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{kuhr,m.bender,braun,moeller}@ifis.uni-luebeck.de

Abstract—A reference library can be described as a corpus of
an individual composition of documents. Over time, the corpus
might grow because an agent decides to extend its corpus with
additional documents, e.g., new publications, or new articles.
Existing approaches use topic modelling techniques to compare
documents with each other within the same corpus by the
documents’ topic distribution. However, for new documents, only
the text, and no topic distribution is available. Thus, this paper
describes three techniques for estimating topic distributions of
new unseen documents considering the initial documents in a
corpus. Additionally, we present an extensive evaluation about the
performance and runtime of the three topic modelling techniques
for various scenarios and different sized corpora.

I. INTRODUCTION

An agent in pursuit of a defined task may work with an
individual composition of documents as a reference library,
also known as a corpus. A person assembling a range of
scientific articles as related work describes such a setting, with
the person as the agent, the compiling of related articles as the
task, and the articles as the library. From an agent-theoretic
perspective, an agent is a rational, autonomous unit acting in
a world, perceived through sensors, fulfilling a defined task
pursuing goals, e.g., an agent providing document retrieval
services given specific requests from users. Working directly
with the documents in the corpus leads to high computational
costs since all words in each document have an influence.
Thus, topic modelling is an approach to reduce the complexity
of the documents in a corpus. Topic models are statistical
models for discovering abstract topics, which can be seen as
hidden semantic structures, in the text of documents that occur
in a corpus. All topic modelling approaches reduce documents
to a fixed number of topics such that an agent can work with
the documents at their topic level, e.g., comparing documents
not by the words occurring but by their topic similarity. Blei
et al. [1] have introduced latent Dirichlet allocation (LDA) –
a famous statistical topic modelling approach. LDA generates
a topic model from the composition of documents in a corpus
and learns a document-topic distribution for each word in the
corpus as well as a corpus-specific topic-word distribution.

Over time, the composition of documents in a corpus might
change because an agent decides to extend its corpus with
additional documents. For these corpus-extending documents,
an agent has no information about the topics, since a corpus
represents an individual composition of documents, and no
topic model has been generated for the composition of docu-
ments in an extended corpus. Incorporating corpus-extending

documents into a topic model enables an agent to identify for
the corpus-extending documents a set of similar documents in
the corpus based on the documents’ topic similarity. Thus, the
new documents need a corpus-specific topic distribution.

There are basically three strategies to estimate topic dis-
tributions for new documents: (i) Extend the initial corpus
with new documents and, based on the documents in the
extended corpus, estimate a new topic model, which also
includes topic distributions for the new documents. (ii) Infer
topic distributions of new documents based on the topic model
generated from the documents in the initial corpus and adapt
the topic model based on the new documents. (iii) Infer topic
distributions of new documents based on the topic model
generated from the documents in the initial corpus without
adapting the initial model. The first two strategies incorporate
that a topic model should represent all documents in its corpus,
including the new corpus-extending documents, which is why
in one case, a complete new model is learned and in the
other case, the initial topic model is adapted. The latter of the
two strategies is faster since the existing topic model is not
dropped but adapted given the words in new documents. The
third strategy leaves the topic model unchanged, which accepts
inaccuracy of the topic model representing all documents in
the corpus in exchange for fast processing of new documents.

All three strategies can handle corpus-extending documents
leading to topic distribution of new documents. However, the
strategies differ in their performance for various scenarios,
e.g., extending the corpus with a single document, a series
of single documents, or a batch of many documents as well
as adding documents sharing similar topics or documents with
unknown topics. In this paper, we analyse the performance of
the three strategies given varying scenarios. Specifically, the
contributions of this paper are: (i) providing techniques to
compare topic distributions with each other resulting from dif-
ferent topic models and (ii) a comprehensive evaluation regard-
ing the three strategies handling corpus-extending documents.
We use the following three techniques for the evaluation of
the aforementioned three strategies (i) LDA, (ii) onlineLDA
(OLDA), and (iii) fold-in Gibbs sampling (FIGS).

