
Lifted Dynamic Junction Tree Algorithm ?

Marcel Gehrke, Tanya Braun, and Ralf Möller

Institute of Information Systems, Universität zu Lübeck, Lübeck
{gehrke, braun, moeller}@ifis.uni-luebeck.de

Abstract. Probabilistic models involving relational and temporal as-
pects need exact and efficient inference algorithms. Existing approaches
are approximative, include unnecessary grounding, or do not consider the
relational and temporal aspects of the models. One approach for efficient
reasoning on relational static models given multiple queries is the lifted
junction tree algorithm. In addition, for propositional temporal models,
the interface algorithm allows for efficient reasoning. To leverage the ad-
vantages of the two algorithms for relational temporal models, we present
the lifted dynamic junction tree algorithm, an exact algorithm to answer
multiple queries efficiently for probabilistic relational temporal models
with known domains by reusing computations for multiple queries and
multiple time steps. First experiments show computational savings while
appropriately accounting for relational and temporal aspects of models.

1 Introduction

Areas like healthcare and logistics involve probabilistic data with relational and
temporal aspects and need efficient exact inference algorithms, e.g, as indicated
by Vlasselaer et al. [23]. These areas involve many objects in relation to each
other with changing information over time and uncertainties about objects,
objects attributes, or relations. More specifically, healthcare systems involve
electronic health records (the relational part) for many patients (the objects),
streams of measurements over time (the temporal part), and uncertainties due to,
e.g., missing or incomplete information, for example caused by data integration
of records from different hospitals. By performing model counting, probabilistic
databases (PDBs) can answer huge queries, which embed most of the model
behaviour, for relational temporal models with uncertainties [5,6]. However, we
build more expressive and compact models including behaviour (offline) enabling
efficient answering of smaller queries (online). To be more precise, for query an-
swering we perform deductive reasoning by computing marginal distributions at
discrete time steps. In this paper we study the problem of exact inference, in form
of filtering and prediction, in large temporal models that exhibit symmetries.

For exact inference on propositional temporal models, a naive approach is to
unroll the temporal model for a given number of time steps and use any exact
inference algorithm for static, i.e., non-temporal, models. In the worst case, once

? This research originated from the Big Data project being part of Joint Lab 1, funded
by Cisco Systems Germany, at the centre COPICOH, University of Lübeck

2 Marcel Gehrke et al.

the number of time steps changes, one has to unroll the model and infer again.
To prevent the complete unrolling, Murphy proposes the interface algorithm [13].

One reasoning approach for leveraging the relational aspect of a static model
is first-order probabilistic inference. For models with known domain size, it
exploits symmetries in a model by combining instances to reason with repre-
sentatives, known as lifting [16]. Poole introduces parametric factor graphs as
relational models and proposes lifted variable elimination (LVE) as an exact in-
ference algorithm on relational models [16]. Further, de Salvo Braz [18], Milch
et al. [11], and Taghipour et al. [20] extend LVE into its current form. Lauritzen
and Spiegelhalter [9] introduce the junction tree algorithm. To benefit from the
ideas of the junction tree algorithm and LVE, Braun and Möller [2] present the
lifted junction tree algorithm (LJT) that efficiently performs exact first-order
probabilistic inference on relational models given a set of queries.

We aim at an exact and efficient inference algorithm for a set of queries that
handles both the relational and the temporal aspect. To this end, we present the
lifted dynamic junction tree algorithm (LDJT) that combines the advantages of
the interface algorithm and LJT. Specifically, this paper contributes (i) a defini-
tion for parameterised probabilistic dynamic models (PDMs) as a representation
for relational temporal models, and (ii) a formal description of LDJT, a reasoning
algorithm for PDMs, a set of queries, and a set of observations (evidence).

