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Abstract

An artificial intelligence system that processes geo-thematic data would profit from
a (semi-)formal or controlled natural language interface that incorporates concepts for
nearness. Though there already exists logical-engineering approaches giving sufficient
conditions for nearness relations, we show within a logical analysis that these suffer
from some deficiencies. Non-engineering approaches to nearness such as the abstract
mathematical approach based on proximity spaces do not deal with the implementa-
tion aspects but axiomatically formalize intuitions on nearness relations and provide
insights on their nature. Combining the ideas of the engineering approach with the
mathematical approach of proximity spaces, we define and analyze new nearness rela-
tions that provide a good compromise between implementation needs and the need for
an appropriate approximation of the natural nearness concept.
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1 Introduction

In many use cases the interaction with an AI system for processing geo-thematic data (e.g.,
robotics, geographical information systems) is conducted by querying it through a specific
query language. Most of these systems either do not have a query language that deserves
the name as it lacks a declarative specification with a precise logical semantics for spatial
concepts; or the query language is so complex that it can be used only by experts. The (old)
appealing idea of interacting through a natural language still lacks a satisfying realization
due to the hard problems involved in natural language processing. So the idea of combining
the flexibility and affinity of natural language for human users with the precise semantics of
formal languages in a semi-formal or controlled natural language (CNL) seems to be a good
compromise for an adequate interface to systems that process geo-thematic data.

The work of Grütter and colleagues [8, 7] can be understood as a first step towards a CNL
that has the capacities to represent and process spatial queries. They focus on a qualitative
model of a nearness (closeness) relation which they base on administrative and functional
regions. The investigated nearness relation is defined in the logico-formal framework of the
region connection calculus [12] equipped with a hierarchical structure of partitions, and is
intended to approximate the natural nearness concept used by humans.

As the nearness relation (as any other concept of a CNL) can only be an approximation
of the corresponding natural concept, one has to inform the user of the CNL about the
properties of the defined concepts. In particular, the user should get a clear picture of
which properties the nearness relation of the CNL has. Experimental investigations as those
conducted in the articles [8, 7] are a first step towards understanding the nearness relations;
but these alone do not give a complete picture needed to justify the specific models of
nearness and the CNL in which they are (going to be) embedded.

In this paper, we fill the gap by providing a logical analysis of the nearness relations
of [8, 7]. We show that the nearness relation in the original definition of [8, 7] has some
desirable properties which a user would expect to be owned by a nearness relation. But it
has also some properties that a user would not expect to be shared by nearness relations.
Some of the deficiencies of the old nearness definitions can be overcome—and we will do so
by giving new definitions. But some of the properties of the nearness relations are inherently
associated with the hierarchical approach—and make it essentially different from the usual
nearness concepts.

This difference is demonstrated within the well investigated mathematical framework of
proximity spaces; these formally axiomatize nearness relations [9]—but are not constructed
w.r.t. to the implementation aspects. The result of the proximity-spaces oriented analysis
is that nearness relations do not fulfill the axioms for proximity spaces because the nearness
relations are not only inherently not symmetric but also depend on the hierarchical context
given by the second argument. But we can show that the (extended) nearness relations fulfill
some weakening of the proximity axioms. This result has the consequence that there are more
general structures than proximity spaces which are worth to be investigated mathematically
because they are exemplified by the nearness relations defined in this paper.

The main contribution of this paper is that we logically analyze (variants) of the nearness
relations of [8, 7] and then—based on the analysis—define a new nearness relation which
combines the ideas of the (construction oriented) engineering approach, that is based on
scaling context determining partitions, and the (abstract, axiomatic) mathematical approach
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of proximity spaces, that axiomatically specifies the properties of nearness relations. Thereby
we provide a candidate component for a (semi)-formal language or a CNL that can be used
as an interface for AI systems processing geo-thematic data.

The paper is structured as follows. Section 2 gathers the concepts of the region connection
calculus [12] needed to define the nearness relations. The following Section 3 recapitulates
the definitions of the nearness relations of [8, 7]. In Sections 4 and 5 we analyze the logical
properties of the nearness relations—incorporating the general axioms of proximity spaces.
Resulting from the analysis of these sections, in the section before the conclusion (Sect. 6)
we extend and modify the nearness relations in order to cope with some deficiencies of the
old definitions.

This technical report is an extended version of a paper accepted for publication in the
proceedings of ECAI 2012 [10].

2 Preliminaries

The nearness rules of [8, 7] are defined among others with the help of binary relations of the
region connection calculus (RCC) [12]—thereby extending RCC with a concept of nearness
that is different from the mereotopological nearness concept associated with the connect-
edness relation. RCC is a family of calculi for qualitative spatial reasoning which is built
on regions and not points as basic entities. Starting with a binary reflexive and symmetric
connectedness relation C, different binary relations are defined. So the axiomatization of
RCC according to [12] is based on the following axioms stating the symmetry and reflexivity
of C:

∀x.C(x, x) (1)

∀x, y[C(x, y)→ C(y, x)] (2)

The family of calculi RCCi (for i ∈ {1, 2, 3, 5, 8}) are characterized by sets BRCCi of i base
relations BRCCi = {r1, . . . , ri} which have the JEPD-property: they are jointly exhaustive
and mutually disjoint, i.e., for all x, y does ri(x, y) hold exactly for one ri. More general
relations are constructed by disjunctions of the base relations. We will work here with
the relations of the most expressive calculus RCC8 which rests on the set of base relations
BRCC8 = {DC , EC, EQ , PO , NTPP , TPP , NTPPi, TPPi }. The definitions of the relations
of BRCC8 as well as other relations we will be using in the following are given as predicate
logical sentences in the following list (see, e.g., [13, p. 42]). The meanings of the RCC8 base
relations are illustrated in Fig. 1 for two discs x, y in the plane R× R.
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x :

y :