The remainder of this paper is structured as follows. We start
with a look at related work. Then, we recap the three topic
modelling techniques LDA, OLDA, and FIGS and provide
comparison approaches for topic models. Next, we present an
evaluation analysing the performance of the three strategies
for various scenarios. The paper ends with a conclusion.



II. RELATED WORK

Finding document representations for efficiently fulfilling
tasks such as document retrieval has a long history. An old
and famous approach is tf-idf [2] (term frequency-inverse
document frequency), which can be used to compare the vector
representation of two documents in the corpus. The tf-idf
scheme is a straightforward approach to reduce documents to
fixed-length lists of numbers. However, tf-idf provides only
a small amount of reduction in description length and has
its limitations in inter- and intra-document structure. Thus,
over the years, researchers have proposed other dimensionality
reduction techniques, e.g., latent semantic indexing (LSI) [3],
representing a linear combination of the original tf-idf features.
Hoffman et al. [4] have introduced a generative probabilistic
variant of LSI called probabilistic LSI (pLSI), which is the
foundation for the well-known topic model LDA [1]. LDA has
been introduced in 2003 as a generative model representing
documents as a probability distribution over topics. Many
extensions have been proposed to optimize the performance
of LDA where extensions (i) relax at least one assumption
of LDA to uncover more information about the structure of
documents or (ii) optimize topic learning for special categories
of documents [5]. Extensions of LDA are, e.g., the author-topic
model [6], which extends LDA to couple each author of a
document with a multinomial over words, and the dynamic
topic model [7], which allows for analysing topic changes
over time. Furthermore, there are models available for domains
like social networks, analysing relationships between people in
networks [8]–[10], or working on short documents, like tweets
on the microblogging service Twitter [11].

Given a topic distribution for each document, one can com-
pare documents using their topic distributions and retrieve doc-
uments similar to a given document regarding their topic dis-
tributions or cluster the documents in a corpus based on their
topic distributions. To compare topic distributions of a docu-
ment, generated from different topic models, there exist tech-
niques, e.g., visually comparing the documents’ topics [12],
comparing top-k words of topics from different models [13], or
using distances like Hellinger distance [14], Kullback-Leibler
divergence [15], or Bhattacharyya distance [16].

All these approaches assume that an underlying corpus
does not change. In this paper, we consider documents to
extend a given corpus, meaning the topic model no longer
accurately represents the initial composition of documents. At
least topic distributions for the corpus-extending documents
have to be inferred. OLDA [17] infers a topic distribution for
a batch of new documents while adapting the existing topic
model to the new documents. Fold-in Gibbs sampling [18]
only infers a topic distribution for new documents using the
given topic-word distribution and document-topic distribution,
leaving the existing distributions unchanged. The idea relates
to incremental LSI [19] considering the previous computations
of the model. We analyse the performance of different topic
modelling techniques estimating the topic distribution for
corpus-extending documents.

III. TOPIC MODELS AND THEIR MAINTENANCE

This section describes LDA [1] as the main topic modelling
technique as well as OLDA [17] and FIGS [18] for maintaining
a corpus when new documents arrive.

Topic modelling techniques basically estimate topics from
a collection of documents by calculating for each of the
documents a topic probability distribution and topics represent
co-occurring words of the documents. LDA assumes that
documents in a corpus D represent a mixture of topics where
each topic is characterized by a distribution of words from a
fixed vocabulary V containing all words from the documents
in D. LDA generates a topic model from the documents in D,
learning latent structures of two forms,

(i) a document-topic distribution θd for each document
d ∈ D, representing the degree with which the content
of d is about each of the K topics, and

(ii) a topic-word distribution φ describing the probability of
each word from V occurring in each of the K topics.