Related work for inference on relational temporal models mostly consists
of approximative approaches. Additionally, to being approximative, these ap-
proaches involve unnecessary groundings or are only designed to handle single
queries efficiently. Ahmadi et al. propose a lifted (loopy) belief propagation [1].
From a factor graph, they build a compressed factor graph and apply lifted be-
lief propagation with the idea of the factored frontier algorithm [12], which is an
approximate counterpart to the interface algorithm [13]. Thon et al. introduce
CPT-L, a probabilistic model for sequences of relational state descriptions with
a partially lifted inference algorithm [21]. Geier and Biundo present an online
interface algorithm for dynamic markov logic networks (DMLNs) [7], similar to
the work of Papai et al. [15]. Both approaches slice DMLNs to run well-studied
static MLN [17] inference algorithms on each slice individually. Further, the in-
terface algorithm also slices the model to utilise static approaches. Two ways of
performing online inference using particle filtering are described in [10,14].

Vlasselaer et al. introduce an exact approach for relational temporal models
involving computing probabilities of each possible interface assignment [22].

LDJT has several benefits: The lifting approach exploits symmetries in the
model to reduce the number of instances to perform inference on. For answering
multiple queries, the junction tree idea enhances efficiency by clustering a model
into submodels sufficient for answering a particular query. Further, the inter-
face idea drastically reduces the size of the model and allows adding time steps
dynamically, by an efficient separation of time steps. Furthermore, the junction
tree structure of the model is reused for all time steps t > 0.

The remainder of this paper has the following structure: We begin by intro-
ducing PDMs to represent relational temporal models. Followed by, LDJT an

Lifted Dynamic Junction Tree Algorithm 3

efficient reasoning algorithm for PDMs and evaluate LDJT compared to LJT
and a ground interface approach. We conclude by looking at possible extensions.

2 Parameterised Probabilistic Dynamic Models

We introduce parameterised probabilistic models (PMs), which is mainly based
on [3], as a representation for relational static models. Afterwards, we extend
PMs to the temporal case, resulting in PDMs for relational temporal models.

2.1 Parameterised Probabilistic Models

PMs combine first-order logic with probabilistic models, representing first-order
constructs using logical variables (logvars) as parameters.

Definition 1. We define a basic block with L as a set of logvar names, Φ as set
of factor names, and R a set of random variable (randvar) names. A parame-
terised randvar (PRV) A = P (X1, ..., Xn) represents a set of randvars behaving
identically by combining a randvar P ∈ R with X1, ..., Xn ∈ L. If n = 0, the
PRV is parameterless. The domain of a logvar L is denoted by D(L). The term
range(A) provides possible values of a PRV A. Constraint (X, CX) allows to re-
strict logvars to certain domain values and is a tuple with a sequence of logvars
X = (X1, ..., Xn) and a set CX ⊆ ×ni=1D(Xi). The symbol > denotes that no
restrictions apply and may be omitted. The term lv(Y) refers to the logvars in
some element Y . The term rv(Y) refers to the randvars in Y . The term gr(Y)
denotes the set of instances of Y with all logvars in Y grounded w.r.t. constraints.

Now, we illustrate PMs with an example, which has the goal to remotely
infer the condition of patients with regards to water retaining. To determine the
condition of patients, we use the change of their weights. Further, we are inter-
ested in the condition of people the patient is living with, giving us indications to
improve the inferred conditions. In case patients are living together and both are
gaining weight, they probably overeat and do not retain water. If no new weights
are submitted, we are interested whether the scale broke or the patient stopped
submitting weights. In case only one patient stops to send weights, it is likely
that the patient stopped deliberately. If patients living together stop to submit
weights at the same time, it is more likely that their scale broke. Hence, we can
improve the accuracy of inference by accounting for patients living together.

To model the example, we use the randvar names C, LT , S, and W for
Condition, LivingTogether, ScaleWorks, and Weight, respectively, and the logvar
names X and X ′. From the names, we build PRVs C(X), LT (X,X ′), S(X), and
W (X). The domain of X and X ′ is the set {alice, bob, eve}. The range of C(X) is
{normal, deviation, retains water, stopped}, LT (X,X ′) and S(X) have range
{true, false}, and of W (X) has range {steady, falling, rising, null}. Now, we
define parametric factors (parfactors), to set PRVs into relation to each other.