DC(x, y) EC(x, y) PO(x, y) EQ(x, y)

TPPi(y, x)

TPP(x, y)

NTPPi(y, x)

NTPP(x, y)

Figure 1: Base relations of RCC8 and their intended meanings

DC(x, y) ↔ ¬C(x, y)(disconnnected) (3)

P(x, y) ↔ ∀z(C(z, x)→ C(z, y))(part of) (4)

PP(x, y) ↔ P(x, y) ∧ ¬P(y, x)(proper part of) (5)

EQ(x, y) ↔ P(x, y) ∧ P(y, x)(equal) (6)

O(x, y) ↔ ∃z(P(z, x) ∧ P(z, y))(overlap) (7)

PO(x, y) ↔ O(x, y) ∧ ¬P(x, y) ∧ ¬P(y, x)(partial overlap) (8)

DR(x, y) ↔ ¬O(x, y)(discrete) (9)

EC(x, y) ↔ C(x, y) ∧ ¬O(x, y)(externally connected) (10)

TPP(x, y) ↔ PP(x, y) ∧ ∃z(EC(z, x) ∧ EC(z, y))(tangential proper part) (11)

NTPP(x, y) ↔ PP(x, y) ∧ ¬∃z(EC(z, x) ∧ EC(z, y))(non-tangential proper part) (12)

TPPi(x, y) ↔ TPP(y, x)(inverse of tangential proper part) (13)

NTPPi(x, y) ↔ NTPP(y, x)(inverse of non-tangential proper part). (14)

Note that for two regions x, y, EQ(x, y) means that x, y cover the same area in space.
RCC8 allows for models in which EQ(x, y) may hold even if x 6= y, that is even if x, y denote
different objects. This distinction is also useful for a detailed representation of administra-
tive regions as referenced in the framework of [7] which we adopt in this paper. For example,
a community is strictly speaking not just a spatially extended object but some “abstract”
entity with specific political obligations, functions etc. But in this paper we will not differ-
entiate between objects and their local extensions as on the one hand we want to keep the
logical framework for which we want to give a logical analysis as simple as possible; and on
the other hand we will not deal with further thematic axiomatizations in form of complex
ontologies for which a distinction between objects and their local extensions would even be
necessary. Hence, though we will continue to use the symbol EQ we will assume that it
can be substituted by the identity =. Using a term of the spatial region literature we will
consider only strict models of RCC8 [15]. But note that all results (with slight adaptations)
also hold for non-strict models of RCC8.

Beside the definitions of the base relations the axiom system of Randell and colleagues
contains the axiom of non-atomicity which states that every region has a non-tangential
proper part—which immediately leads to an infinite set of regions.

∀x∃y.NTPP(y, x) (15)
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This axiom will be used in a proof as a technical aid. Though non-atomicity leads to infinite
models, the numbers of partitions and level determining regions constituting the partitions
(see below) will be finite. Randell and colleagues also define binary functions for regions;
one of these is the sum function for regions x, y which results in the union z of x, y. The
definition is given by the following axiom:

∀x, y, z[sum(x, y) = z ↔ ∀w(C(w, z)↔ (C(w, x) ∨ C(w, y)))] (16)

That means, z is the sum of x and y if and only if any region w connects to the sum iff
it connects to one of the summands. Instead of sum(x, y) we also use the set theoretic
notation x ∪ y and we assume that the sum function is extended to any finite number of
arguments (using the associativity of sum) so that also

⋃
i∈I xi for any finite index set I is

defined. The other boolean functions are those for intersection, complement and difference.
Complementation is defined by:

∀x, y. compl(x) = y ↔ ∀z[(C(z, y)↔ ¬NTPP(z, x)) ∧ (O(z, y)↔ ¬P(z, x))] (17)

The intersection or product prod(x, y) (also denoted set theoretically by x∩ y) is defined by
the following axiom

prod(x, y) = z ↔ ∀u[C(u, z)↔ ∃v(P(v, x) ∧ P(v, y) ∧ C(u, v))] (18)

And the difference diff(x, y)—also denoted set theoretically by x \ y—is defined as follows:

diff(x, y) = w ↔ ∀z[C(z, w)↔ C(z, prod(x, compl(y)))] (19)

We call the set AxBRCC consisting exactly of the axioms in (1)–(19) the axiom set for the
boolean region connection calculus and denote it by BRCC. A model of BRCC is given by
interpreting regions as regular closed subset of R2 equipped with the usual topology. In this
model, regular closed sets x, y are connected iff they share a point, i.e., C(x, y) iff x∩ y 6= ∅.

3 A-priori and General Nearness

Let be given a region X. A partition (ai)i∈I over X is a family of sets ai such that
⋃

i∈I ai = X
and the ai are pairwise discrete, i.e., if i 6= j then ai{DC,EC}aj. The partition is called finite
if the index set I is finite. Note that this is not exactly the same notion of partition as in
set theory, as we de not have ai ∩ aj = ∅. This is due to the fact that we want to use RCC8
and think of the ai as regularly closed subsets of R2 which have borderlines. In all of our
examples we will think of X and the ai as regular closed subsets of R2.

Given X we consider not one finite partition over X but a finite number of partitions;
these are totally ordered whereby a partition is smaller than another partition if and only
if the former is finer than the latter. This can be formalized by the relation ≤ between
partitions (ai)i∈I and (bi)i∈I′ as follows: (ai)i∈I ≤ (bi)i∈I′ iff every bi is the union of some aj.
Now we fix a finite set J = {1, . . . , n} for the n partitions over X. A partition (aji )i∈Ij of
these finite number of partitions has a superscript j ∈ J for the position it has in the total
ordering of the partitions w.r.t. ≤. The finite index set Ij has the cardinality of the number
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Figure 2: A total order of three partitions: (ci)i∈{1,2,3,4,5,6} ≤ (bi)i∈{1,2,3} ≤ (X)

of cells constituting the partition (aji )i∈Ij . We also say that the partition and all the cells in
it are of level j. So the fixed set of totally ordered partitions is given as:

(a1i )i∈I1 ≤ (a2i )i∈I2 ≤ · · · ≤ (ani )i∈In (20)

We assume that the last partition (ani )i∈In in the order consists of just one set, namely the
set X. (Moreover, as we work here with strict RCC models, we assume that no region occurs
in two different partitions. This assumption can be dropped for non-strict models.)