Both, the document-topic distribution and topic-word distribu-
tion depend on the documents in D. The inputs for LDA are a
corpus D of documents as defined above, the number of topics
K, and two hyperparameters α and β, where α conditions
the per-document topic distributions and β conditions the per-
corpus topic distributions. Hyperparameters α and β trade off
the following two goals to identify groups of co-occurring
words: (i) Allocate the words in a document to as few topics
as possible (α). (ii) Assign high probability to as few terms
as possible in each topic (β). The two goals are conflicting,
since assigning all words to a single topic within a document
achieves the first goal but makes it difficult to achieve the
second goal. Achieving the second goal and assigning only
few words to each topic makes it difficult to reach the first goal
for documents containing many words. To cover all words in a
document, many topics have to be assigned; however, the first
goal is to assign as few topics as possible within the document.

Formally, for each document d ∈ D, LDA learns a discrete
probability distribution θd over the K topics, which contains
for each topic k ∈ {1, . . . ,K} a value between 0 and 1 s.t. the
sum of all values is 1, and a discrete probability distribution
φk for each topic k ∈ {1, . . . ,K} over the words in V , which
contains for each w ∈ V a value between 0 and 1 s.t. the
sum of all values is 1. Both distributions represent a corpus-
specific topic model M = (θd∀d ∈ D, φk∀k ∈ {1, . . . ,K}).
Given a corpus, only wd,j are visible in each d. The key
inference problem is computing the posterior distribution of
hidden variables given a document (with α, β chosen):

p(θ, z | w,α, β) = p(θ, z, w | α, β)
p(w | α, β)

, (1)

where z represents a single topic chosen from θ. Exactly
calculating the posterior distribution of the hidden variables
is intractable. Instead, approximative inference algorithms are
used such as mean-field variational expectation maximisa-
tion [1], expectation propagation [20], Gibbs sampling [18],
or online variational Bayes [17].



If a new document d′ extends a given corpus with an exist-
ing topic model M, there are three main strategies to provide
a document-topic distribution θd′ for the new document d′:

(i) Extend corpus D with document d′ and calculate a new
topic model M′ for D′ = D ∪ {d′} using LDA.

(ii) Approximate θd′ for d′ by inferring θd′ based on M
(a) either updating the parameters ofM considering the

content of document d′ along the way (OLDA),
(b) or without updating the parameters of M (FIGS).

Strategy (i) is the most accurate version of handling d′ since
a topic model is based on all words in a corpus. If the corpus
changes, a new topic model has to be learned. Since learning
a new topic model is computationally intensive, the adaptive
methods OLDA and FIGS have been introduced.

OLDA [17] can analyse large collections of documents.
It is optimized for handling streams of documents extend-
ing a corpus. OLDA efficiently adapts topic models and
calculates document-topic distributions for new documents
by approximating the posterior probability in Eq. (1) using
online stochastic optimization converging to a local optimum
of a variational Bayes objective function. To extend an ini-
tial corpus D with a new document d′, OLDA updates the
initial topic-word distributions φk, k ∈ {1, . . . ,K} and the
document-topic distributions θd, d ∈ D ∪ {d′} by using an
EM-algorithm iterating over the extended corpus until the
model performance converges or a fixed number of iterations is
reached. For details, please refer to Alg. 2 in [17]. In contrast
to using LDA for learning a new model, OLDA reuses the
distributions of the old topic-model by adapting it given new
documents, saving computation costs. Adapting a topic model
given a new document might drag down the performance of
the topic model on the original documents, though.

FIGS refers to adding a new document d′ to the initial
corpus D and performs Gibbs sampling [18] only on the
words in d′, without adapting the initial document-topic
distributions θd, d ∈ D and the topic-word distributions
φk, k ∈ {1, . . . ,K}. Thus, FIGS is even faster than OLDA
compared to Strategy (i). FIGS assigns the most probable
topic for each word w ∈ d′ using the topic-word distributions
φk, k ∈ {1, . . . ,K}. Then, FIGS computes for each word in d′

the probability being assigned to each of the K topics, samples
a topic from the document’s topic distribution, and assigns the
word to the new topic. If d′ contains a new word w not part in
any document d ∈ D, the Gibbs sampling process randomly
assigns a topic for this word. The topic assignment of the
words in d′ yields the distribution of topics in d′. FIGS requires
only few iterations taking the topic structure into account, i.e.,
allocate words of documents to as few topics as possible.