Definition 2. We define a parfactor g with ∀X : φ(A) |C. X ⊆ L being a set
of logvars over which the factor generalises and A = (A1, ..., An) a sequence of

4 Marcel Gehrke et al.

LT (X,X ′)
g1

C(X ′)

C(X)
g0

S(X)

W (X)

Fig. 1. Parfactor graph for model Gex with observable nodes in grey

PRVs. We omit (∀X :) if X = lv(A). A function φ : ×ni=1range(A
i) 7→ R+

with name φ ∈ Φ is identically defined for all grounded instances of A. A list
of all input-output values is the complete specification for φ. The output value
is called potential. C is a constraint on X. A PM (model) G := {gi}n−1i=0 is a
set of parfactors and represents the full joint probability distribution P (G) =
1
Z

∏
f∈gr(G) φ(Af) where Z is a normalisation constant.

Now, we build the model Gex of our example with the parfactors:

g0 = φ0(C(X), S(X),W (X))|> and g1 = φ1(C(X), C(X ′), LT (X,X ′))|κ1

We omit the concrete mappings of φ0 and φ1. Parfactor g0 has the constraint
>, meaning it holds for alice, bob, and eve. The constraint κ1 of g1 ensures that
X 6= X ′ holds. Fig. 1 depicts Gex as a parfactor graph and shows PRVs as nodes,
which are connected via undirected edges to nodes of parfactors in which they
appear. We can observe the weight of patients. The remaining PRVs are latent.

The semantics of a model is given by grounding and building a full joint
distribution. In general, queries ask for a probability distribution of a randvar
using a model’s full joint distribution and given fixed events as evidence.

Definition 3. Given a PM G, a ground PRV Q and grounded PRVs with fixed
range values E the expression P (Q|E) denotes a query w.r.t. P (G).

In our example, a query is P (C(bob)|W (bob) = steady), asking for the prob-
ability distribution of bob’s condition given information about his weight.

2.2 Parameterised Probabilistic Dynamic Models

To define PDMs, we use PMs and the idea of how Bayesian networks (BNs)
give rise to dynamic Bayesian networks (DBNs). We define PDMs based on the
first-order Markov assumption, i.e., a time slice t only depends on the previous
time slice t − 1. Further, the underlining process is stationary, i.e., the model’s
behaviour does not change over time.

Definition 4. A PDM is a pair of PMs (G0, G→) where G0 is a PM repre-
senting the first time step and G→ is a two-slice temporal parameterised model
(2TPM) representing At−1 and At with At a set of PRVs from time slice t.

Fig. 2 shows how the model Gex behaves over time. Gex→ consists of Gex for
time step t − 1 and for time step t with inter-slice parfactors for the behaviour
over time. In this example, the latent PRVs depend on each other from one time
slice to the next, which is represented with the parfactors gLT , gC , and gS .

Lifted Dynamic Junction Tree Algorithm 5

Ct−1(X)

g0t−1

St−1(X)Wt−1(X)

g1t−1

LTt−1(X,X ′)Ct−1(X ′)

Ct(X)

g0t
St(X)Wt(X)

g1t

LTt(X,X
′)Ct(X

′)

gC
gLT

gS

Fig. 2. Gex
→ the two-slice temporal parfactor graph for model Gex

Definition 5. Given a PDM G, a ground PRV Qt and grounded PRVs with fixed
range values E{0:t} the expression P (Qt|E{0:t}) denotes a query w.r.t. P (G).

The problem of answering queries for the current time step is called filtering
and for a time step in the future it is called prediction.

3 Lifted Dynamic Junction Tree Algorithm

We start by recapping LJT to provide means to answer queries for PMs, mainly
based on [3], and the interface algorithm, an approach to perform inference
for propositional temporal models, mainly based on [13]. Afterwards, we present
LDJT, consisting of a first-order junction tree (FO jtree) construction for a PDM
and an efficient reasoning algorithm to perform filtering and prediction.

