
Scalable Geo-thematic Query Answering
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Abstract. First order logic (FOL) rewritability is a desirable feature
for query answering over geo-thematic ontologies because in most geo-
processing scenarios one has to cope with large data volumes. Hence,
there is a need for combined geo-thematic logics that provide a suf-
ficiently expressive query language allowing for FOL rewritability. The
DL-Lite family of description logics is tailored towards FOL rewritability
of query answering for unions of conjunctive queries, hence it is a suit-
able candidate for the thematic component of a combined geo-thematic
logic. We show that a weak coupling of DL-Lite with the expressive
region connection calculus RCC8 allows for FOL rewritability under a
spatial completeness condition for the ABox. Stronger couplings allow-
ing for FOL rewritability are possible only for spatial calculi as weak
as the low-resolution calculus RCC2. Already a strong combination of
DL-Lite with the low-resolution calculus RCC3 does not allow for FOL
rewritability.
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1 Introduction

Query answering over a database becomes far more difficult if the extensional
knowledge in the database is extended by constraints in an ontology. The reason
is that a database plus an ontology may have many different models, hence
ontology based query answering has to compute the answers w.r.t. to all models
and build their intersection (certain answer semantics). But in some cases—when
using a lightweight logic like DL-Lite for the representation of the ontology and
a restricted query language like unions of conjunctive queries—query answering
w.r.t. an ontology can be reduced to model checking. This is formalized by the
notion of FOL (first order logic) rewritability : a given query can be rewritten
into a FOL query in which the intensional knowledge of the ontology is captured.
Though the rewritten queries may become exponentially bigger than the original
ones, there exist optimizations based on semantic indexes which encode entailed
knowledge of the terminological part of the ontology [15]. So, FOL rewritability
means a benefit.



DL-Lite per se [3] is not sufficient for use in scenarios of geographic informa-
tion processing, as these demand, among others, the representation and deduc-
tion over spatial concepts. Though constraint-based spatial reasoning [14] offers
a well developed and well proven theory for spatial domains, it does not fill in the
need for a system that combines reasoning over a spatial and a non-spatial (the-
matic) domain. Though constraint databases [7] are good candidate frameworks
for reasoning over a mixed domain of geo-thematic objects, the investigations on
constraint databases so far did not incorporate terminological reasoning in the
OBDA (ontology based data access) paradigm. But even in case of related work
which equally considers spatial and thematic reasoning [5], [17], [8], it is not
aimed at FOL rewritability. Hence, there is still a need for investigating combi-
nations of logics that, on the one hand, are sufficiently expressive to match the
representation requirements in geographical information processing and that, on
the other hand, allow for computationally feasible (in particular FOL rewritable)
satisfiability checking and query answering.

We would like to illustrate the use of the logics of this paper by a simple
scenario in which an engineering bureau plans additional parks in a city [10].
Assume, the bureau has stored geographical data in some database (DB) and
declares relevant concepts in the terminological part of his knowledge base, the
TBox. The engineer gives necessary conditions for a concept Park+Lake which is
a park containing a lake that touches it from within, i.e., using the terminology of
the region connection calculus (RCC) [11], the lake is a tangential proper part of
the park. Similarly, a necessary condition for the concept Park4Playing is given
which is a park containing a playing ground (for children) that is a tangential
proper part.

We assume that the data are mapped to a logical pendant of the DB called
the ABox (assertional box). In particular the data should generate the fact that
there is an object a which is both a park with a lake and with a playing area,
that is Park+Lake(a) and Park4Playing(a) are contained in the ABox. But the
location of a is not known. Think of a as an object whose architectural design is
determined but the place where a is going to be localized is not determined yet.

Now, the engineering bureau asks for all parks with lakes and playing areas
such that the playing area is not contained as island in the lake. These kinds of
parks can be thought of as secure as the playing ground can be directly reached
from the park (without a bridge). All objects that fall into the answer set of
this query w.r.t. to the TBox and the data can have one of the configurations
A to C illustrated in Figure 1 (and many more) but are not allowed to have
the configuration D. The object a has to be in the answer set to the original
query as the TBox together with the ABox and some deduction on the spatial
configuration implies that a is an object which excludes the island configuration
D. Remember that a is “abstract” in so far as its geographical location is not
known. So in fact deduction is needed to see that a does not have configuration
D. Later on we will formalize this example in the logic DL-LiteuF,R(RCC8) and

the query language GCQ+ and show that the deduction needed for the inclusion
of a into the answer set can be mimicked in a perfect rewriting algorithm.
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Fig. 1. (Dis-)Allowed spatial configurations for query in engineering bureau scenario

Continuing previous work [10], we investigate combinations of logics in the
DL-Lite family with different members of RCC family [11], a well-known family
of calculi for qualitative spatial reasoning. In previous work [10], we focussed
on the FOL rewritability aspects for weak combinations of DL-Lite with RCC8;
these combinations are weak in so far as they do not allow for the construction
of arbitrary RCC8 constraint networks in the intensional part (TBox) of the on-
tology. In this paper we extend these investigations by enlarging the expressivity
of DL-Lite to one that allows for concept conjunctions on the left-hand side of
general inclusion axioms [1], and we give a proof including a rewriting algorithm
for the main result stating that the weak combination of DL-LiteuF,R with RCC8

allows for FOL rewriting w.r.t. to the query language GCQ+.
Moreover, in this paper, we consider strong combinations of DL-Lite with the

weaker RCC fragments RCC3 and RCC2, and prove that DL-LiteuF,R(RCC3)
does not allow for FOL rewritability of satisfiability checking while the weaker
DL-LiteuF,R(RCC2) does [9].