For every partition (aji )i∈Ij with j < n there is the partition (aj+1
i )i∈Ij+1

directly following
it in the total ordering ≤; we call it the partition of the next (upper) level. As in some
cases the exact instances of the index sets and superscripts are not relevant, we sometimes
neglect them and, e.g., just write (a) for (aji )i∈Ij . Then the partition following (a) is denoted
conveniently by (a)↑. We call all the regions occurring as a cell in one of the partitions a
level-determining set/region, ld set/ld region for short. In the work of [8] the administrative
regions have the role of level determining regions.

An example for a total order of partitions is given in Fig. 2. In this example we have
three partitions (n = 3); the partition of the “highest” level which is the coarsest level
is denoted by (X). Using the full indexed notation from above we would denote (X) by
(a3i )i∈{1}. The next lower level is given by the partition (b) = (bi)i∈{1,2,3}; using the full
index notation it would be written as (b) = (a2i )i∈{1,2,3}. We have (b)↑ = (X); and the last
partition (the finest one) is given by (c) = (ci)i∈{1,2,3,4,5,6} written in the full indexed version
as (c) = (a1i )i∈{1,2,3,4,5,6}. We have (c)↑ = (b).

Presupposing a finite total order of partitions that have a finite number of cells means
that we work within a closed world of ld regions; hence an all-quantified assertion of the form
∀xa ∈ (ai)i∈{1,...,n}P (xa) for a unary predicate P and a partition (ai)i∈{1,...,n} can be equiv-
alently written by the finite conjunction

∧
i∈{1,...,n} P (ai). Similarly ∃xa ∈ (ai)i∈{1,...,n}P (xa)

is written as a finite disjunction
∨

i∈{1,...,n} P (ai). So all rules below can be transformed to
quantifier free versions and hence actually described in a propositional logical framework.

In all of the following definitions let (a) = (ai)i∈I denote a finite partition of the fixed
(finite) total order of partitions. The nearness relation of [7] is based on a notion of apriori
nearness between administrative regions. Their notion of apriori nearness also incorporates
a reference to functional regions which is justified by the observation that the nearness
perception by cognitive agents is influenced by the borders of functional regions. In the
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following considerations we will drop this condition incorporating functional regions, hence
use the following simpler rule for a-priori nearness NRap between ld regions of the same level:

∀xa ∈ (a)∀ya ∈ (a)∀b ∈ (a)↑[(xa{P}b ∧ ya{P,EC}b)→ NRap(ya, xa)] (21)

Moreover, we set NRap(X,X), so that reflexivity holds for NRap (see below).

NRap(X,X) (22)

So, according to the definition, an ld region ya is a-priori near xa if ya touches or is contained
in the next upper level cell b of which the ld region xa is a part. Hence, the second argument
xa determines the scaling or granularity or level context for the nearness comparison.

The more general nearness relation NR may hold between regions of different partitions.
Furthermore, in the sufficient condition stated below the variable z may denote any region—
not necessarily an ld region.

∀xa ∈ (a)∀ya ∈ (a)∀z[(z{P,PO}ya ∧ NRap(ya, xa))→ NR(z, xa)] (23)

In order to investigate the properties of these nearness relations we will assume that the
fixed totally ordered partition is represented by a finite set A of predicate logical axioms. If
for example, an ordering is given as in Fig. 2, then A would consist of the following axioms,
where X, a1, . . . , a6, b1, b2, b3 denote constants and ld is a unary predicate symbol intended
to denote ld regions.

X = b1 ∪ b2 ∪ b3 ∧ b1{EC}b2 ∧ b1{DC}b3 ∧ b2{EC}b3 (24)

b1 = c1 ∪ c2 ∧ b2 = c3 ∪ c4 ∧ b3 = c4 ∪ c5 (25)

c1{EC}c2 ∧ c1{EC}c4 ∧ c3{EC}c4 ∧ c3{EC}c6 ∧ c6{EC}c5 (26)

c2{DC}c3 ∧ c2{DC}c4 ∧ c2{DC}c5 (27)

c2{DC}c6 ∧ c1{DC}c3 ∧ c1{DC}c5 (28)

c1{DC}c6 ∧ c4{DC}c5 ∧ c4{DC}c6 ∧ c3{DC}c5 (29)

∀x[ld(x)↔ (x = X ∨ x = b1 ∨ x = b2 ∨ x = b3 (30)

∨x = c1 ∨ · · · ∨ x = c6)]

Moreover, we assume that an axiomatization AxBRCC8 of BRCC8 is given as defined in
the preliminaries. Now, let KB = A ∪ AxBRCC8 ∪ {(21), (22), (23)} be a knowledge base
consisting of the closed-world axioms for the total order of partitions plus the axioms for
the boolean region connection calculus plus the rules for a-priori nearness (21), (22) and the
rule (23) for (general) nearness. The investigations of the logical properties of the nearness
relations are done with respect to this knowledge base KB.

4 Properties of the Nearness Relations

We start our analysis with some simple observations concerning the a-priori nearness relation
NRap, its relation to NR and move on to the analysis of the properties of NR.

A-priori nearness can hold only between ld regions of the same level. That means, if two
(different) regions are derived to be near a-priori, then they are either disjoint (DC) or touch
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each other (EC). Concerning the converse of this fact we can observe that two touching
regions of the same partition are a priori near. Clearly, this is a desirable feature of a-priori
nearness as it shows that a-priori nearness is compatible with the mereotopological nearness
relation of two touching regions.

