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Abstract. In semantic integration scenarios, the integration of an as-
sertion from some sender into the knowledge base (KB) of a receiver
may be hindered by inconsistencies due to ambiguous use of symbols;
hence a revision of the KB is needed to preserve its consistency. This
paper analyses the new family of implication based revision operators,
which exploit the idea of revising hypotheses on the semantic relatedness
of the receiver’s and sender’s symbols. In order to capture the specific
inconsistency resolution strategy of these operators, the novel concept
of uniform sets, which are based on prime implicates, is elaborated. Ac-
cording to two main results of this paper these operators lend themselves
to practical use in systems for semantic integration: First, the operators
are finitely representable. Second, the non-sceptical versions of these op-
erators can be axiomatically characterised by postulates, which provide
a full specification of the operators’ effects.
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1 Introduction

Belief revision [1] deals with the problem of integrating an assertion stemming
from an agent (sender) into a knowledge base (KB) of another agent (receiver).
If the receiver trusts the incoming information—and classical belief revision as-
sumes he does—the integration may trigger a revision of the KB because the
trigger may be incompatible with the KB; hence some of its formulas have to be
eliminated. Belief revision explains the incompatibility with false information in
the KB. Therefore, the elimination of formulas in the KB is an adequate means.

But if the diagnosis for the incompatibility is not false information but am-
biguous use of symbols, a different strategy seems more appropriate. For ex-
ample, suppose an agent (the receiver) uses the terminus “article” to denote a
publication either in proceedings or in journals while the sender agent uses it to
mean publications in journals only. The receiver has different sentences in his
KB in which he uses “article” in this sense. So, a trigger sentence stemming from
the sender may lead to inconsistencies with the receiver’s KB. In order to resolve



the inconsistencies, it would not be a good idea to eliminate only one sentence
of the KB that contains “article” and that is involved in the conflict; because
the next time the receiver integrates a (different) trigger from the sender, the
other interpretation of “article” may again lead to inconsistencies.

An appropriate means to deal with conflicts caused by ambiguous use of
symbols between different agents is first to state hypotheses on the semantical
relatedness of symbols from different agents and second to eliminate some of
the hypotheses that are involved in the conflict. This is the general approach
of semantic integration based on semantic mappings (or bridging axioms) for
heterogeneous knowledge bases [4, 17, 21]. Every KB is assigned a unique name
space, and semantic mappings associate symbols of different name spaces. In the
case of the example above this means distinguishing between the use of “arti-
cle” in the receiver’s name space and in the sender’s name space and initially
hypothesising that the uses are equivalent. If the integration of a trigger con-
taining “article” into the receiver’s KB leads to inconsistency, a proper strategy
for resolving the conflict is eliminating the equivalence hypothesis and possi-
bly replacing it by a weaker hypothesis compatible with the trigger (e.g., by
hypothesising that the sender’s use is narrower (wider) than the receiver’s use).

Based on this strategy for inconsistency resolution, this paper investigates a
new class of operators for revising propositional KBs with propositional triggers.
The hypotheses used in these operators are implications of the form p′ → p or
p→ p′ where p′ stands for the p in the name space of the receiver, and p is the
p of the sender. These operators generalise the revision operators of [6] which
considers biimplications of the form p↔ p′ only. Using implications rather than
biimplications allows for a more fine-grained analysis of what caused the conflict
between the sender’s trigger and the receiver’s KB.

Though the technical definitions of the revision operators of this paper and of
[6] are similar, the theory developed in this paper deviates considerably from that
in [6]. On of its main innovative features is a formal specification and analysis of
the uniformity property which distinguishes the implication (and biimplication)
based operators from classical belief-revision operators. The main idea of the
analysis is first to equivalently represent the KB by its most atomic components
(prime implicates) and then describe the effect of the implication based operators
on the prime implicates by uniform closure conditions.