The paper is structured as follows. Section 2 collects technical details on the
region connection calculus and the DL-Lite family of description logics. Weak
combinations of DL-Lite with the region connection calculus are described in
Sect. 3. In Sect. 4, the last section before the conclusion, we consider strong
combinations of DL-Lite with weaker fragments of the region connection calculus.

Full proofs can be found in an extended version of this paper available under
the URL http://dl.dropbox.com/u/65078815/oezcepMoellerISWC2012Ext.pdf.

2 Logical Preliminaries

We recapitulate the main logical notation and concepts used in this paper; the
region connection calculus and DL-Lite.

2.1 The Region Connection Calculus

We will consider different fragments of the region connection calculus [11] as
potential candidates for the spatial logic to be combined with DL-Lite. Randell
and colleagues’ axiom system [11] is based on a primitive binary relation C in-
tended to denote a connectedness relation which is specified to be reflexive and



symmetric. On the basis of C other binary relations between regions which are
called base relations are explained. One set of base relations is the set BRCC8,
which is the main component of the most expressive region connection calculus
RCC8. The base relations of BRCC8 and their intended meanings are given as
follows: BRCC8 = {DC (disconnected), EC (externally connected), EQ (equal),
PO (partially overlapping), NTPP (non-tangential proper part), TPP (tangen-
tial proper part), NTPPi (inverse of NTPP), TPPi (inverse of TPP)}. We skip
the concrete definitions of the base relations by the connectedness relation C
(see, e.g., [13, p. 45]), as we—in contrast to the axiom system of Randell and
colleagues—consider the following axiom system schema AxRCCi, which directly
specifies the properties of the base relations in BRCCi.

Definition 1 (Axiom system schema AxRCCi). For all i ∈ {2, 3, 5, 8} the
axiom set AxRCCi contains the following axioms:

{∀x, y.
∨

r∈BRCCi
r(x, y)} ∪ (joint exhaustivity)

{∀x, y.
∧

r1,r2∈BRCCi,r1 6=r2
r1(x, y)→ ¬r2(x, y)} ∪ (pairwise disjointness)

{∀x, y, z.r1(x, y) ∧ r2(y, z)→ r13(x, z) ∨ · · · ∨ rk3 (x, z) | r1; r2 = {r13, . . . , rk3}}
(weak composition axioms)

For i ∈ {3, 5, 8} additionally the axiom ∀xEQ(x, x) (reflexivity of EQ) is con-
tained. For i = 2 the axiom ∀xO(x, x) (reflexivity of O) is contained.

In particular, the axioms state the JEPD-property of the base relations (each
pair of regions x, y is related over exactly one base relation) and describe the
(weak) composition of two base relations (denoted by ;) according to the compo-
sition table for RCCi. With the composition of two base relations, in most cases,
only indefinite knowledge of spatial configurations follows. The spatial config-
uration r1(x, z) ∨ · · · ∨ rn(x, z) for base relations rj in BRCCi is also written
as {r1, . . . , rn}(x, z), and the set {r1, . . . , rn} is called a general RCCi relation.
Let RelRCCi be the set of all 2i general RCCi relations. An RCCi (constraint)
network consists of assertions of the form {r1, . . . , rn}(x, y).

We mention here the composition table for the low resolution logics RCC2
and RCC3. Their base relations are given by the sets BRCC3 = {DR,EQ,ONE}
and BRCC2 = {DR,O}, and their weak compositions are defined as shown in
Fig. 2. The discreteness relation DR is the same as {DC,EC}, the overlapping-
but-not-equal relation ONE is equal to {PO,NTPP,TPP,NTPPi,TPPi} and the
overlapping relation O is given by {ONE,EQ}.

; DR O

DR BRCC2 BRCC2

O BRCC2 BRCC2

; DR ONE EQ

DR BRCC3 {DR,ONE} DR

ONE {DR,ONE} BRCC3 ONE

EQ DR ONE EQ

Fig. 2. Composition tables for RCC2 and RCC3



Note that in the definitions of the base relations (of RCC3 and RCC2) we
followed the author of [16] and not [4]. But the composition tables for both defi-
nitions are identical. For the composition tables of RCC5 and RCC8 confer [14,
p. 45]. As an example entry for RCC8, which is relevant for the engineering bu-
reau scenario, we mention the table entry for the pair (tpp, tppi): tpp; tppi =
{dc, ec, po, tpp, tppi, eq} which is described in AxRCC8 by ∀x, y, z.tpp(x, y) ∧
tppi(y, z)→ {dc, ec, po, tpp, tppi, eq}(x, z). In case of the engineering bureau sce-
nario from the introduction the constraint of this composition entry is demon-
strated for x being the lake, y being the park and z being the playing ground.

Fig. 3. Illustration for composition entry tpp; tppi.