3.1 Lifted Junction Tree Algorithm

LJT provides efficient means to answer a set of queries {P (Qi|E)}ki=1 given a PM
G and evidence E, by performing the following steps: (i) Construct an FO jtree J
for G. (ii) Enter E in J . (iii) Pass messages. (iv) Compute answer for each query
Qi. We first define an FO jtree and then go through each step. For an FO jtree,
we need parameterised clusters (parclusters), the nodes of an FO jtree.

Definition 6. A parcluster C is defined by ∀L : A|C. L is a set of logvars, A
is a set of PRVs with lv(A) ⊆ L, and C a constraint on L. We omit (∀L :) if
L = lv(A). A parcluster Ci can have parfactors φ(Aφ)|Cφ assigned given that
(i) Aφ ⊆ A, (ii) lv(Aφ) ⊆ L, and (iii) Cφ ⊆ C hold. We call the set of assigned
parfactors a local model Gi.
An FO jtree for a model G is J = (V,E) where J is a cycle-free graph, the nodes
V denote a set of parcluster, and the set of edges E the paths between parclusters.
An FO jtree must satisfy the following three properties: (i) A parcluster Ci is
a set of PRVs from G. (ii) For each parfactor φ(A)|C in G, A must appear in
some parcluster Ci. (iii) If a PRV from G appears in two parclusters Ci and
Cj, it must also appear in every parcluster Ck on the path connecting nodes i
and j in J . The separator Sij containing shared PRVs of edge i− j in J is given
by Ci ∩Cj. The FO jtree is minimal if by removing a PRV from any parcluster,
the FO jtree stops being an FO jtree.

6 Marcel Gehrke et al.

∀x TXC(X)

T xC(x)

g0
′

C(x), S(x),W (x) ∀x′ TX′
| X ′ 6= x

C(x)|x 6= X ′

T x′C(x), C(x′), LT (x, x′)|x 6= x′

g1
′′

C(x), C(x′), LT (x, x′)|x 6= x′

Fig. 3. FO dtree for model Gex

LT (X,X ′),
C(X),
C(X ′)

{g1}

C2

W (X),
C(X),
S(X)

{g0}

C1

C(X)

Fig. 4. Minimised FO jtree for model
Gex

LJT constructs an FO jtree using a first-order decomposition tree (FO dtree).
Analogous to the ground case [4], LJT can use the clusters of an FO dtree to
construct an FO jtree. For the details on construction of an FO dtree from a
PM, the formal definition, and properties of an FO dtree, refer to Taghipour et
al. [19]. For our approach, important FO dtree characteristics are: (i) each leaf
node contains exactly one parfactor, (ii) the cluster for a leaf node l consists of
the randvars of the corresponding parfactor in l, rv(l), and (iii) a (par)cluster
in an (FO) jtree corresponds to a cluster of an (FO) dtree.

Fig. 3 shows the FO dtree for the modelGex, with the clusters of the FO dtree
for every node in grey. An FO jtree directly constructed from clusters of an
FO dtree is non-minimal. To minimise an FO jtree, LJT merges neighbouring
parclusters if one parcluster is the subset of the other. The parfactors at the leaf
nodes from an FO dtree determine the local models for parclusters.

LJT enters evidence in the FO jtree and passes messages through an inbound
and an outbound pass, to distribute local information of the nodes through the
FO jtree. To compute a message, LJT eliminates all non-seperator PRVs from
the parcluster’s local model and received messages. After message passing, LJT
answers queries. For each query, LJT finds a parcluster containing the query
term and sums out all non-query terms in its local model and received messages.

Fig. 4 shows the minimised FO jtree corresponding to the FO dtree from Fig.
3. One possibility to obtain the FO jtree is to merge the clusters of TX into T x

and then T x into the leaf with g0
′

and the remaining clusters of the FO dtree
into the leaf with g1

′′
. By merging the clusters of the FO dtree, LJT acquires a

minimised FO jtree. Here, each parfactor from the PM makes up the local model
of a parcluster, the ideal case to answer queries. Throughout the paper, we also
have FO jtrees with more parfactors in a local model of a parcluster, resulting
in less messages during message passing but higher query answering efforts.