The implication based revision operators provide a useful abstract imple-
mentation model for semantic integration scenarios in which conflicts caused
by ambiguous use of symbol between heterogeneous KBs have to be resolved.
Though the definitions of the operators are based on infinite sets, they can be de-
scribed equivalently by finite operators that are appropriate for implementation
means (see Th. 2). This is the first main result of this paper. Moreover, anyone
implementing the non-sceptical versions of these operators gets a declarative
specification of their properties (including uniformity): as a second main result
(Th. 4) this paper describes a set of axiomatic postulates which are fulfilled by
the operators and which characterise them in the sense that all other operators
fulfilling them are representable as implication based choice revision operators.



The paper is structured as follows: The second section provides background
on propositional logic and belief revision. The third section discusses the revision
operators of J. Delgrande and T. Schaub [6]. The following section introduces the
implication based revision operators and shows that these are indeed different
from the operators of Delgrande and Schaub. Moreover, the finite representabil-
ity by a partial polarity flipping operator is proved. The last section before the
section on related work and the conclusion gives an axiomatic characterisation
of non-sceptical implication based revision operators by postulates.

Proofs of all results in this paper can be found in the technical report [18].

2 Logical Preliminaries

This section introduces notation and concepts from propositional logic and belief
revision that are used in the paper. I take for granted the syntax and semantics
(interpretation, entailment etc.) of propositional logic, the notion of (sub)clause
and the notion of the conjunctive (disjunctive) normal form, CNF (DNF).

Let P be a set of propositional symbols; form(P) denotes the set of propo-
sitional logical formulas over P, which are denoted by lowercase greek letters
α, β . . . . Finite sets of formulas are called knowledge bases or belief bases and
are denoted by B as well as primed and indexed variants of B (e.g. B1, B′,
B̄). symb(B) is the set of propositional symbols in B. Int(P) denotes the set of
interpretations (assignments) I with domain P. I |= B for a set B is a short
notation for I |=

∧
B. The set of consequences of B over the set of propositional

symbols S is CnS(B) = {α ∈ form(S) | B |= α}. If the index is left out in some
context, then the consequences have to be understood with respect to the maxi-
mal set of propositional symbols discussed in the context. If two sets B1 and B2

have the same sets of consequences of formulas in form(S), write B1 ≡S B2. For
α ∈ form(P) and S ⊆ P, the clausal closure of α w.r.t. S is the set clauseClS(α)
of clauses that have only symbols from S and that follow from α.

Let ΘS denote an operator that, given a formula α and a set S of symbols
S ⊆ P, computes a formula representing all consequences of α that do not
contain symbols in S. (Compare the general framework of forgetting in [14].)
This operator will be used as a technical aid for calculating belief-revision results
based on hypotheses. For I ∈ Int(S) let αI be defined as follows: Substitute all
occurrences of p ∈ S in α where pI = I(p) = 1 by >, else ⊥ is substituted for p.
Now let ΘS : α 7→

∨
I∈Int(S) αI . For arbitrary S ⊆ P let ΘS(α) = Θsymb(α)∩S(α).

For example, let α = (p∧ q)∨ (r∧ s) and S = {p, r}. Then ΘS = ((⊥∧ q)∨ (⊥∧
s))∨((⊥∧q)∨(>∧s))∨((>∧q)∨(⊥∧s))∨((>∧q)∨(>∧s)). This is equivalent
to the formula s∨ q. The following facts concerning ΘS for S ⊆ P can be proved
easily. For all α ∈ form(P): α |= ΘS(α) and CnP\S(α) = CnP\S(ΘS(α)). Note,
that ΘS(α) can be described as the quantified boolean formula ∃S.α.

The new operators defined in this paper are based on the concept of dual
remainder sets, a concept similar to the concept of remainder sets [2] used in
the classical paper of Alchourrón, Gärdenfors and Makinson (AGM) [1] for the
construction of partial-meet revision functions. Let B

`

α, the dual remainder



sets modulo α, denote the set of inclusion maximal subsets X of B that are
consistent with α, i.e., X ∈ B

`

α iff X ⊆ B, X ∪ {α} is consistent and for
all X̄ ⊆ B with X ⊂ X̄ the set X̄ ∪ {α} is not consistent. The notion of
dual remainders is extended to arbitrary belief bases B1 as second argument by
defining B

`

B1 as B

` ∧
B1.