2.2 DL-Lite

The family of DL-Lite description logics [3] is an appropriate candidate for the
thematic component of the envisioned geo-thematic logic as it offers compu-
tationally feasible satisfiability checking and query answering over ontologies
and data stored in a relational database. More concretely, satisfiability check-
ing and query answering (for unions of conjunctive queries) are FOL rewritable.
In this paper, we mainly deal with a member of the extended DL-Lite fam-
ily DL-LiteuF,R; it allows for functional roles, role hierarchies, role inverses and
conjunction of basic concepts on the left-hand side of GCIs (general concept
inclusions). The syntax is given in Def. 2. The semantics of this logic is defined
in the usual way—but imposing the unique name assumption (UNA).

Definition 2 (DL-LiteuF,R). Let RN be the set of role symbols and P ∈ RN ,
CN be a set of concept symbols and A ∈ CN , Const be a set of individual
constants and a, b ∈ Const.



R −→ P | P− B −→ A | ∃R Cl −→ B | Cl uB Cr −→ B | ¬B
TBox∗): Cl v Cr, (funct R), R1 v R2

ABox: A(a), R(a, b)
*) Restriction: If R occurs in a functionality axiom, then R and its inverse

do not occur on the right-hand side of a role inclusion axiom R1 v R2.

FOL rewritability also holds for the logic DL-LiteuF,R which follows from the

corresponding FOL rewritability results for the Datalog extension Datalog± [2].
We recapitulate the technical notions needed for defining FOL rewritability. An
ontology O is a tuple (Sig, T ,A), with a signature Sig (i.e., a set of concept
symbols, role symbols and constants also denoted by Sig(O)), with a TBox T ,
and with an ABox A. An FOL query Q = ψ(x) is an FOL formula ψ(x) with
free variables x called distinguished variables. If x is empty, the query is called
boolean. Let a be a vector of constants from Sig(O). The set of answers w.r.t.
I is defined by QI = {d ∈ (∆I)n | I[x7→d] |= ψ(x)}. (We use QI later on for a
specific model I, namely a Herbrand model.) The set of certain answers w.r.t.
to O is defined by cert(Q, T ∪A) = {a | T ∪A |= ψ[x/a]}. A conjunctive query
(CQ) is a FOL query in which ψ(x) is an existentially quantified conjunction
of atomic formulas at(·), ψ(x) = ∃y

∧
i ati(x,y). A union of conjunctive queries

(UCQ) is a disjunction of CQs, i.e., a formula of the form ∃y1

∧
i1
ati1(x,y1) ∨

· · · ∨ ∃yn

∧
in
atin(x,yn). We conceive a UCQ as a set of CQs. The existential

quantifiers in UCQs are interpreted in the same way as for FOL formulas (natural
domain semantics) and not w.r.t. a given set of constants mentioned in the
signature (active domain semantics).

Let DB(A) be the minimal Herbrand model of A. Checking the satisfiability
of ontologies is FOL rewritable iff for all TBoxes T there is a boolean FOL query
QT s.t. for all ABoxes A: the ontology T ∪ A is satisfiable iff DB(A) 6|= QT .
Answering queries from a subclass C of FOL queries w.r.t. to ontologies is FOL
rewritable iff for all TBoxes T and queries Q = ψ(x) in C there is a FOL query

QT such that for all ABoxes A it is the case that cert(Q, T ∪A) = Q
DB(A)
T . For

DL-Lite, FOL-rewritability can be proved w.r.t. to satisfiability as well as w.r.t.
answering UCQs [3, Thm 4.14, Thm 5.15].

The rewritability results are proved with the so called chase construction
known from database theory. The idea of the chase construction is to repair the
ABox with respect to the constraints formulated in the TBox. If, e.g., the TBox
contains the axiom A1 v A2 and the ABox contains A1(a) but not A2(a), then
it is enriched by the atom A2(a). This procedure is applied stepwise to yield a
sequence of ABoxes Si starting with the original ABox as S0. The resulting set
of ABox axioms

⋃
Si may be infinite but induces a canonical model can(O) for

the ABox and the TBox axioms being used in the chasing process (see below).
We will summarize the chase construction for DL-Lite.

Let T be a DL-Lite TBox, let Tp be the subset of positive inclusion (PI)
axioms in T (no negation symbol allowed) and let A be an ABox and O = T ∪A.
Chasing will be carried out with respect to PIs only. Let S0 = A. Let Si be the
set of ABox axioms constructed so far and α be a PI axiom in Tp. Let α be of
the form A1 v A2 and let β ∈ Si (resp. β ⊆ Si) be an ABox axiom (resp. set



of ABox axioms). The PI axiom α is called applicable to β if β is of the form
A1(a) and A2(a) is not in Si. The applicability of other PI axioms of the form
B v C is defined similarly [3, Def. 4.1, p. 287]. If the left-hand side of the PI is
a conjunction of base concepts, e.g., if the PI is of the form A1 u · · · uAn v A0,
and if β is {A1(a), . . . , An(a)} and A0(a) is not in Si, then PI is applicable to β.

As there may be many possible applications of PI axioms to atoms and sets of
atoms, one has to impose an order on the TBox axioms and the (finite) subsets
of the ABox. So we assume that all strings over the signature Sig(O) of the
ontology and some countably infinite set of new constants Cch are well ordered.
Such a well ordering exists and has the order type of the natural numbers N.
This ordering is different from the one of [3]; but it can also be used also for
infinite ABoxes and it can handle concept conjunction. If there is a PI axiom α
applicable to an atom β in Si, one takes the minimal pair (α, β) with respect to
the ordering and produces the next level Si+1 = Si ∪ {βnew}; here βnew is the
atom that results from applying the chase rule for (α, β) as listed in Def. 3. The
primed constants are the chasing constants from Cch.