Proposition 1. If ya and xa are regions of the same partition (a) and KB |= xa{EC}ya,
then KB |= NRap(xa, ya) and KB |= NRap(ya, xa).

Proof. Let bx be the region of the next upper partition such thatKB |= xa{EQ,TPP,NTPP}bx
and by be the region of the next upper partition such that KB implies ya{EQ,TPP,NTPP}by.
If bx{EQ}by, i.e., b := bx = by, then xa{P}b and ya{P}b, hence NRap(xa, ya) and NRap(ya, xa).
Otherwise, together with xa{EC}ya and bx{EC,DC}by it follows that KB implies xa{EC}by
and ya{EC}bx, so NRap(xa, ya) and NRap(ya, xa).

Another desired feature of a-priori nearness NRap is reflexivity because a region should
count near itself—it can be even thought of as being one of the regions that are nearest
itself. Indeed, reflexivity (restricted to ld regions) holds for NRap.

Proposition 2. For all xa ∈ (ai)i∈I : KB |= NRap(xa, xa).

Proof. If xa = X, this follows directly from the definition (see (22)). Otherwise xa 6= X and
there is b ∈ (a)↑ such that xa{P}b. Now, as xa{EQ}xa, one has also xa{P,EC}xa, that is
xa{P,EC}b.

Clearly NRap is not symmetric w.r.t. to KB. By this we mean that the following symmetry
condition does not hold: If KB |= NRap(x, y), then KB |= NRap(y, x). And clearly NRap is
not transitive w.r.t. KB, i.e., the following transitivity condition does not hold: If we
have KB |= NRap(x, y) and KB |= NRap(y, z), then KB |= NRap(x, z). These facts are
demonstrated with the example given in Fig. 2. It holds that NRap(c6, c4) as verified by the
region b2 for which we have c4{P}b2 and c6{EC}b2. But the symmetric relation NRap(c4, c6)
does not hold, because not c4{EC}b3. Similarly one can see that NRap(c4, c2); but NRap(c6, c2)
does not hold which shows that transitivity is not given.

The general nearness relation extends the apriori nearness relation in a conservative
manner. That is, any two regions which are apriori-near are near as well. Moreover, if the
regions are ld regions of the same level, then the converse holds as well.

Proposition 3. For all ya, xa ∈ (a): KB implies NRap(ya, xa) iff it implies NR(ya, xa).

Proof. The direction from left to right follows directly from the definitions and the fact that
ya{P,PO}ya. If on the other hand NR(ya, xa), then there is a y′ of the same level as xa such
that NRap(y

′, xa) and ya{P,PO}y′. But as ya, y
′ have the same level, only ya{EQ}xa can

hold, and hence NRap(ya, xa).

Reflexivity does not hold in case of NR, as NR allows only for ld regions as second
arguments. This is an unwanted feature for nearness relations which we will deal with in
one of the following sections (page 6) by extending the nearness relation to a new nearness
relation. For this extension we will use the simple fact, that if z is an ld region, then
reflexivity holds. (This is a direct consequence of Prop. 3.)

Proposition 4. For all ld regions xa: KB |= NR(xa, xa).
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As in the case of a-priori nearness we can immediately see that NR is not symmetric and
not transitive.1 These facts can be explained again by the fact that it is the second argument
which determines the comparison context.

For a-priori nearness NRap we answered the question which base RCC8 relations r are
sufficient for nearness, i.e., for which r ∈ BRCC8 does r(z, x) imply NRap(z, x). Lifting this
question to general nearness becomes more interesting as there are more possible RCC8
relations between a region z and an ld region xa. Unfortunately, for r = EC the entailment
r(z, xa) |= NR(z, xa) does not hold. Take a region z that touches xa but is neither contained
nor overlaps an a-priori near region ya of the same partition as xa; e.g., if (ai)i∈I is the
partition of xa consider the region z = (

⋃
i∈I ai) \ xa. (Note that we use here the boolean

operator of difference \).
Similarly one can show that z{TPPi,NTPPi}xa does not entail NR(z, xa). This seems to

be an implausible property of the NR-definition. One may argue that this consequence is
due to the scaling dependence of NR on the second argument: The second argument of NR
defines the context, the granularity or the scale with respect to which nearness is considered;
if z{TPPi,NTPPi}xa, then—one might argue that—z is “too big” for the scaling context
given by the second argument xa; hence one may conclude that considering the nearness
between z and xa is not even justified from the beginning. But similarly one could argue
that the second argument xa determines the scaling in the sense that more regions will be
detected as near xa than will w.r.t. to region ya↑ of an upper level partition (a)↑. Hence, we
will later on (see page 6) look at a more general notion of nearness that also allows for “big”
regions z being near a region xa.

Excluding the above cases for r results in the set {TPP,NTPP,EQ,PO} of possible in-
stances for r. And as the following proposition shows, if regions z, xa stand in one of the
base relations in {TPP,NTPP,EQ,PO}, then nearness is guaranteed.

Proposition 5. For all z, xa: If KB |= z{TPP,NTPP,EQ,PO}xa, then KB |= NR(z, xa).

Proof. Let KB |= z{TPP,NTPP,EQ,PO}xa. That means KB |= z{P,PO}xa; hence with
Prop. 2 it follows that NRap(xa, xa) and NR(z, xa).

As a corollary of this proposition and the definition of NR we note that all ld regions are
in NR-relation to ld regions (of upper levels) of which they are a part.

As a last observation, we note that NR(z, xa) is compatible with (or independent of) all
base relations of RCC8 in the following sense: one can find for any r ∈ BRCC8 regions z and
xa such that KB |= NR(z, xa)∧ r(z, xa). Hence, if one knows that z is near to xa one cannot
infer anything about the RCC8 base relation holding between them.