An analysis of belief-revision functions involves the investigation of postulates
they fulfil. Some postulates for belief-base revision operators ∗ that I will refer
to are given below. (In contrast to belief-sets [1] belief bases [10] do not have to
be logically closed.)

(BR1) B ∗ α 6|= ⊥ if α 6|= ⊥.

(BR2) α ∈ B ∗ α.

(BR3) B ∗ α ⊆ B ∪ {α}.
(BR4) For all β ∈ B either B ∗ α |= β or B ∗ α |= ¬β.

(BR5) If for all B̄ ⊆ B: B̄ ∪ {α} |= ⊥ iff B̄ ∪ {β} |= ⊥, then (B ∗ α) ∩ B =
(B ∗ β) ∩B.

Postulate (BR1) is the consistency postulate [1]; it says that the revision result
has to be consistent in case the trigger α is consistent. Postulate (BR2) is the
success postulate [8]; the revision must be successful in so far as α has to be in
the revision result. (BR3) is called the inclusion postulate for belief-base revision
[12, p. 200]. The revision result of operators fulfilling it are bounded from above.
Postulate (BR4) is the tenacity postulate [9]; it states that the revision result is
complete with respect to all formulas of B. Postulate (BR5) is the logical unifor-
mity postulate for belief-base operators [11]. It says that the revision outcomes
are determined by the subsets (in)consistent with the trigger.

3 Revision Based on Hypotheses

One example for belief-revision operators that are based on hypotheses are the
operators of Delgrande and Schaub [6]. The general idea is to internalize the
symbols of the receiver’s KB thereby dissociating the name spaces of the re-
ceiver, who holds the KB, and the sender, who is the holder of another KB from
which the trigger stems. Both name spaces are related by one special form of
formula (bridging axiom), namely the biimplication. Holding to a biimplication
p↔ p′ means believing that the propositional symbol p of the receiver (holder of
B) has the same meaning as the propositional symbol p of the sender. In order
to resolve inconsistencies the internalized KB stays untouched, but some subset
of the biimplications are eliminated. If p ↔ p′ is eliminated during the revision
process, this can be interpreted as diagnosing the inter-ambiguity of p between
the sender and the agent as the culprit for the inconsistency. After the elimina-
tion the name space dissociation is abandoned by retaining only those formulas
of the old vocabulary. I recapitulate the definitions of the operators and their
properties because the revision operator I will introduce is an extension, which
uses implications p′ → p and p→ p′ as hypotheses.



For a given set of propositional symbols P let P ′ denote the set {p′ | p ∈ P} of
internal or internalized propositional symbols. Similarly B′ denotes the pendant
of B where all symbols p are substituted by the corresponding internalized vari-
ant p′. I use the following space saving abbreviations (for p ∈ P): ←→p = p↔ p′,
−→p = p → p′ and ←−p = p′ → p. A belief-change scenario 〈B1, B2, B3〉 consists
of three sets Bi (i ∈ {1, 2, 3}) of formulas over the set of propositional symbols
P. B1 is the initial KB of the receiver, B2 is a KB that must be contained in
the change result and B3 is a KB that is not allowed to be in the change re-
sult. Classical revision of B with α is modelled by the belief-change scenario
〈B, {α}, ∅〉; classical contraction of B with α is modelled by the belief-change
scenario 〈B, ∅, {α}〉. A belief-change extension [6, p. 9] (bc extension for short) of
the belief change scenario 〈B1, B2, B3〉 is a set of the form CnP(B′

1 ∪B2 ∪EQi),
where EQi ⊆ EQ = {←→p | p ∈ P} is an inclusion maximal set of biimplications
fulfilling the following integrity condition: Cn(B′

1 ∪B2 ∪EQi)∩ (B3 ∪{⊥}) = ∅.
If no such EQi exists, then let form(P) be the only bc extension.