Definition 3 (Chasing rules for DL-LiteuF,R).

If α = A1 v A2 and β = A1(a) then βnew = A2(a)
If α = A1 v ∃R and β = A1(a) then βnew = R(a, a′)
If α = ∃R v A and β = R(a, b) then βnew = A(a)
If α = ∃R1 v ∃R2 and β = R1(a, b) then βnew = R2(a, a′)
If α = R1 v R2 and β = R1(a, b) then βnew = R2(a, b)
If α = A1 u · · · uAn v A0 and β = {A1(a), . . . , An(a)} then βnew = A2(a)
(and similarly for other PIs of the form B1 u · · · uBn v C)

The chase is defined by chase(O) = chase(Tp ∪ A) =
⋃

i∈N Si. The canonical
model can(O) is the minimal Herbrand model of chase(O). The canonical model
can(O) is a universal model of Tp ∪ A with respect to homomorphisms. In par-
ticular this implies that answering a UCQ Q w.r.t. to Tp ∪A can be reduced to
answering Qcan(O) w.r.t. to DB(A). More concretely, (some finite closure cln(T )
of) the negative inclusions axioms and the functionality axioms are only relevant
for checking the satisfiability of the ontology which can be tested by a simple
FOL query. We leave out the details (see the extended version of this paper).

3 Weak Combinations of DL-Lite with RCC

In this section, we extend the results concerning a weak coupling of DL-Lite with
the most expressive region connection calculus fragment RCC8, which we intro-
duced in [10], and explain its use(fulness) with a formalization of the example
scenario from the introduction. This will give us the opportunity to introduce
further concepts that are necessary to understand the discussions on stronger
couplings of DL-Lite with the weaker region connection calculi RCC2 and RCC3.

The combination paradigm follows that of Lutz and Miličič [8] who combine
ALC with the RCC8 and, more generally, with ω-admissible concrete domains



[8, Def. 5, p. 7]. The combined logic ALC(RCC8) of [8] is well behaved in so far
as testing concept subsumption is decidable. As we aim at FOL rewritability we
have to be even more careful in choosing the right combination method.

We use an axiom set Tω with corresponding properties of an ω-admissible do-
main for coupling with DL-Lite because axioms are more appropriate for rewrit-
ing investigations. The axiom sets AxRCCi will instantiate Tω.

We recapitulate the syntax and the semantics of the constructors of [8] that
are used for the coupling of the thematic and the spatial domain. A path U (of
length at most 2) is defined as l for a fixed attribute l (“has location”) or as
R ◦ l, the composition of the role symbol R with l. We abbreviate R ◦ l with
R̃ in this paper. The usual notion of an interpretation I in our combined logic
is slightly modified by using two separate domains ∆I and (∆∗)I . All symbols
of the theory Tω are interpreted relative to (∆∗)I . Let r be an RCC-relation of
some RCC-fragment. That is, let be given a set of base relations BRCCi and r =
{r1, . . . rn} ≡ r1∨· · ·∨rn for ri ∈ BRCCi. Then lI ⊆ ∆I×(∆∗)I ; rI = rI1∪· · ·∪rIn;
(R◦l)I ={(d, e∗) ∈ ∆I×(∆∗)I | there is an e s.t. (d, e) ∈ RI and (e, e∗) ∈ lI};
(∃U1, U2.r)

I ={d ∈ ∆I | there exist e∗1, e∗2 s.t. (d, e∗1) ∈ UI1 , (d, e
∗
2) ∈ UI2 and

(e∗1, e
∗
2) ∈ rI}; (∀U1, U2.r)

I ={d ∈ ∆I | for all e∗1, e∗2 s.t. (d, e∗1) ∈ UI1 , (d, e∗2) ∈
UI2 it holds that (e∗1, e

∗
2) ∈ rI}.

Now we can define the following combined geo-thematic logic (where a∗, b∗

stand for constants intended to be interpreted by regions):

Definition 4 (DL-LiteuF,R(RCC8)). Let r ∈ RelRCC8 and Tω = AxRCC8.

R −→ P | P− U −→ R | R̃ B −→ A | ∃R | ∃l
Cl −→ B | Cl uB Cr −→ B | ¬B | ∃U1, U2.r
TBox∗): Cl v Cr, (funct l), (funct R), R1 v R2

ABox: A(a), R(a, b), l(a, a∗), r(a∗, b∗)

*) Restriction: If (functR) ∈ T , then R and R− do not occur on the right-
hand side of a role inclusion axiom or in a concept of the form ∃U1, U2.r.

As satisfiability checking of RCC8 constraint networks is NP-complete, there
is only a chance to reach FOL rewritability if we assume within the ABox a
constraint network which is consistent and complete, i.e., it has a exactly one
solution and it is a clique with base relations as labels; in this case the ABox
is called spatially complete. For cadastral maps or maps containing areas of
administration one can assume pretty safely (almost) spatial completeness. The
coupling with RCC8 is so weak that FOL rewritability of satisfiability follows.

Proposition 1. Checking the satisfiability of DL− LiteuF,R(RCC8) ontologies
that have a spatially complete ABox is FOL rewritable.

