-base revision operators which are exemplified by the revision operators of
this paper as well as those of Delgrande and Schaub (2003) and Dalal (1988).

The revision operators of this paper are based on the elimination of hypotheses that have the
role of semantic mappings (Noy (2004)). The idea of using belief revision techniques to revise
semantic mappings has already been worked in the literature Meilicke and Stuckenschmidt (2009),
Qi et al. (2009). But these approaches consider the set of semantic mappings as the object of
revision, while the approach of this paper considers the semantic mappings as revision aids that
are deleted after the revision.

The notion of a prime implicate is used in the approaches of Pagnucco (2006), Zhuang et al.
(2007), Bienvenu et al. (2008). In contrast to the approach of this paper, these do not use prime
implicates in the formulation of the postulates; they (only) define new belief-revision operators
based on prime implicates and show that they fulfill some classical postulates.

The implication based revision operators exhibit a symbol-oriented rather than a sentence-
oriented strategy for conflict resolution. A different symbol-oriented approach is described in the
work of Lang and Marquis (2010). Their revision operators are not based on hypotheses but on
the well-known concept of forgetting (Lin and Reiter (1994)).

7 Conclusion and Outlook

I have presented a new type of revision operator, which resulted as a generalization of Delgrande’s
and Schaub’s operators (Delgrande and Schaub (2003)) by considering implications rather then
biimplications as hypotheses. The resulting operators are finitely representable (Proposition 11) and
can be simulated by classical partial meet revision operators that operate on the set of hypotheses
as left argument (Proposition 15). Moreover, implication based choice revision can be characterized
by a set of postulates (Theorem 25).

I motivated the perspective to consider the sets of biimplications and implications as hypotheses
on the semantical relatedness of symbols belonging to different name spaces. This perspective leads
naturally to the question what other initial sets of hypotheses on the semantical relatedness could
be used as a basis for new revision operators. In fact one could consider bridging axioms like p′ ↔ q,
which relate symbols hypothesized to be synonyms. Using a set H of such creative hypothesis may
induce operators that are quite different from classical revision operators as the former may not be
conservative: B′ ∪ H may imply formulas β ∈ form(P) that do not already follow from B. Such
creative behavior does not occur for H = Imi or H = EQi.

The idea of hypothesis based revision can also be applied to more complex logics like description
logics or predicate logic. (Confer the operators of Qi et al. (2009) for revising semantic mappings.)
The general idea is to make hypotheses about the relations of the predicate symbols and constants
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in the different name spaces by stating, e.g., the equivalence of the unary predicate symbol P ′ and
P by ∀xP ′(x) ↔ P (x). The revision operators become more complex ; moreover, it cannot be
guaranteed that the conflicts can be solved by disambiguation—the knowledge bases of the sender
and the receiver may be reinterpretation incompatible because they imply different cardinalities for
their domains (Özçep (2008)). But the notion of uniform sets can also be defined for predicate
logics and its fragments—though the prime implicate concept may not be purely semantical (Özçep
(2009)).
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M., editors, FOIS, volume 183, pages 137–150. IOS Press.
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