In case of classical belief revision—represented by 〈B, {α}, ∅〉—the set of bc
extensions Ei have the form Ei = CnP(B′ ∪ EQi ∪ {α}), where ⊥ /∈ Cn(B′ ∪
{α} ∪ EQi). Let (Ei)i∈I be the family of all bc extensions in the belief-change
scenario 〈B, {α}, ∅〉. A selection function c over the index set I selects exactly
one index c(I) ∈ I. With these notions, the operators of choice revision uc based
on a selection function c and sceptical revision u are defined as follows.

Definition 1. [6, p. 11] B uc α = Ek (for c(I) = k) and B u α =
⋂
i∈I Ei.

Though the revision results under both operators uc,u are not finite, Del-
grande and Schaub can show that these operators are finitely representable. That
is more formally, for an operator ◦ ∈ {uc,u} one can define an operator ◦fin such
that it operates on a finite KB B as left argument, a formula α as right argument
and outputs a finite KB B ◦fin α such that Cn(B) ◦ α = Cn(B ◦fin α). The cor-
responding finite operators are based on substituting propositional symbols by
their negation, thereby flipping the polarity of the symbols. Let B = 〈B, {α}, ∅〉
be a bc scenario and EQi a set of biimplications. The formula dαei results from
α by substituting all occurrences of propositional symbols p ∈ P \ symb(EQi)
with their negation ¬p. Let (Ei)i∈I be the family of bc extensions over B and c a
selection function with c(I) = k. Then Delgrande and Schaub define the flipping
operators by dBe =

∨
i∈I

∧
β∈Bdβei and dBec =

∧
β∈Bdβek and finite revision

operators by:

B ufin
c α = d(B, {α}, ∅)ec ∧ α and B ufin α = d(B, {α}, ∅)e ∧ α

The finite representability is stated in Theorem 1.

Theorem 1. [6, p. 17] B uc α ≡ B ufin
c α and B u α ≡ B ufin α.

This theorem evokes a new perspective on what has caused the inconsistency
between the KB and the trigger: a flip in the polarity of a propositional symbol.
By re-flipping the propositional symbols that caused the inconsistency the result
becomes consistent. A remarkable point here is that the flip of a propositional



symbol concerns all its occurrences in the formula, it is a kind of uniform flipping.
This uniformity can be interpreted as a systematic use of the proposition in just
the opposite sense. Referring to the example of the introduction, the receiver
would have to substitute all occurrences of “article” by its negation.

4 Using Implications as Hypotheses

By using the set of implications Impl = {−→p ,←−p | p ∈ P} as set of hypotheses
instead of the set of biimplications EQ = {←→p | p ∈ P} new classes of revision
operators result. This generalisation from biimplications to implications as hy-
potheses allows for a more fine-grained diagnosis of the properties of the symbol
p that are responsible for the inconsistency. While in the case of Delgrande’s and
Schaub’s operators the diagnosis is a rough “The sender’s and the receiver’s p
have different meanings and so an inconsistency is caused”, the implication based
operators account for the “direction” in which the inconsistency was caused. If
the hypothesis p′ → p is eliminated, but p → p′ is kept in the revision result,
then the diagnosis for the inconsistency is the following: the hypothesis that the
meaning of the receiver’s p is narrower than (or equal to) the sender’s meaning
of p leads to an inconsistency. But still we can hold on to the hypothesis that
the meaning of the sender’s p is narrower than the receiver’s meaning of p.

The notion of belief extension for biimplication based revision is easily adapted
to the case of implications; a set CnP(B∪{α}∪X) is an implication based belief
extension iff X ∈ Impl

`

(B′ ∪{α}). (Remember that

`

denotes the operator for
dual remainder sets defined in Section 2). Let (Impli)i∈I be the set of all impli-
cation based consistent belief set extensions of 〈B, {α}, ∅〉 and c be a selection
function for I with c(I) = k. The new operators are defined as follows:

Definition 2. The implication based choice revision uImpl
c and the implication

based sceptical revision uImpl are defined by :