Testing whether FOL rewritability holds for satisfiability tests is necessary
for tests whether FOL rewritability is provable for query answering w.r.t. a
sufficiently expressive query language. The query language which we consider
is derived from grounded conjunctive queries and is denoted by GCQ+. This
query language is explicitly constructed for use with DL-LiteuF,R(RCC8) and so
provides only means for qualitative spatial queries. But it could be extended to
allow also for quantitative spatial queries.



Definition 5. A GCQ+ atom w.r.t. DL-LiteuF,R(RCC8) is a formula of one of
the following forms:

– C(x), where C is a DL-LiteuF,R(RCC8) concept without the negation symbol
and x is a variable or a constant.

– (∃R1 . . . Rn.C)(x) for role symbols or their inverses Ri, a DL-LiteuF,R(RCC8)
concept C without the negation symbol, and a variable or a constant x

– R(x, y) for a role symbol R or an inverse thereof
– l(x, y∗), where x is a variable or constant and y∗ is a variable or constant

intended to denote elements of AxRCC8

– r(x∗, y∗), where r ∈ RelRCC8 and x∗, y∗ are variables or constants intended
to denote elements of AxRCC8

A GCQ+ query w.r.t. DL-LiteuF,R(RCC8) is a query ∃̃yz∗
∧
Ci(x,w

∗,y, z∗)

where all Ci(x,w
∗,y, z∗) are GCQ+ atoms and ∃̃yz∗ = ∃̃y1 . . . ∃̃yn∃̃z∗1 . . . ∃̃z∗m

is a sequence of ∃-quantifiers interpreted w.r.t. the active domain semantics.

Our perfect rewriting algorithm is an an adaptation of the algorithm Perfec-
tRef [3, Fig. 13] for reformulating UCQs w.r.t. DL-Lite ontologies to our setting
in which GCQ+-queries are asked to DL-LiteuF,R(RCC8) ontologies. We give a
description of our adapted algorithm in the following.

Given a query GCQ+ Q, we transform it to a special form; τ1(Q) is the result
of the transformation to a UCQ and τ2(Q) is the result of transforming Q in
a hybrid UCQ whose conjuncts are either classical predicate logical atoms or
GCQ+-atoms which are not further transformed. We use the notation “g = F”
for “g is of the form F”.

The original algorithm PerfectRef operates on the PI axioms of a DL-Lite
ontology by using them as rewriting aids for the atomic formulas in the UCQ.
Lines 5–12 and 28–34 of our adapted algorithm (Algorithm 1) make up the orig-
inal PerfectRef. Roughly, the PerfectRef algorithm acts in the inverse direction
with respect to the chasing process. For example, if the TBox contains the PI
axiom A1 u A2 v A3, and the UCQ contains the atom A3(x) in a CQ, then
the new rewritten UCQ query contains a CQ in which A3(x) is substituted by
A1(x)∧A2(x). The applicability of a PI axiom to an atom is restricted in those
cases where the variables of an atom are either distinguished variables or also ap-
pear in another atom of the CQ at hand. To handle these cases, PerfectRef—as
well as also our adapted version—uses anonymous variables to denote all non-
distinguished variables in an atom that do not occur in other atoms of the same
CQ. The function anon (line 31 in Algorithm 1) implements the anonymization.
The application conditions for PI axioms α and atoms are as follows: α is appli-
cable to A(x) if A occurs on the right-hand side; and α is applicable to R(x1, x2),
if x2 = and the right-hand side of α is ∃R; or x1 = and the right-hand side
of α is ∃R−; or α is a role inclusion assertion and its right-hand side is either
R or R−. The outcome gr(g, α) of applying an applicable PI α to an atom g
corresponds to the outcome of resolving α with g. For example, if α is A v ∃R
and g is R(x, ), the result of the application is gr(g, α) = A(x). We leave out
the details [3, Fig.12, p. 307]. In PerfectRef, atoms in a CQ are rewritten with



input : a hybrid query τ1(Q) ∪ τ2(Q), DL-Lite(RCC8) TBox T
output: a UCQ pr

1 pr := τ1(Q) ∪ τ2(Q);
2 repeat
3 pr′ := pr;
4 foreach query q′ ∈ pr′ do
5 foreach atom g in q′ do
6 if g is a FOL-atom then
7 foreach PI α in T do
8 if α is applicable to g then
9 pr := pr ∪ {q′[g/gr(g, α)]};

10 end

11 end

12 else

13 if g = ∃R̃1, R̃2.r3(x) and r1; r2 ⊆ r3 then

14 X := q′[g/(∃R̃1, l.r1(x) ∧ ∃l, R̃2.r2(x))];

15 pr := pr ∪ {X} ∪ {τ2
(
X, {∃R̃1, l.r1(x), ∃l, R̃2.r2(x)}

)
}

16 end
17 if g = ∃U1, U2.r1(x) and B v ∃U1, U2.r2(x) ∈ T for r2 ⊆ r1

then
18 pr := pr ∪ {q′[g/B(x)]};
19 end

20 if g = ∃U1, U2.r1(x) and B v ∃U1, U2.r2(x) ∈ T for r−1
2 ⊆ r1

then
21 pr := pr ∪ {q′[g/B(x)]};
22 end

23 if g = ∃R̃1, U1.r(x) (resp. ∃U1, R̃1.r(x)) and (R2 v R1 ∈ T or

R−1
2 v R−1

1 ∈ T ) then
24 X := q′[g/(g[R1/R2])];
25 pr := pr ∪ {X} ∪ {τ2

(
X, {g[R1/R2]}

)
};

26 end

27 end

28 end
29 foreach pair of FOL-atoms g1, g2 in q′ do
30 if g1 and g2 unify then
31 pr := pr ∪ {anon(reduce(q′, g1, g2))};
32 end

33 end

34 end

35 until pr′ = pr;
36 return drop(pr)

Algorithm 1: Adapted PerfectRef



the PI axioms (lines 6–11) and if possible merged by the function reduce (line
31) which unifies the atoms with the most general unifier (lines 28–34).