Technically, there is no limitation in the number of doc-
uments for extending a corpus using OLDA or FIGS, but
the document-topic distributions θd, d ∈ D, topic-word dis-
tributions φk, k ∈ {1, . . . ,K}, and the number of topics (K)
changes with each corpus-extending document. Thus, it might
be a good idea to generate a new topic model after a while.

IV. COMPARING TOPIC MODELS

This section discusses how to compare topic distributions
and complete topic models, which contain various topic dis-
tributions with topics not necessarily matching one-to-one
between different topic models.

A. Comparing Topic Distributions within a Topic Model

The Hellinger distance allows for measuring the distance
between two probability distributions [14]. As such, we can
use the distance to compare document-topic and topic-word
distributions for a single topic model M generated from the
documents in a corpus D. Given document-topic distributions
θdi and θdj for two documents di, dj ∈ D, the Hellinger
distance H(θdi , θdj ) between θdi and θdj is defined as

H(θdi , θdj ) =
1√
2

√√√√ K∑
k=1

(√
θdi,k −

√
θdj ,k

)2
, (2)

where k refers to the topics. Since K is usually small, it is
computationally feasible to calculate H(θdi , θdj ) for two given
distributions. To compute the Hellinger distance between two
topic-word distributions φki , φkj , the inner sum of Eq. (2) goes
over the words in the vocabulary of D.

The inner sum of Eq. (2) assumes that the two distributions
are indexed over the same variables, i.e., topics K in case
of document-topic distributions θdi , θdj and vocabulary V in
case of topic-word distributions φki , φkj . If comparing two
distributions from two different topic modelsM andM′ based
on the same corpus, the assumption may be violated. In case
of topic-word distributions φk and φk′ , it is reasonable to
assume V is the same and can therefore be matched between
φk and φk′ . But, assuming that K is identical for both M
andM′, the K topics, over which the inner sum iterates, may
not be as easily matched. Topics are only abstract structures
representing a distribution over the words in a vocabulary, i.e.,
φk for all k ∈ {1, . . . ,K}. Learning the topic distributions
does not guarantee that topic k = 1, represented by φ1 in M,
matches the topic k = 1, represented by φ1 inM′. Therefore,
we need a way to match the topics from one topic model to
the topics from another topic model.

B. Matching Topics from Different Topic Models

As mentioned above, comparing topic distributions of doc-
uments from different topic models is difficult since topics
have no names and the first topic from a model M does not
necessarily represent the first topic from another model M′.
Thus, we need a technique mapping K topics from one topic
model M to K ′ topics from another model M′ such that we
can compare the topics from different models. We say the best
match between the K topics of two topic models M,M′ is
given by the mapping σ of the K topics fromM to the topics
of M′ that has the minimal sum of the Hellinger distances
between the K topic-word distributions:

min
σ

K∑
k=1

H(φk, φ
′
σ(k)), (3)



where σ denotes a function that maps each topic
k ∈ {1, . . . ,K} in M to a topic k′ ∈ {1, . . . ,K ′} in M′.
If K = K ′, we may impose bijectivity on σ to require that
each topic in M is mapped to exactly one topic in M′, and
vice versa. We consider the following techniques estimating
the best mapping between the topics of the two models M
and M′:

(i) Full Permutation: Calculate the Hellinger distance for
each possible mapping between the topics of M to the
topics of M′ to identify the best mapping, i.e., exactly
determine Eq. (3), yielding a bijective mapping. The
complexity lies in O(K! · TH), where TH refers to the
complexity of calculating the Hellinger distance, which
depends on the number of topics K. Thus, this technique
is only applicable for small K.