B uImpl
c α = Implk (for c(I) = k) and B uImpl α =

⋂
i∈I

Impli

As in the case of the Delgrande/Schaub revision operators, one can finitely
represent the results by an operation on the KB. The finite representation uses
the notion of positive and negative occurrences of propositional symbols. For
convenience, I assume that only the connectors ∧,∨ and ¬ are allowed in the for-
mulas; this is no real restriction as this set of connectors is functionally complete.
An occurrence of a propositional symbol is syntactically positive iff it occurs in
the scope of an even number of negation symbols, otherwise it is syntactically
negative. I also speak of the (positive, negative) polarity of a propositional sym-
bol’s occurrence. In contrast to the polarity switching of [6], the operator of
partial flipping does not change the polarity of all occurrences of a symbol p but
only of those of a particular polarity—depending on which implication −→p or ←−p
is missing in the given set of implications.



Definition 3. Let (Impli)i∈I be the family of belief extensions for a belief-change
scenario B = (B, {α}, ∅) and let Implk be an implication based belief extension
chosen by the selection function, c(I) = k. Then define the operator of partial

flipping dBeImpl
k = dBeImpl

c in the following way: If p → p′ /∈ Implk, then switch
the polarity of the negative occurrences of p in

∧
B (by adding ¬ in front of

these occurrences). If p′ → p /∈ Implk, then switch the polarity of the positive

occurrences of p in
∧
B. Let dBeImpl =

∨
i∈IdBe

Impl
i .

With this definition at hand, the following representation theorem follows:

Theorem 2. The following equivalences hold:
B uImpl

c α ≡ d(B, {α}, ∅)eImpl
c ∧ α and B uImpl α ≡ d(B, {α}, ∅)eImpl ∧ α

A simple example shows that uImpl
c is different from the operators uc, u.

Example 1. Let be given P = {p, q}, B = {p↔ q}, and α = ¬(p↔ q). Writing
B in CNF (as (p ∨ ¬q) ∧ (¬p ∨ q)), one can see that it has a positive and a
negative occurrence of p, q, respectively. But these different polarities are not
dealt with by the biimplication based hypotheses. The two inclusion maximal sets
of biimplications are EQ1 = {←→p } and EQ2 = {←→q }. Let I = {1, 2} and c1(I) =
1, c2(I) = 2. Using Θ{p′,q′} or the representation theorem we can calculate the

outcomes: B uc1 α = B uc2 α = B u α = CnP(p↔ ¬q).
On the other hand, the implication based revision operator recognizes the po-

larities of the propositional symbols; hence, more possibilities to resolve the con-
flict result. Here, there are four possibilities given by the following four inclusion
maximal sets of implications: Impl1 = CnP({←→q ,−→p }), Impl2 = CnP({←→q ,←−p }),
Impl3 = CnP({−→q ,←→p }), and Impl4 = CnP({←−q ,←→p }). These lead to four differ-
ent choice revisions. Let I = {1, 2, 3, 4} and c(I) = i. The corresponding revision
results are: B uImpl

c1 {α} = B uImpl
c4 {α} = CnP(¬p ∧ q) and B uImpl

c2 {α} =

B uImpl
c3 {α} =CnP(p ∧ ¬q). For illustration, the calculation of the equation

B1 := B uImpl
c1 {α} = CnP(¬p ∧ q) is given below.

B1 = CnP({p′ ↔ q′,¬(p↔ q),←→q ,−→p })
= CnP(Θ{p′,q′}((p′ ↔ q′) ∧ ¬(p↔ q) ∧←→q ∧ −→p ))

= CnP((¬(p↔ q) ∧ q) ∨ (¬(p↔ q) ∧ ¬q ∧ ¬p))
= CnP ((¬(p↔ q) ∧ q)) = CnP (q ∧ ¬p)

In particular, uImpl
c1 gives results different from those of uc1 ,uc2 and u.

The example above does not exclude the possibility that the sceptical versions
of the biimplication based revision operators and the sceptical versions of the
implication based revision operators are the same; it could be the case that the
effects of a fine-grained conflict resolving strategy by distinct maximal sets of
implications nullify each other. But again, we can show with an example that
the use of implications as (enhanced) set of hypotheses has different affects on
sceptical revision than the use of biimplications.