The modification of PerfectRef concerns the handling of GCQ+-atoms of
the form ∃U1, U2.r(x). These atoms may have additional implications that are
accounted for with four cases (lines 12–26 of the algorithm). At the end of the
adapted algorithm PerfectRef (Algorithm 1, line 35) these atoms are deleted by
calling the function drop. The algorithm returns a classical UCQ, which can be
evaluated as a SQL query on the database DB(A).

Let us demonstrate the rewriting algorithm with a formalization of the simple
scenario from the beginning. The TBox of the engineering bureau contains the
following axioms of DL-LiteuF,R(RCC8): Park+Lake v Park; Park4Playing v
Park; Park+Lake v ∃hasLake ◦ l, l.tpp; Park4Playing v ∃hasPlAr ◦ l, l.tpp. The
ABox A contains {Park+Lake(a),Park4Playing(a)} ⊆ A. The query of the engi-
neer, which asks for all parks with lakes and playing areas such that the playing
area is not a tangential proper part of the lake, can be formalized by the follow-
ing GCQ+: Q =Park(x) ∧ ∃hasLake ◦ l, hasPlAr ◦ l.(BRCC8 \ {ntpp})(x). Using
the composition tpp; tppi = {dc, ec, po, tpp, tppi, eq} ⊆ BRCC8 \{ntpp}, the refor-
mulation algorithm introduced above (lines 13–15) produces a UCQ that con-
tains the following CQ: Q′ = (∃hasLake ◦ l, l.tpp)(x) ∧ (∃l, hasPlAr ◦ l.tppi)(x).
Rewriting ∃l, hasPlAr ◦ l.tppi to ∃hasPlAr ◦ l, l.tpp (lines 20–21) in combina-
tion with the rewriting rule for A1 v A2 (Def. 3) we get another CQ Q′′ =
Park+Lake(x) ∧ Park4Playing(x). Now, Q′′ captures (as desired) the object a.

That the rewriting given in Algorithm 1 is indeed correct and complete fol-
lows from Theorem 1.

Theorem 1. Answering GCQ+-queries w.r.t. DL− LiteuF,R(RCC8) ontologies
that have a spatially complete ABox is FOL-rewritable.

We give a proof sketch. The proof follows the proof of Theorem 5.15 for pure
DL-Lite ontologies [3]. We adapt the chase construction to account for the RCC8
relations r ∈ RelRCC8. The main observation is that the disjunctions in r can
be nearly handled as if they were predicate symbols.

Because of Prop. 1 we may assume that O is satisfiable. Let pr be the
UCQ resulting from applying the algorithm to Q and O. We have to show
that cert(Q,O) = (pr)DB(A). These can be done in two main steps of which
the first will be sketched here as it contains the main chase-like construction
chase∗(O). After the construction, one has to describe what it means to an-
swer Q with respect to chase∗(O) is, resulting in the set ans(Q, chase∗(O)),
and then show that ans(Q, chase∗(O)) = cert(Q,O). In the second step, which
we leave out here (see the extended version of this paper) one has to show that
ans(Q, chase∗(O)) = (pr)DB(A).

For the construction of chase∗(O) one uses the chase rules of Def. 3 and the
special rule (R).

Chasing Rule (R)
If B(x) ∈ Si and there are no y, y∗, x∗ s.t. {R1(x, y), l(y, y∗), l(x, x∗), r1(y∗, x∗)}



is contained in Si, then let Si+1 = Si ∪ {R1(x, y), l(y, y∗), l(x, x∗), r1(y∗, x∗)}.
The constants y, y∗ are completely new constants not appearing in Si. The con-
stant x∗ is the old x∗ if already in Si, otherwise it is also a completely new
constant symbol.

Every time (R) is applied to yield a new ABox Si, the resulting constraint net-
work in Si is saturated by calculating the minimal labels between the new added
region constants and the other region constants. The application of (R) does not
constrain the RCC8-relations between the old regions and even stronger: Let (R)
be applied to a TBox axiom of the form A v ∃R̃, l.r and A(a) ∈ Si resulting
in the addition of R(a, b), l(b, b∗) and r(b∗, a∗). Then it is enough to consider
all c∗ ∈ Si and all relations rc∗,a∗ such that rc∗,a∗(c∗, a∗) ∈ Si. The composi-
tion table gives the outcome rc∗,a∗ ; r = r′c∗,b∗ and one adds r′c∗,b∗(c∗, b∗) to Si.
After this step, which we call triangulation step, one closes the assertions up
with respect to the subset relation between RCC8-relations and with respect to
symmetry. I.e., if r1(x∗, y∗) is added to Si, then one also adds r2(x∗, y∗) for all
r2 such that r1 ⊆ r2 and r−12 (y∗, x∗). For different c∗1, c