5 Nearness and Proximity Spaces

As the relation NR is intended to model qualitative nearness relations we have to compare
them with other formal models of qualitative nearness. A prominent qualitative nearness
relation results from the neighborhood concept of topological spaces. A more fine-grained

1The authors of [8] state that NR is at least a weakly symmetrical relation meaning that the symmetry
condition holds only if z and xa are regions of the same partition. But the example above (Fig. 2) shows
that the NR(xa, ya) entailing NR(ya, xa) does not hold even for regions xa, ya of the same partition.
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mathematical approach to nearness is provided by proximity spaces. These date back to
ideas of Riesz presented in a congress talk in 1908 [14] and were rediscovered in the fifties by
the mathematician Efremovič [5, 6]. He gave the axiomatic definition of a proximity space
to become the basis for all following work on proximity spaces. We will not delve into the
further development of research on proximity spaces but note that proximity spaces also
became an important topic in the area of qualitative spatial reasoning [16, 2, 3, 4]. For
a historical overview on proximity spaces (until 1970) the reader may have a look at the
introductory chapter of the classic monograph by Naimpally and Warrack [9].

In the following, we will not give the definition of proximity spaces according to Efremovič
(see [9, p.7–8]) but rather use the weaker notion of a minimal proximity relation given in
[4]. The reason is that the nearness relation considered in this paper is inherently not
symmetrical and the total order of partitions is finite, hence induces a discrete approach to
nearness which is in the same spirit as the approach of [4].

Definition 1. A minimal proximity space (X, δ) [4, p. 7] is a structure with a binary relation
δ over a set X such that the following conditions are fulfilled:

1. For all A,B ⊆ X: If Aδ B, then A and B are nonempty.
(That means, only for non-empty regions does proximity hold).

2. For all A,B,C ⊆ X:

(a) Aδ(B ∪ C) iff Aδ B or Aδ C (right distribution);
(A is near a union of regions iff it is near one of the regions.)

(b) (A ∪B) δ C iff Aδ C or B δ C (left distribution).
(A union of regions is near a region C iff one of the regions is near C.)

Proximity spaces are structures that have strong connections to topological spaces. In
fact, for a proximity space (X, δ) a canonical topological space (X, τ(δ)) can be defined by

τ(δ) = {A ⊆ X | A is closed according to (32)} (31)

and
A ⊆ X is closed under δ iff for all x ∈ X: If x δ A, then x ∈ A. (32)

Indeed, (X, τ(δ)) is a topology in the sense that the following conditions are fulfilled:
{X, ∅} ⊆ τ(δ); if A,B ∈ τ(δ), then A ∪ B ∈ τ ; if (Ai)i∈I is a (possibly infinite) family
of sets in τ(δ), Ai ∈ τ(δ), then

⋂
i∈I Ai ∈ τ(δ). But, as said before, proximity spaces are

finer structures than topological spaces in so far as two different proximities δ1, δ2 may induce
the same topology τ(δ1) = τ(δ2).

We will investigate the question whether the nearness operator NR can be considered as
a proximity relation. Clearly, the first condition holds trivially for NR as we excluded the
empty set as a region. The other conditions cannot be applied to NR directly because the
ld regions are not closed with respect to unions. Nonetheless, the following special case of
condition (2a), in which we consider unions of regions of a partition level whose union makes
up a region of the next partition level, may hold. Let be given an ld partition (a) = (ai)i∈I .
So all B ∈ (a)↑ can be represented as a union B = b1∪· · ·∪bn with bj ∈ (a) for j ∈ {1, . . . , n}.
Now we may ask whether NR(A, b1) or . . . or NR(A, bn) iff NR(A,B). Of this equivalence only
the left-to-right direction holds, as shown by the following proposition.
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Figure 3: Counterexample for left-to-right direction in proximity condition 2(a)

Proposition 6. Let (a) = (ai)i∈I be a partition with ld regions. For all regions A ⊆ X and
all B ∈ (a)↑ with B = b1 ∪ · · · ∪ bn for bj ∈ (a) and j ∈ {1, . . . , n} the following entailment
holds: if KB |= NR(A, b1) or . . . or KB |= NR(A, bn), then KB |= NR(A,B).

Proof. Assume that NR(A, b1) or . . . or NR(A, bn) holds. We have to show that NR(A,B)
holds. W.l.o.g assume that NR(A, b1) (otherwise rename bi). That means that there is a
y ∈ (a) such that NRap(y, b1) and A{P,PO}y. Using the definition of NRap this means that
there is a y ∈ (a) and a b ∈ (a)↑ such that b1{P}b and y{P,EC}b and A{P,PO}y. But as b1 is
already contained in B, it follows that b = B. Now, for y there is aD ∈ (a)↑ such that y{P}D.
We show that A{P,PO}D and NRap(D,B), which immediately implies NR(A,B). That
y{P}D means y{EQ,TPP,NTPP}D. That A{P,PO}y means A{EQ,TPP,NTPP,PO}y.
Using the composition table for RCC8 the following relation between A and D follows:
A{EQ,TPP,NTPP,PO}D which is A{P,PO}D. We have to show NRap(D,B) to complete
the proof. As y{P,EC}b, this means y{EQ,TPP,NTPP,EC}b. If y{EQ,TPP,NTPP}b, which
means that y{EQ,TPP,NTPP}B, then also b = B = D and so by reflexivity NRap(D,B).
If y{EC}b this means y{EC}B or equivalently B{EC}y. As y{EQ,TPP,NTPP}D it follows
using the composition table that B{EC,PO,TPP,NTPP}D. But we know, as B,D are re-
gions of the same partition, that also B{EC,EQ,DC}D. The intersection gives B{EC}D,
and hence by Prop. 1 NRap(B,D) follows.