Example 2. Let be given B = (¬p ∧ q ∧ r ∧ ¬t) ∨ (p ∧ ¬q ∧ r ∧ t) and α =
(p ∧ ¬q ∧ r ∧ ¬t) ∨ (¬p ∧ q ∧ ¬r ∧ t). The maximal sets of biimplications are

EQ1 = {←→r ,←→t } and EQ2 = {←→r ,←→p ,←→q }. For neither of these sets the model
corresponding to I := ¬p∧ q∧¬r∧ t is implied. More concretely, using Theorem
1, one calculates: B u α = (dBe1 ∨ dBe2) ∧ α = ((p ∧ ¬q ∧ r ∧ ¬t) ∨ (¬p ∧ q ∧
r ∧ t) ∨ (¬p ∧ q ∧ r ∧ t) ∨ (p ∧ ¬q ∧ r ∧ ¬t)) ∧ α ≡ (p ∧ ¬q ∧ r ∧ ¬t). In contrast
to this, there is a maximal set of implications Impl1 that together with B′ ∪{α}
implies I, namely Impl1 = {←→t ,−→p ,←−q ,−→r }. So one can calculate:

B uImpl
1 α = ((¬p ∧ q ∧ ¬r ∧ ¬t) ∨ (¬p ∧ q ∧ ¬r ∧ t)) ∧ α ≡ ¬p ∧ q ∧ ¬r ∧ t

Now, B uImpl
1 α |= B uImpl α; hence I |= B uImpl α but I 6|= B u α.

5 A Representation Theorem

Following the usual approach in classical belief revision [1], I will characterise
the non-sceptical implication based revision operators uImpl

c by postulates. Ac-
cording to the terminology used in the belief revision literature (cf. [12]), the
main theorem of this section (Theorem 4) can be described as a representa-
tion result: there is a set of postulates such that the class of revision operators
uImpl
c represents (modulo equivalence) all revision operators fulfilling that set

of postulates. Using postulates is a well established methodology in belief re-
vision for declaratively specifying the properties (or the interface) of revision
operators that one wants to construct or has constructed. In addition to an
implementation-independent specification of revision operators, postulates offer
a logical means to compare different revision operators.

The main distinctive feature of Delgrande’s and Schaub’s operators uc,u as
well as of uImpl

c ,uImpl is that these operate on a finite set B of formulas as left
argument, but do not depend on the specific representation of B. So in contrast
to belief-base revision operators they are operators on the knowledge level [16]
and thus should be termed knowledge-base revision operators [7]. In order to
adapt the postulates for belief-base revision one has to replace all references to
the set B and its subsets by syntax insensitive concepts.

The key for the adaptation is the use of prime implicates entailed by the
KB B. Roughly, prime implicates are the most atomic clauses implied by B.
Let be given a set of propositional symbols P and a subset S ⊆ P thereof. Let
α ∈ form(P). Let α be a non-tautological formula. The set primeS(α) of prime
implicates of α over S is defined in the following way.

primeS(α) = {β ∈ clauseClS(α) | ∅ 6|= β and β has no

proper subclause in clauseClS(α)}

For tautological formulas α let primeS(α) = {p∨¬p}, where p is the first propo-
sitional symbol occurring in α with respect to a fixed order of P. For example, let
α = (p∨q)∧(¬q∨r) and S = {p, q, r}. Then prime{p,q,r}(α) = {p∨q,¬q∨r, p∨r}.
For knowledge bases let primeS(B) = primeS(

∧
B).



A well known but fundamental fact is that the set of prime implicates of a KB
B is equivalent to B itself: prime(B) ≡ B. An additional relevant fact is that if
B1 ≡ B2, then prime(B1) = prime(B2). These facts justify the perspective on the
set of prime implicates as a canonical representation for the knowledge contained
in the KB. Moreover, these facts are a useful means for understanding the syntax-
insensitive conflict resolution strategy of knowledge-base revision operators.