(ii) Topic coherence: Estimate for each topic k of M and
k′ of M′ the documents having a high probability for
the respective topic (top-doc) and compare the topics
betweenM andM′ in both directions using the Jaccard
coefficient J on the assigned documents. This results
in two sets, each containing for each topic a set of
documents. Additionally, we compare the top-c words
of each topic k of M with the top-c words of all topics
k′ of M′ using the Jaccard coefficient J , leading again
to two sets of document-topic assignment. Thus, for each
topic k of M, we have four possible topics in M′ for
our mapping and use a majority vote to map k to k′. The
basic assumption is that the documents characterise a
topic. The mapping is not necessarily bijective as two or
more topics fromM may be mapped to one topic inM′

given the topic-assigned documents. The upside of this
technique is its superior runtime in O(K2 ·TJ), where TJ
refers to the complexity of calculating J , which depends
on the number of documents in the corpus.

(iii) Minimal Hellinger distance: Calculate the Hellinger dis-
tance between each topic k in model M and all topics
k′ in model M′.

k′ = argmin
k′∈{1,...,K′}

H(φk, φ
′
k′)

Again, the mapping is not necessarily bijective. Com-
pared to topic coherence, the best match is based not
on the top-doc documents but on the distribution over
all topics. The complexity lies in O(K2 · TH) where
TH again refers to the complexity of calculating the
Hellinger distance

We generate 50 topic models from the documents in a
corpus D and compare the three techniques plus the aver-
age distance between randomly selected mappings for topic-
distribution of two topic models M,M′ learned for one cor-
pus D (without extending D). Figure 1 presents the Hellinger
distance of the matched topics given the mapping σ generated
by (a) random permutation – randomly selecting one mapping
for each of the 50 topic models, (b) topic coherence, (c) best
permutation – selecting for each of the 50 topic models only
its best mapping, and (d) minimal Hellinger distance.

(a) (b) (c) (d)
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Fig. 1: Topic mapping approaches using (a) a random map-
ping, (b) topic coherence, (c) best permutation, and (d) mini-
mal Hellinger distance for 50 topic models from the corpus.

The average performance of all techniques is similar, with
the Hellinger distance lying between 0.3 and 0.4. The perfor-
mance of the topic coherence varies the most, the performance
of the best mapping from the full permutation the least. The
best performance can be reached using the minimal Hellinger
distance, which is what we will use for the evaluation. Since
the minimal Hellinger distance allows us to map two topics in
M to the same topic inM′, it is possible that the performance
of the minimal Hellinger distance is better than the best results
from a full permutation. Given a way to match topics from
different topic models, we specify two ways to compare topic
models with each other.

C. Comparing Topic Models

We are interested in evaluating the performance between
LDA, OLDA, and FIGS in estimating document-topic distri-
butions of new documents extending an initial corpus D.

A famous benchmark in the NLP community is the perplex-
ity. The perplexity of a topic model describes how well the
generated model predicts a sample. The smaller the perplexity
of a topic model, the better is the prediction performance of
the model for samples. However, different experiments have
shown that the perplexity does not strongly correlate to human
judgment [21]. Besides perplexity, we focus on the document-
topic distribution of documents as a benchmark.

As described in Section III, calculating the hidden vari-
ables of a document d is based on approximative techniques.
Generating two topic models from the same composition
of documents in D using the same initial topic modelling
parameters lead to two topic models distinguishing in their
topic-word distribution φ and the document-topic distribution
θ for each document in D, i.e., the document-topic distri-
bution θd of document d generated by one topic model M
is different from θd generated by another model M′ from
the same composition of documents in D. One reason for
the difference in the document-topic distribution is given by
the approximative inference algorithms generating the topic-
word distributions and document-topic distributions. Thus, we



say that there is an “excused error” that we attribute to the
approximate nature of the calculations. We call this error a
baseline error berr(M,M′) between the two topic modelsM
and M′ and define it as follows:

berr(M,M′) =

∑K
k=1H(φk, φσ(k))

K

Calculating H requires a mapping σ between M,M′ for the
inner sum of Eq. (2).