A simple example (Fig. 3) shows that the other direction of the condition in Prop. 6 does
not hold. In Fig. 3 the smallest rectangles represent the finest (ld) partition. The regions B
and y are regions of the next upper partition whose regions are represented with grey border
lined rectangles. The region b (dotted border line) is the only region of the partition above
B (and y) that is represented in the figure, and A is an arbitrary region not aligned with
the partitions. As one can see, A is near B, i.e., NR(A,B), but A is not near any of the six
cells that make up B. The reason is that B gives a coarser scaling for nearness than all of
its parts bi. Hence, while something may be near w.r.t. a coarser scaling, if it is near with
respect to a finer scaling, the converse does not hold.

If we look at condition (2b), then there is a chance that both directions may hold, because
on both sides of the biimplication the same C occurs as the second (level determining)
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position of NR. But here again, we can show only one direction, the direction which is
opposite to the previous one.

Proposition 7. For all A,B,C ⊆ X: If KB |= NR(A ∪ B,C), then KB |= NR(A,C) or
KB |= NR(B,C).

Proof. Assume KB |= NR(A∪B,C), i.e., (A∪B){P,PO}y and NRap(y, C) for an ld region y
in the same partition as C. But then either A{P,PO}y or B{P,PO}y, which follows from the
definition of A ∪B as sum of A and B. Lets see why this is the case. If (A ∪B){P}C, then
even A{P}C and B{P}C holds. So assume (A∪B){PO}C. We have to show A{P,PO}C or
B{P,PO}C. So for reductio ad absurdum assume that not A{P,PO}C and not B{P,PO}C,
which means that A{TPPi,NTPPi,DC,EC}C and B{TPPi,NTPPi,DC,EC}C. We can ex-
clude the cases for TPPi,NTPPi as this would immediately imply C{P}(A∪B)—contradicting
A ∪B{PO}C. So there are four cases which all lead to contradictions.

1. A{DC}C and B{DC}C: Because (A ∪B){PO}C there is a w such that w{P}(A ∪B)
and w{P}C. But the first implies w{C}A∪B hence w{C}A or w{C}B and hence not
A{DC}C or not B{DC}C, contradiction.

2. A{DC}C and B{EC}C: Because (A∪B){PO}C there is a w such that w{P}(A∪B) and
w{P}C. Clearly A{DC}w. Now we consider all possible base relations between B and
w. B{TPP,NTPP}w cannot be the case because then B{P}C would follow. B{DC}w
cannot be the case either because w{P}(A ∪ B), so especially w{C}(A ∪ B), hence
w{C}A or w{C}B. But as A{DC}w it follows that w{C}B, contradiction. Now assume
B{EC}w. Because of the non-atomicity axiom there is a w′ such that w′{NTPP}w,
and it fulfills w′{P}(A ∪ B) and w′{DC}A and B{DC}w′. But this leads to the same
contradiction as for B{DC}w. We move on and assume B{PO}w. So there is a w′′

such that w′′{P}B and w′′{P}w{P}C. But this contradicts B{EC}C. So for B only
B{EQ,TPPi,NTPPi}w is left, but this contradicts B{EC}C.

3. A{EC}C and B{DC}C: Symmetrical argumentation to the case before.

4. A{EC}C and B{EC}C: Again because (A∪B){PO}C, there is a w such that w{P}(A∪
B) and w{P}C. Now we go through all possible base relations between A and w. Case
A{DC}w: This leads to the contradictions as derived in case (2). Case A{EC}w:
Choose w′ such that w′{NTPP}w. Then A{DC}w′ and the same arguments work as
before. Now consider the case A{TPP,NTPP,EQ,TPPi,NTPPi}w: This cannot hold
as it would directly contradict A{EC}C. Case A{PO}w: This contradicts A{EC}C
too, because then there is a w′′{P}w{P}C and w′′{P}A leading to A{EQ,PO}C.

The proposition above justifies the definition and investigation of structures which we
call weak right-scaled proximity spaces. So Propositions 6 and 7 say that (X,NR) (for X
being a region in BRCC) is (almost) a weak proximity space.

Definition 2. The structure (X, δ) is a weak right-scaled proximity space iff δ is a binary
relation over X such that the following conditions are fulfilled.

1. For all A,B ⊆ X: If Aδ B, then A and B are nonempty.
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2. For all A,B,C ⊆ X:

(a) If Aδ B or Aδ C, then Aδ(B ∪ C);

(b) if (A ∪B) δ C, then Aδ C or B δ C.

Similarly one can define the dual notion of left scaled proximity spaces by switching the
directions in the condition (2a) and (2b).

The other direction of the implication in Prop. 7 does not hold, because A ∪ B may
become too big. Take for example an A such that NR(A,C), and assume C is not X; hence
there is a y such that A{P,PO}y and NRap(y, C) and let B = X. Then A ∪ B = X and for
all ld regions y′ other than X it holds that y′{TPP,NTPP}X. So in particular, there is no
y′ for which NRap(y

′, C) and A∪B = X{P,PO}y′. Even if one restricts the left argument to
unions of ld regions that make up an ld partition of the next higher level, a counterexample
can be constructed.

6 Extensions and Modifications of the Nearness Rela-

tion

An unwanted feature of the nearness rule (23) is that it allows only ld regions as second

arguments. Therefore, we define a new nearness relation ÑR that allows for arbitrary regions
in both argument positions—though still the second argument will determine the scaling
context for nearness. Region z is considered to be near region x iff z is NR-near the ld region
of smallest level containing x, formally:

ÑR(z, x) iff NR(z, x̃) where x̃ is the P-smallest ld region s.t. x{P}x̃. (33)

We say that a region x is of level j iff x̃ is an ld region of the partition level j. As the
following proposition shows, the shift from NR to the extended ÑR is conservative in the
sense that the properties of NR are preserved by ÑR.