A second adaptation of the belief-base postulates concerns the uniformity of
the operators uc,u as well of uImpl

c ,uImpl. The conflicts between B and the
trigger α are handled on the level of symbols and not on the level of formulas.
Therefore, in order to mirror this effect on the prime implicates one has to
impose a uniformity condition. If, e.g., the hypothesis p′ → p is eliminated in
the conflict resolution process, then formulas of the knowledge base B, in which
p occurs positively, are not preserved in the revision result. In general, if a set
of implication based hypotheses Im is given, then B′ ∪ Im preserves a subset
of prime implicates of B which fulfils some closure condition concerning the
polarities of symbols. These sets of prime implicates can be characterised as
uniform sets according to the following definition.

Definition 4. Let B ⊆ form(P) be a KB. A set X ⊆ prime(B) is called uniform
w.r.t. to B and implications, X ∈ U Impl(B) for short, iff the following closure
condition holds: If pr ∈ prime(B) is such that (a) symb(pr) ⊆ symb(X) and (b)
for all symbols p in pr there is a prp ∈ X that contains p in the same polarity,
then pr is contained in X, i.e., pr ∈ X.

Example 3. Let B = {p ∨ q, p ∨ r ∨ s, r ∨ t, s ∨ u}. Then prime(B) = B. Now,
among all subsets X ⊆ prime(B) only the set X := {p ∨ q, r ∨ t, s ∨ u} is
not uniform as it would have to contain p ∨ r ∨ s, too. Formally, U Impl(B) =
Pow(prime(B)) \ {{p∨ q, r∨ t, s∨u}}. (Pow(X) denotes the power set of X, i.e.
the set of all subsets of X.)

A proper justification for Definition 4—in the sense that it really captures
the intended concept—is Theorem 3 below. It shows that for all B, Im one can
find a uniform set X that is equivalent to B′ ∪ Im. The set X exactly describes
the collection of logical atoms (prime implicates) of the receiver’s KB B that
are preserved after dissociating the name spaces of the sender and receiver (step
from B to B′) and adding hypotheses on the semantical relatedness in Im.

Theorem 3. Let P and P ′ be disjoint sets of propositional symbols. Let B be
a KB and σ be a injective substitution for some subset S = {p1, . . . , pn} ⊆ P
such that σ(S) = {p′1, . . . , p′n} ⊆ P ′ and let Im be a set of implication based
hypotheses containing at most primed symbols of σ(S). Then there is a uniform
set X ∈ U Impl(B) such that: B′ ∪ Im ≡P X.

Now, we give postulates for revision operators ∗ that characterise the im-
plication based choice revision operators. They are variants of the postulates
mentioned in the section on logical preliminaries.

(R1) B ∗ α 6|= ⊥ if B 6|= ⊥ and α 6|= ⊥.



(R2) B ∗ α |= α.
(R3) There is a set H ⊆ U Impl(B) s.t. B ∗ α ≡

∧⋃
H ∧ α or B ∗ α ≡

∧⋃
H.

(R4) For all X ∈ U Impl(B) either B ∗ α |= X or B ∗ α |= ¬
∧
X.

(R5) For all Y ⊆ U Impl(B): If
⋃
Y ∪ {α} |= ⊥ iff

⋃
Y ∪ {β} |= ⊥, then

{X ∈ U Impl(B) | B ∗ α |= X} = {X ∈ U Impl(B) | B ∗ β |= X}.

Postulate (R1) can be termed the postulate of weak consistency; it says that the
revision result has to be consistent (satisfiable) in case both the trigger α and
the KB B are consistent. The consistency postulate for AGM belief revision and
belief base revision (BR1) is stronger as it demands the consistency also in the
case where only α is consistent. Postulate (R2) is a weak success postulate; the
revision must be successful in so far as the result has to imply α. It is weaker than
the postulate (BR2) for belief bases. (R3) is an adapted version of the inclusion
postulate for belief base revision (BR3), which can be rewritten as: There is a
B̄ ⊆ B such that B ∗ α = B̄ ∪ {α} or B ∗ α = B̄. In (R3) B is replaced by the
set of uniform sets w.r.t. B, and set identity is shifted to equivalence. Postulate
(R4) can be called uniform tenacity. It is a very strong postulate, which states
that all uniform sets w.r.t. to B either follow from the result or are falsified. This
postulate captures the maximality of the operator uImpl

c . Postulate (R5) is an
adaptation of the logical uniformity postulate for belief-base operators (BR5). It
says that the revision outcomes w.r.t. to the revision operator ∗ are determined
by the uniform sets implied by the revision result.