Having a baseline error, we can define the classification
performance K for evaluating the performance between LDA,
OLDA, and FIGS in estimating the topic distribution for an
extend corpus D′ = D∪{d′i}Ti=0 containing T new documents
as follows:

K(M,M′) = max

(
0,

∑
d∈D′ H(θd, θ

′
d)

|D′|
− berr(M,M′)

)
,

where M′ represents the topic model generated by LDA and
represents the ground-truth for the document-topic distribution
and topic-word distribution. M represents the topic model
generated by FIGS (OLDA) so that we can compare the per-
formance of FIGS (OLDA) with LDA generating a completely
new topic model from an extend corpus, while considering the
baseline error. K indicates the average Hellinger distance of
the document-topic distributions. The smaller the classification
value of K, the better is the performance of a model.

V. EMPIRICAL EVALUATION

This section shows an empirical evaluation of LDA, OLDA,
and FIGS. Each of the approaches estimates a topic distribu-
tion given the text of corpus-extending documents. However,
the performance of the three approaches differ in (i) the
perplexity of the overall corpus, (ii) the held-out set perplexity,
(iii) the classification performance, and (iv) the runtime for
corpora of different size.

The documents in corpus D, the length of the documents,
and the words in the documents influence the difference
between the inferred topic distributions of new documents
{d′i}Ti=0 and the topic distributions of the same documents
generated by a new topic model for D ∪ {d′i}Ti=0. This evalu-
ation focusses on which approach performs best for different
scenarios, extending the corpus by adding batches of 1000
corpus-extending documents to the initial corpus such that
(type 1) the categories of unseen documents are not part of

the documents in the initial corpus or
(type 2) the documents in the initial corpus contain the same

categories as the corpus-extending documents.
We expect FIGS and OLDA to perform better with documents
of a known category compared to documents of an unknown
category. We also compare for OLDA two settings:

(incr.) Short for incremental, where in each iteration, we add
a batch of documents, perform OLDA, and continue
with the extended corpus when adding another batch
in the next iteration. That is in each iteration, a batch
of 1000 documents is added to the growing corpus.

(init.) Short for initial, where we retain the original corpus
and add an increasingly larger batch of documents in
each iteration, meaning, in the first iteration, we add
1000 documents, in the second, 2000, and so on to
the original corpus.

Thus, we are interested in the performance for the documents
in a corpus and the held-out set for the incremental and
initial technique extending the corpus since new documents
are generated from time to time and not only once.

We compare the performance of OLDA and FIGS against
the performance of LDA, which acts as a baseline, on the well-
known 20Newsgroup data set [22]. The data set contains 20
different newsgroups, each corresponding to a different topic.
However, some of the newsgroups are closely related, e.g.,
autos and motorcycles, baseball and hockey, or pc hardware
and mac hardware, resulting in 11 to 13 distinct topics.
We remove 1000 duplicated documents and preprocess the
remaining 18.846 documents using the following four tech-
niques: (i) lowercasing all characters, (ii) stemming the words,
(iii) tokenizing the result, and (iv) eliminating tokens part of
a stop-word list containing 337 words.

A. Perplexity

We present the topic model perplexity of LDA, OLDA,
and FIGS for the following two cases in the right plot of
Fig. 2: In the first case (type 1), the set of corpus-extending
documents represents content form newsgroups that is not
represented in the documents of the initial corpus D. In the
second case (type 2), the set of corpus-extending documents
represents content form newsgroups that are also represented
in documents of the initial corpus D.