Proposition 8. The extended nearness relation ÑR has the following properties:

1. For all ld regions ya, xa: If KB |= NRap(ya, xa), then KB |= ÑR(ya, xa).

2. For all z and ld xa: If KB |= NR(z, xa), then KB |= ÑR(z, xa).

3. ÑR is reflexive: Fo all z: KB |= ÑR(z, z).

4. For all A,B,C ⊆ X: If KB |= ÑR(A ∪ B,C), then KB |= ÑR(A,C) or KB |=
ÑR(B,C).

5. For all A,B,C ⊆ X: If KB |= ÑR(A,B) or KB |= ÑR(A,C), then KB |= ÑR(A,B∪C).

Proof. The proofs of the first three items are easy. The proof of the fourth item fol-
lows directly from Prop. 7 and the definition of ÑR. For the proof of the last item note
that if KB |= ÑR(A,B) or KB |= ÑR(A,C), then KB |= NR(A, B̃) or KB |= NR(A, C̃).
W.l.o.g. assume that the first disjunct holds. Then there is a region y of the same
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partition as B̃ such that NRap(y, B̃) and A{P,PO}y. That means there is a region b

in the next level above y and B̃ such that B̃{P}b and y{P,EC}b. Now b{P}B̃ ∪ C. If

b{EQ}B̃ ∪ C, then let y′ be the region of the next upper level in which y is contained.

Then y′{EQ,EC}B̃ ∪ C (so NRap(y
′, B̃ ∪ C)) and A{P,PO}y′, hence NR(A, B̃ ∪ C) and so

ÑR(A,B ∪ C). If b{TPP,NTPP}B̃ ∪ C, then y{P}B̃ ∪ C and hence A{P,PO}B̃ ∪ C. As

NRap(B̃ ∪ C, B̃ ∪ C) it follows again NR(A, B̃ ∪ C) and hence ÑR(A,B ∪ C).

We will now look at a further modification of the nearness relation that is guided by
additional axioms investigated in the context of proximity relations. The following axiom of
an (Efremovič) proximity relation δ (see [9, p.7–8]) asserts that a nonempty intersection of
sets is sufficient for them to count as near.

If A ∩B 6= ∅, then Aδ B (and B δ A). (34)

As we have seen above, this property does not hold for NR (and so not for ÑR), as there may
be regularly closed regions A and B such that A{EC}B but not NR(A,B). But at least we
can show the following weaker entailment:

Proposition 9. For regions A,B which touch each other (A{EC}B) at least one of ÑR(A,B)

or ÑR(B,A) holds.

Proof. We consider the case whether B is an ld region (i.e., B̃ = B) or not (i.e., B̃ 6= B)—
starting with the easier second case. So B 6= B̃ and A{EC}B implies that A{P,PO}B̃. As

NRap(B̃, B̃) it follows that NR(A, B̃), hence ÑR(A,B).
In the other case B = B̃ and A{EC}B implies that A{EQ,TPP}(X\B). We first consider

the case that A{TPP}(X \ B). Then there is a B′ ⊆ X \ B which is in the same partition
level as B and A{P,PO}B′ and B′{EC}B (especially NRap(B

′, B)). Hence NR(A,B) and

ÑR(A,B). Now, we consider the case A{EQ}(X \ B), i.e., A = X \ B. If X \ B is an ld

region on the same level as B, then already NRap(A,B) and hence NR(A,B) and ÑR(A,B).
If If X \ B is not an ld region, then it is a union of regions bi on the same level as B. But

then Ã = X and hence NR(B, Ã) and so ÑR(B,A).

But clearly we can define a new nearness relation N̂R that extends NR and fulfills the
axiom in (??) in the following way:

N̂R(z, x) iff either C(z, x) (z and x are connected) or ÑR(z, x). (35)

Clearly ÑR ⊆ N̂R, N̂R fulfills the separation axiom and one can easily show that all properties
of ÑR mentioned in Prop. 8 also hold for N̂R.2 Moreover, this nearness relation fulfills even
the equivalence in condition (2b) of the definition for proximity spaces. Hence, we have a
model of a structure we want to call a right-scaled proximity space.

Definition 3. A right-scaled proximity space (X, δ) is a structure with a set X and a binary
relation δ over X such that δ fulfills the following conditions:

2Another nearness notion which also fulfills the condition that “A∩B 6= ∅ entails AδB” could start with
a redefinition of the a-priori relation: NRnew

ap (ya, xa) iff there is b ∈ (a)↑ such that ya{P}b and xa{P}b. Then
one defines NRnew(z, x) iff there is y in the level of x̃ such that NRnew

ap (y, x̃) and C(z, y).
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1. For all A,B ⊆ X: If Aδ B, then A and B are nonempty.

2. For all A,B,C ⊆ X:

(a) If Aδ B or Aδ C, then Aδ(B ∪ C);

(b) (A ∪B) δ C iff Aδ C or B δ C.

3. For all A,B ⊆ X: If A ∩B 6= ∅, then Aδ B (and B δ A).

Now the main facts concerning N̂R can be restated by saying that it is a right-scaled
proximity relation.

Proposition 10. Let X be a region (in BRCC). Then (X, N̂R) is a right-scaled proximity
space.

The conditions stated in a right-scaled proximity space are not strong enough to define
a canonical topological space as is done for proximity spaces (see above). But nonetheless
the nearness relation can be seen as an interleaving of level-fixed nearness relations. This
will be explicated in the following. Let be given a total ordering of partitions (aji )i∈Ij over

X, 1 ≤ j ≤ n. For every partition level j we will define nearness relations N̂R
j

between
arbitrary regions z1, z2 ⊆ X.

N̂R
j
(z1, z2) iff there is a y of level j s.t. N̂R(z1, y) and N̂R(z2, y). (36)

These nearness relations are symmetric and are ordered with respect to inclusion and fulfill
the conditions of a minimal proximity space. Their definition is similar to the composition
R ◦R−1 of a binary relation R with its inverse.