∗
2, assertions of the form

rc∗1 ,b∗(c∗1, b
∗) and rc∗2 ,b∗(c∗2, b

∗) do not constrain each other (because of the patch
work property). The saturation leads to a finite set Si+k (for some k ∈ N) that
is a superset of Si. Let chase∗(O) =

⋃
Si. The set chase∗(O) does not induce a

single canonical model. But it is universal in the following sense: For every model
I of O define a model Ic out of chase∗(O) by taking a (consistent) configuration
of the contained RCC8-network and taking the minimal model of this configu-
ration and the thematic part of chase∗(O). Then Ic maps homomorphically to
I. Now one can define that answers of GCQ+-queries with respect to chase∗(O)
are given by homomorphic embeddings and show that these answers are exactly
the certain answers w.r.t. the ontology O.

4 Strong Combinations of DL-Lite with RCC

Another way of reaching FOL rewritability for combinations of DL-Lite with
RCC is weakening the expressivity of the spatial component. Hence, one may
ask whether a combination with the calculus RCC3 or RCC2 [17], both fragments
with weak expressibility, allows for weak FOL rewritability w.r.t. satisfiability
checks (and query answering). Their potential use as logics for approximating
[6] ontologies in more expressible combined logics like ALC(RCC8) makes the
investigation valuable. The logics DL-Liteu,+F,R(RCC2) and DL-Liteu,+F,R(RCC3)
are defined as follows (’+’ indicates the strong combination):

Definition 6 (DL-Liteu,+F,R(RCC2) and DL-Liteu,+F,R(RCC3)). Let Tω =
AxRCC2 resp. Tω = AxRCC3 and r ∈ BRCC2 resp. r ∈ BRCC3

R −→ P | P− U −→ l | R̃ B −→ A | ∃R
Cl −→ B | Cl uB Cr −→ B | ¬B | ∃U1, U2.r
TBox∗): Cl v Cr, (funct l, R), R1 v R2

ABox: A(a), R(a, b), l(a, a∗), r(a∗, b∗)



*) Restriction: If (functR) ∈ T , then R and R− do not occur on the right-
hand side of a role inclusion axiom.

For RCC3 the strong combination with DL-LiteuF,R leads to non-FOL rewrita-
bility. The reason lies in the fact that testing the satisfiability of RCC3 is not in
the complexity class AC0 as shown by the following lemma.

Lemma 1. Checking satisfiability of RCC3 networks is Logspace hard.

Proof. As is known, the reachability problem in symmetric (undirected) graphs is
logspace complete [12]—where graph reachability asks whether for nodes s, t in G
there is a path between s and t. By reducing this problem to the satisfiability test
for RCC3 networks we will have shown that the latter problem is Logspace hard
itself. So let be given a (symmetric) graph G = (V,E) and nodes s, t ∈ V . We
define the network N in the following way (see Figure 4): Let V = {v1, . . . , vn}
be an enumeration of the nodes of G; w.l.o.g. let s = v1 and t = vn and let
B = BRCC3. Nodes of N are given by V ∪ {a} where a /∈ V . Labelled edges of
N are given by: s{DR}a; t{ONE}a; vi{B}a for all i 6= 1, n; vi{EQ}vj if E(vi, vj);
vi{B}vj if ¬E(vi, vj). Now we show that the networkN is satisfiable iff s and t are
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Fig. 4. Network N used in proof of Lemma 1

connected inG. Assume that s and t are connected; then there is an EQ-path inN
between them, hence s{EQ}t follows. But this contradicts s{DR}a and t{ONE}a.
Now assume that s and t are not connected; then there is no path consisting only
of EQ-labels between s and t. The graph G consists of at least 2 components, and
s, t are in different components. We define a consistent configuration as follows:
For all nodes v, v′ in the component in which s is contained, let v{DR}a and
v{EQ}v′. For all nodes v, v′ in the component of t let v{ONE}a and v{EQ}v′.
For all nodes v, v′ in the other components let v{DR}a and v{EQ}v′. For all
nodes v, v′ which have not a label yet, let v{DR}v′. (Two remarks : 1) EQ-edges
for edges E(vi, vj) in G with j > i + 1 are not shown in Fig. 4. 2) We inserted
edges labelled B for better illustrations. But these are not needed.)

This lemma immediately entails the fact that satisfiability checking for on-
tologies over the logic DL-Liteu,+F,R(RCC3) is not FOL rewritable. This problem
does not vanish if we presuppose that the ABox A is spatially complete—as
shown by the following proposition.



Proposition 2. Satisfiability checking of ontologies in DL-Liteu,+F,R(RCC3) with
spatially complete ABoxes is not FOL rewritable.

Proof. We construct a generic TBox Tg that allows one to encode any RCC3
constraint network so that checking the consistency of RCC3 constraint networks
is reducible to a satisfiability check of this TBox and a spatially complete ABox.
Let for every r ∈ RelRCC3 be given role symbols R1

r , R
2
r . The generic TBox Tg

has for every r ∈ RelRCC3 a concept symbol Ar and a corresponding axiom with
the content that all instances of Ar have paths over the abstract features R1

resp. R2 to regions that are r-related.