For LDA, we calculate a new topic model from the initial
composition of documents in corpus D and the set of corpus-
extending documents {d′i}Ti=0. For FIGS, we use the available
topic-word distributions φk, k ∈ {1, ...,K} and document-
topic distribution θd, d ∈ {1, ..., |D|} from the initial corpus D
inferring the document-topic distribution θd′i for each corpus-
extending document in {d′i}Ti=0. In the setting of OLDA, we
update the initial topic model after extending the corpus with
T corpus-extending documents {d′i}Ti=0. The performance of
OLDA depends on the occurring categories in the documents
of the initial corpus and the categories of the corpus-extending
documents. Generally, the performance of OLDA is worse
when the categories of new documents are distinct (type 1) to
those categories of the documents in the initial corpus (type 2).

In the left plot of Figure 2, we evaluate the topic model
perplexity of FIGS, LDA, and both variants of OLDA consid-
ering only unseen documents of type 1. The corpus perplexity
increases with corpus-extending documents for the incremental
variant of OLDA, which strongly adapts the initial model.
Adding all batches to the initial corpus and adapting the
initial topic model using OLDA init. leads to a similar corpus
perplexity as using LDA which calculates a new topic model
from all documents. In the right plot of Figure 2, we evaluate
the topic model perplexity for FIGS, LDA, and both variantes
of OLDA considering only unseen documents containing the
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Fig. 2: Both plots show the perplexity using LDA, FIGS, OLDA incr., and OLDA init.. We present corpus-extending strategy
using type 1 (left plot) and type 2 (right plot). Setting: initial corpus size: 8k, α: 0.1, β: 0.1, topics: 11, iterations: 10k.
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Fig. 3: Both plots show the held-out set perplexity using LDA, FIGS and both variants of OLDA.

same categories as the documents in the initial corpus. Again,
the performance of OLDA incr. is worst. For all three other
techniques, the corpus perplexity is similar.

In Figure 3, we present the held-out perplexity for a fixed set
of documents using FIGS, LDA, and OLDA for type 1 (left)
and type 2 (right). Initially, we generate one topic model from
all documents within a corpus D containing 10k documents.
In each step, we extend D with 1k documents and calculate
the perplexity for the new documents in the following way:

(i) For LDA, we add documents to the initial corpus and
calculate a new topic model from the extended corpus, (ii) for
OLDA incr. we add in each step the new documents to the
actual corpus and update the actual topic model leading to new
topic distributions for all documents in the corpus, and (iii) for
OLDA init. we add in each step all so far new documents to
the initial corpus and update the initial topic model leading to
new topic distributions for all documents in the corpus, and
(iv) for FIGS, we use the initial topic model for estimating a
the topic distribution for new documents without changing the
topic distribution of all other documents in the corpus. LDA
and both OLDA variants have similar held-out perplexity and
the performance of both approaches is better than for FIGS.

B. Runtime

In Figure 6, we compare the runtime performance of the
different approaches considering the following three corpora
differing in their initial corpus size: (i) small corpus con-
taining 4k documents, (ii) medium corpus containing 8k
documents, and (iii) large corpus containing 18k documents.

We analyse the runtime performance for each approach
adding three batches to each of the three different corpora.
In case of the LDA topic modelling technique, we calculate
four topic models for each size of the corpus; one initial topic
model and three additional models, each after adding a batch
of corpus-extending documents to the corpus. Using FIGS
requires only one initial topic model and no additional models,
since FIGS use the initial topic model to infer the document-
topic distribution θd′i of each corpus-extending document in
the batch of size T , represented by {d′i}Ti=0. Additionally, we
compare the performance of OLDA incr. and OLDA init. For
OLDA incr. we calculate one topic model from the initial
corpus D and update the topic model after adding the corpus-
extending documents to D and go on working with the updated
topic model. For OLDA init. we always perform the update
operation on a topic model representing the initial corpus D.
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Fig. 4: Classification performance of FIGS and both OLDA variants on corpora of type 1 left and type 2 right.
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Fig. 5: Classification performance of FIGS and OLDA on the entire corpus compared to the held-out set.
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Fig. 6: Runtime on different sized corpora.