Additionally, Fig. 4 shows the local models of the parclusters and the sep-
arator PRV C(X) as label of the edge. Thus, we have two parclusters, C1 and
C2, in the minimised FO jtree. Before LJT answers queries, it passes messages
to account for evidence. During the inbound phase LJT sends messages from
C1 to C2 and from C2 to C1. If we want to know whether the scale from alice
works, we have to query for P (S(alice)) for which LJT can use parcluster C1.
LJT sums out C(X), W (X), and S(X) where X 6= alice from C1’s local model

Gex
1

combined with the received messages, here, the one message from C2.

Lifted Dynamic Junction Tree Algorithm 7

3.2 Interface Algorithm

The interface algorithm for DBNs allows to efficiently pass on the current state
of the model from one time slice to the next, while being able to make use of a
static junction tree algorithm for BNs. The interface algorithm defines the set
of nodes with outgoing edges to the next time slice as an interface for temporal
d-separation. The interface has to be in one cluster of the associated jtree. While
proceeding to the next time step, the interface algorithm reuses the structure of
the jtree and only passes in information from the outgoing interface cluster.

A DBN is defined using two BNs: B0 is a BN which defines the prior and B→
is a two-slice temporal bayesian network (2TBN), which models the temporal
behaviour. The interface algorithm uses that the set of nodes with outgoing
edges, It, to the next time slice from B→ is sufficient to d-separate the past from
the future. The interface algorithm builds a jtree J0 for B0 and ensures during
the creation that I0 ends up in a cluster of the jtree. The cluster containing I0
is labeled in- and out-cluster. Then, the algorithm turns B→ into a 1.5TBN, Ht

(H for half), by removing all non interface nodes Nt−1 and their edges from the
first slice of B→. Now, it constructs a jtree Jt for Ht and ensures that It−1 and
It each end up in clusters of the jtree. The cluster containing It−1 is labeled
in-cluster and the cluster containing It is labeled out-cluster. The idea is to pass
messages αt−1 over It−1 from the out-cluster of Jt−1 to the in-cluster of Jt.

Fig. 5 shows how the interface algorithm uses the in- and out-clusters of the
jtrees J0 and Jt for the first three time steps to pass on the current state in each
time step. To reason for t = 0, the interface algorithm uses J0. First, a junction
tree algorithm enters evidence in J0 if available, passes messages, and answers
queries. The interface algorithm then computes a message using the out-cluster
of J0, by summing out all non-interface variables, to pass the message on via
the separator to J1. For all t > 0, the interface algorithm instantiates Jt for that
time step. Afterwards, the interface algorithm recovers the state of the model by
adding the message from the out-cluster of Jt−1 to the in-cluster of Jt. For t = 1
the interface algorithm instantiates J1 and then adds the message containing I0
to J1’s in-cluster. After the interface algorithm recovered the previous state by
adding the message, it behaves as it did for t = 0. A junction tree algorithm
enters evidence in J1 if available, passes messages, and answers queries. During
message passing, information from I0 is distributed through the jtree J1 and
hence present in the out-cluster to compute the message over I1.

I0

In0/Out0

N0

I0

In1

I1

Out1

N1

I1

In2

I2

Out2

N2

...

J0 J1 J2

I0 I1

Fig. 5. Combination of jtrees using interface algorithm

8 Marcel Gehrke et al.

3.3 LDJT: Overview

LDJT efficiently answers sets of queries {P (Qit|Et)}ki=1, Qit ∈ {Qt}Tt=0, given a
PDM G and evidence {Et}Tt=0, by performing the following steps:

(i) Offline construction of the two FO jtrees J0 and Jt with in- and out-clusters
(ii) For t = 0, using J0 to enter E0, pass messages, answer Q0, and preserve the

state in message α0

(iii) For t > 0 instantiate Jt, recover the previous state from message αt−1, enter
Et in Jt, pass messages, answer Qt, and preserve the state in message αt

LDJT solves the filtering and prediction problems efficiently by reusing a com-
pact structure for multiple queries and time steps. Further, LDJT only requires
the current evidence and the state of the interface from the previous time step
for queries. Next, we show how LDJT constructs the FO jtrees J0 and Jt with
in- and out-clusters and then, how LDJT uses the FO jtrees for reasoning.