Postulates (R1)–(R5) are sufficient to represent the class of implication based
choice revision operators modulo equivalence.

Theorem 4. A revision operator ∗ fulfils the postulates (R1)–(R5) iff it can be
equivalently described as uImpl

c for some selection function c.

6 Related Work

The work described in this paper follows in general the belief-revision tradition
as initiated by the pioneering work of AGM [1], but has main differences due to
a different explanation of the inconsistencies. Moreover, classical belief-revision
functions à la AGM operate on a logically closed (and hence infinite) set called
belief set and a formula which triggers the revision of the belief set into a new
belief set. In belief-base revision [10] the revised KB is allowed to be an arbitrary
not necessarily closed (finite) set of sentences called belief base. The negative
property of belief-base revision of being syntax sensitive is remedied in the case of
knowledge-base revision operators which are exemplified by the revision operators
of this paper as well as those of [6] and [5].

The revision operators of this paper are based on the elimination of hypothe-
ses that have the role of semantic mappings [17]. The idea of using belief revision
techniques to revise semantic mappings has already been worked in the litera-
ture [15], [21]. But these approaches consider the set of semantic mappings as
the object of revision, while the approach of this paper considers the semantic
mappings as revision aids that are deleted after the revision.



The notion of a prime implicate is used in the approaches of [20], [22], [3]. In
contrast to the approach of this paper, these do not use prime implicates in the
formulation of the postulates; they (only) define new belief-revision operators
based on prime implicates and show that they fulfil some classical postulates.

The implication based revision operators exhibit a symbol-oriented rather
than a sentence-oriented strategy for inconsistency resolution. A different symbol-
oriented approach is described by Lang and Marquis [13]. Their revision opera-
tors do not use hypotheses but the well-known concept of forgetting [14].

7 Conclusion and Outlook

I have presented a new type of revision operator, which resulted as a generalisa-
tion of Delgrande’s and Schaub’s operators [6] by considering implications rather
than biimplications as hypotheses. Similar to a result of [6], it can be shown that
the operators are finitely representable and hence suitable for implementation.

But we have seen (cf. beginning of Section 4) that the generalisation from
biimplications to implications adds the value of having a more fine-grained di-
agnosis of what exactly leads to the ambiguity. Moreover, I described postulates
that integrate the uniformity property in order to characterise the implication
based operators. Delgrande and Schaub [6] show which (classical) postulates
their operators fulfil but do not give a representation theorem. In this paper,
I could at least show that the implication based choice revision can be charac-
terised by a set of postulates (Theorem 4). A slightly different notion of uniform
set leads to a representation theorem for biimplication based choice revision.

I motivated the perspective to consider the sets of biimplications and im-
plications as hypotheses on the semantical relatedness of symbols belonging to
different name spaces. This perspective leads naturally to the question what
other initial sets of hypotheses on the semantical relatedness could be used as
a basis for new revision operators. In fact, one could consider bridging axioms
like p′ ↔ q, which relate symbols hypothesised to be synonyms. Using a set H
of such creative hypotheses may induce operators that are quite different from
classical revision operators as the former may not be conservative: B′ ∪H may
imply formulas β ∈ form(P) that do not already follow from B. Such creative
behaviour does not occur for H = Imi or H = EQi.

There already exist approaches in the area of ontology alignment where more
expressive semantic mappings are handled (e.g., [4]). We note that the framework
of this paper is extendable to more expressive KR formalisms like first order logic
[19] by using a more syntactical notion of prime implicate.
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