Proposition 11. The level-fixed nearness relations NRj fulfill the following conditions:

1. Every N̂R
j

is a (symmetric) proximity relation (and hence induces a topology).

2. If i ≤ j, then N̂R
i
⊆ N̂R

j
.

3. If N̂R(z1, z2) and z2 is of level j, then N̂R
j
(z1, z2).

Proof. Ad 1: Symmetry follows from the symmetry of “and”. The fulfillment of condition
1 for proximity spaces is clear. In order to show the fulfillment of the conditions (2a) and

(2b) it suffices to show one of them (we show (2b)) because of the symmetry of N̂R
j
. So

N̂R
j
(A ∪ B,C) iff there is a y of level j such that N̂R(A ∪ B, y) and N̂R(C, y). This is

equivalent to saying there are y1 and y2 of level j such that (A∪B){C}y1 and NRap(y1, y) as
well as C{C}y2 and NRap(y2, y). But per definitionem (A ∪ B){C}y1 iff A{C}y1 or B{C}y1,
so that the equivalence with (N̂R

j
(A,C) or N̂R

j
(B,C)) follows.

Ad 2: Let N̂R
i
(z1, z2), i.e., there is a y of level i s.t. N̂R(z1, y) and N̂R(z2, y). There is

a y′ of level j such that y{P}y′. As N̂R is a right-scaled proximity relation, it follows that

N̂R(z1, y
′) and N̂R(z2, y

′) which shows N̂R
j
(z1, z2).

Ad 3: Let N̂R(z1, z2) and let z2 be of level j. Then for y = z2 we have N̂R(z1, y) and

(because of reflexivity) N̂R(z2, y) showing N̂R
j
(z1, z2).
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As a résumé we may state that though the nearness relation N̂R is not a (minimal)

proximity relation each of its levels induces a proximity relation N̂R
j

extending N̂R.

7 Conclusion and Future Work

The analysis of the nearness relations NR and NRap which are simpler versions of the near-
ness relations of [8, 7] has revealed some properties which they share with natural nearness
concepts but also some properties which distinguish them from nearness relations formalized
by proximity spaces. The limited applicability of NR to ld regions could be overcome by
extending it to the relation ÑR. The relation ÑR could be shown to fulfill some subset of
the axioms for minimal proximity spaces which resulted in the definition of structures we
termed weak right-scaled proximity spaces. Lessening the difference to proximity relations
even further, we defined a new relation N̂R which fulfills the axioms of what we have termed
a right-scaled proximity space. The relation N̂R is a good candidate as an element of a
controlled natural language interface to geographical data because it provides a good ap-
proximation of the nearness as modelled by proximity spaces. But its exact corresponding
axiomatic specification is given by right-scaled proximity spaces.

The (weak) right-scaled structures have still to be investigated mathematically. We
have discussed the proximity spaces independently of the RCC background theory. An
equivalent representation of RCC by boolean contact algebras [15] provides the basis for
the investigation of structures that are boolean contact algebras equipped with proximity
relations. Motivated by our nearness relations we plan to investigate combinations of boolean
contact algebras with right-scaled proximity relations. These structures will provide the
logical framework in which one can properly formulate and answer the question whether
the nearness relation N̂R is a canonical model for right-scaled proximity relations. That is,
if there is a relation δ in a boolean contact algebra that fulfills the axioms of right-scaled
proximity spaces, can it be represented equivalently as the relation N̂R? A positive answer
would show that the nearness relation N̂R is a prominent member of right-scaled proximity
relations.

Further future work concerns the reincorporation of functional regions as used in the
original nearness definitions of [8, 7]. These more complex relations share the scaling depen-

dence with the relation N̂R but may show different behavior depending on how the functional
regions are embedded within the ld regions. This latter point leads to another task that deals
with the robustness of the nearness relations; one should investigate the effects a change of
the partitions (or the functional regions) has on the nearness relation: in particular one
should investigate conditions under which two total orders of partitions induce the same
nearness relation.

Another starting point for future work is the observation that original rules for near-
ness relations only give sufficient conditions. Though there may be no conditions that are
both sufficient and necessary for nearness, one may investigate additional rules that present
sufficient conditions for the negation of nearness (which one could equivalently describe as
apartness). These rules can be thought of as negative integrity constraints as generally
A1∧· · ·∧An → ¬B is equivalent to A1∧· · ·∧An∧B → ⊥. In this framework, it may be the
case that there are still regions x, y for which the knowledge base neither implies NR(x, y)
nor implies ¬NR(x, y). The nearness relation NR thus becomes a partial relation ([8] speak
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of “vague” relation). In this framework one can define weaker notions of symmetry and tran-
sitivity in the same spirit as the approach of Worboys [17]. Worboys uses the four-valued
semantics of [1], which is based on the truth values T (true), F (false), N (neither true nor
false), B (both true and false), in order to define weak symmetry as follows: If the value of
NR(x, y) is T , then the value of NR(y, x) is not F (but may be one of T,N,B). We could
mimic these definitions in a three-valued semantics corresponding to the three possibilities
of a fact A being entailed by KB or being falsified (¬A is entailed by KB) or neither of the
two former cases holding. Now one could, e.g., test whether NR is weakly symmetrical in
the following sense: For all x, y: If KB |= NR(x, y), then not KB |= ¬NR(y, x), i.e., for x, y
the knowledge base KB may not entail NR(x, y), but KB is not strong enough to prove the
negation ¬NR(x, y).

A last future work package concerns the implementation aspect and the computational
feasibility aspect of answering queries that contain nearness relations. If the nearness re-
lation is given only by rules stating sufficient conditions and there is no other background
terminology in which the nearness relation may be used as well, then query answering is
reducible to a macro expansion of the relations (see the implemented algorithm in [7]). Oth-
erwise query answering may become quite harder and one has to deal with the question
whether the queries can be rewritten to semantically equivalent first order logic queries—in
the same spirit as that of [11].
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