Thus, in each step updating D with new documents add the
actual batch of documents and the previous batches to the
initial corpus. Afterwards, using OLDA to update the topic
model to the documents in the extended corpus.

The runtime proportion between LDA, FIGS, OLDA incr.
and OLDA init. is the same for all corpora. LDA requires
most time. FIGS is the fastest technique for each corpora.
Both variants of OLDA have similar runtime performance.

C. Classification Performance

Finally, we compare the classification performance between
LDA, both variants of OLDA, and FIGS. In Figure 4, we
present two plots of the classification performance. In both
plots, we add eight batches of 1k documents to an initial
corpus containing 8k documents using one of the three ap-
proaches. Again, the left plot shows the classification perfor-
mance for type 1 and the right plot of type 2. For type 1 the
initial corpus contains documents with content from different
categories compared to the corpus-extending documents, and
for type 2 the initial corpus contains documents from the
same categories as the corpus-extending documents. Viewing
both plots in Figure 4 we can see that FIGS has the worst
classification performance. Both, OLDA incr. and OLDA init.
start at nearly the same value after adding the first batch
of corpus-extending documents. Adding more batches to the
initial corpus, the OLDA incr. becomes better while OLDA
init. stays the same value. The worse values of FIGS result
from ignoring an update of the initial model parameters, while
adapting a model by FIGS. The adaptation process of OLDA
indeed changes the topic distributions and results in a better
classification performance. The performance of OLDA incr. is
better than for OLDA init.



We are interested in comparing new corpus-extending docu-
ments with the documents in an initially given corpus, besides
the classification performance of FIGS and OLDA on the
entire corpus we are also interested in the classification perfor-
mance only on the added batches of documents. In Figure 5,
we compare the classification performance on the entire corpus
consisting of the initial documents and the batch of corpus-
extending documents with the classification performance on
the added batches. The left plot of Figure 5 shows the results
for FIGS. As FIGS does not change the underlying model, the
entire corpus reaches a better performance, while the dashed
line representing only the batches stays above. By adding more
batches to the initial set of documents, both lines converge
since the impacts of the additional batches rise whereas
they decrease for the initial documents. In the right plot of
Figure 5, we present the results for OLDA on the entire corpus
(solid line) and a held-out set (dashed lines). Additionally,
we compare OLDA for the incremental variant (plus) and the
initial variant (cross). In contrast to FIGS, the performance
for OLDA incr. and OLDA init. is better on the held-out set
than on the entire corpus and the classification performance
increases with an increasing number of documents extending
to the initial corpus.

VI. CONCLUSION

Topic modelling techniques estimate topic distributions for
documents in a corpus. For corpus-extending documents,
this paper evaluates three main strategies to incorporate new
documents: (i) learn a new topic model using LDA, (ii) adapt
an existing topic model and infer topic distributions for new
documents using onlineLDA, and (iii) infer topic distributions
for new documents using fold-in Gibbs sampling, leaving the
topic model as is. We also compare different techniques to
match the topics generated from different topic models. To the
best of our knowledge, this is the first evaluation comparing
different topic modelling techniques with a focus on corpus-
extending documents. In the context of our evaluation, we
evaluate the performance of LDA, FIGS, and two variants of
OLDA regarding the perplexity of the documents in the corpus,
the held-out set perplexity, the classification performance, and
the runtime for corpora of different size. In conclusion, each
of the three approach has its advantages and disadvantages and
the best approach estimating a topic distribution for corpus-
extending documents depends on the individual use case. Cal-
culating a new topic model from all documents in an extended
corpus is time-consuming but allows easy comparison between
topic distributions of documents. OLDA allows for efficiently
updating the initial topic model, accepting an increased corpus
perplexity. FIGS is fast in estimating a topic distribution for
new documents without changing the topic distribution of the
documents in the corpus. The evaluation shows that for a
small set of corpus-extending documents it is worth it to use
the FIGS technique estimating topic distribution for corpus-
extending documents.
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