Tg = {Ar v ∃R̃1
r , R̃

2
r .r, (funct l, R1

r , R
2
r) | r ∈ RelRCC3} (1)

Now, let N be an arbitrary RCC3 constraint network which has to be tested for
relational consistency. Let AN be an ABox such that for every r(a, b) in N three
new constants are introduced: xab, xa, xb.

AN = {Ar(xab), R
1
r(xab, xa), R2

r(xab, xb) | r(a, b) ∈ N} (2)

The construction entails: Tg ∪AN ∪AxRCC3 is satisfiable iff N ∪AxRCC3 is sat-
isfiable. If the data complexity of the satisfiability check for DL-Liteu,+F,R(RCC3)-

ontologies were in AC0, then the consistency of constraint networks could be
tested in AC0, too. (Note that Tg is a fixed TBox.) But checking the consistency
of RCC3 constraint networks is Logspace-hard and AC0 ( Logspace.

As a corollary to this proposition we get the assertion that strong combi-
nations of RCC5 and RCC8 into DL-Liteu,+F,R(RCC5) and DL-Liteu,+F,R(RCC8),
respectively—which are defined in the same manner as in Definition 6—do not
allow for FOL rewritability of satisfiability checking.

The low resolution calculus RCC2 is quite more inexpressive than RCC3
due to the fact that the composition table does not allow for the propagation
of information: All compositions of DR,O result in the maximally unspecified
relation {DR,O}. Hence, FOL rewritability of satisfiability testing follows easily
considering the query Q = ∃x, y[O(x, y) ∧ DR(x, y)] ∨ ∃x[DR(x, x)].

Proposition 3. Testing the satisfiability of RCC2 networks is FOL rewritable.

But in combination with functionality axioms of the TBox one could have the
problem that the ABox may lead to identifications of regions. The identified
regions are not allowed to have edges labelled O, DR resp. to the same region.
Though this can be tested, the problem arises when a chain of regions is identified
by the TBox and the ABox, because we do not know the length of the chain
in advance. More formally: In addition to RCC2 constraint-network assertions
we allow identity assertions v = w for regions v, w. As we can assume that all
nodes in a RCC2 network are connected by an edge labelled O, DR or BRCC2

we use a more intuitive formalism where, for every assertion v = w, the label of
the edge between v and w is marked with an =; e.g., an edge between v, w with
label DR= stands for DR(v, w) ∧ v = w. We call such a network an =-marked
RCC2 network (a RCC=2 network for short). Let B = BRCC2 in the following.



Proposition 4. An RCC=2 constraint network N is unsatisfiable iff

1. N contains DR(v, v) or DR=(v, v) for some node v; or
2. N contains DR=(v, w); or
3. N contains a cycle in which there is DR(v, w) and in which there is a path

from v to w such that every label on the path is B= or O=; or
4. N contains a cycle in which there is DR(v, w) and in which there is a path

from v to w s.t. every label on the path is B= or O= except one which is O.

Proposition 4 shows that adding identity assertions to an RCC2 network may
require checking the existence of identity chains of arbitrary length. Hence, in
principle it is possible that the functional roles used in DL-Liteu,+F,R(RCC2) may
lead to identity chains. But as the following proposition show, this cannot be the
case: The identity paths induced by functionalities in DL-Liteu,+F,R(RCC2) can
have only a maximal length of one.

Proposition 5. Satisfiability checking of ontologies in DL-Liteu,+F,R(RCC2) is
FOL rewritable.

5 Conclusion

As proved in this paper, combining DL-Lite with expressive fragments of the re-
gion calculus like RCC8 into logics that preserve the property of FOL rewritabil-
ity is possible if the coupling is weak: Constraints of the RCC8 network contained
in the ABox are not transported over to the implicitly constructed constraint
network resulting from the constructors of the form ∃U1, U2.r. In this paper we
further dealt with strong combinations for weaker calculi like RCC2 or RCC3. As
we have shown by a reduction proof, a strong combination with RCC3 destroys
the FOL rewritability of satisfiability checking. The reason is that checking the
satisfiability of RCC3 networks needs to test for reachability along EQ paths,
which can be reproduced by the TBox. For the low resolution calculus RCC2,
FOL rewritability of satisfiability checking is provable—though checking the sat-
isfiability of RCC2 networks with additional identity assertions is at least as hard
as checking RCC3 networks. We plan to investigate whether DL-Liteu,+F,R(RCC2)
and DL-LiteuF,R(RCC8) can be used for approximation—following the complete
but not necessarily correct approximation method of [6]. Moreover we want to
check whether DL-Liteu,+F,R(RCC2) allows for FOL rewritability of query answer-
ing w.r.t. unions of conjunctive queries.
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5. Haarslev, V., Lutz, C., Möller, R.: A description logic with concrete domains and
a role-forming predicate operator. J. Log. Comput. 9(3), 351–384 (1999)

6. Kaplunova, A., Moeller, R., Wandelt, S., Wessel, M.: Towards scalable instance
retrieval over ontologies. In: Yaxin, B., Mary-Anne, W. (eds.) Knowledge Science,
Engineering and Management, Fourth International Conference, KSEM 2010, Pro-
ceedings. Lecture Notes in Computer Science, vol. 6291. Springer (2010)

7. Kuper, G.M., Libkin, L., Paredaens, J. (eds.): Constraint Databases. Springer
(2000)
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