3.4 LDJT: FO Jtree Construction for PDMs

The steps of FO jtree constructions are shown in Alg.1. LDJT constructs an
FO jtree for G0 and for G→, both with an incoming and outgoing interface.
Therefore, LDJT first identifies the interface PRVs It for a time slice t. We
define It−1 as follows:

Definition 7. The forward interface is defined as It−1 = {Ait−1 | ∃φ(A)|C ∈
G : Ait−1 ∈ A∧∃A

j
t ∈ A}, i.e., the PRVs which have successors in the next slice.

The set of non-interface PRVs is Nt = At \ It.

To ensure interface PRVs I ending up in a single parcluster, LDJT adds
a parfactor gI over the interface to the model with uniform potentials in the
mappings, e.g., mapping all input values to 1. I0 has to be assigned to a local
model of a parcluster of J0. To ensure that I0 ends up in a single parcluster,
LDJT adds a parfactor gI0 over I0 to G0. When LDJT constructs the FO jtree,

Algorithm 1 FO Jtree Construction for a PDM (G0, G→)

function DFO-JTREE(G0, G→)
It := Set of interface PRVs for time slice t
gI0 := Parfactor for I0
G0 := gI0 ∪G0

J0 := Construct minimized FO jtree for G0

gIt−1 := Parfactor for It−1

gIt := Parfactor for It
Ht := {φ(A)|C ∈ G→ | ∀A ∈ A : A /∈ Nt−1}
Gt := (gIt−1 ∪ gIt ∪Ht)
Jt := Construct minimized FO jtree for Gt

return (J0, Jt, It)

Lifted Dynamic Junction Tree Algorithm 9

Ct−1(X)

g0t−1

St−1(X)Wt−1(X)

g1t−1

LTt−1(X,X ′)Ct−1(X ′)

gIt−1
Ct(X)

g0t
St(X)Wt(X)

g1t

LTt(X,X
′)Ct(X

′)

gItgC
gLT

gS

Fig. 6. Two-slice temporal parfactor graph for model Gex
→ with interface parfactors

it first constructs an FO dtree. In the FO dtree, the parfactor ends up as a leaf
and the cluster of each leaf contains the randvars of the corresponding parfactor.
Further, while minimising the FO jtree, the parfactor is assigned to a local model
of a parcluster. Thereby, by adding the interface parfactor to the model ensures
that the resulting FO jtree has an incoming and outgoing interface. LDJT labels
the parcluster with gI0 from J0 as in- and out-cluster.

ForGex→ , which is shown in Fig. 2, PRVs Ct−1(X), St−1(X), and LTt−1(X,X ′)
have children in the next time slice, making up It−1. Fig. 6 shows Gex0 with gI0 ,
by setting t − 1 = 0 and removing all other PRVs and parfactors that do not
belong to t − 1, leaving us with the PRVs, parfactors, and edges with thicker
lines. Fig. 7 shows a corresponding FO jtree, with in- and out-cluster labelling.
In the FO jtree, parcluster C2

0 is the only candidate to be the in- and out-cluster.
Having J0, LDJT constructs Jt for the remaining time steps. During infer-

ence, time slice t− 1 will encode the past and the actual inference is performed
on t, allowing us to transform the 2TPM into a 1.5-slice TPM Ht.

Definition 8. Ht = {φ(A)|C ∈ G→ | ∀A ∈ A : A /∈ Nt−1}, i.e., eliminating all
non-interface PRVs, their parfactors, and edges from the first time slice in G→.

LDJT needs to ensure that in the resulting FO jtree from G→, It−1 and
It each end up in parclusters. Hence, LDJT adds parfactors gIt−1 and gIt to
G→. LDJT constructs Jt from Ht with gIt−1 and gIt and labels the parcluster
containing gIt−1 as in-cluster and the parcluster containing gIt as out-cluster.

Fig. 6 shows Gex→ with gIt−1 and gIt added. By removing all nodes, parfactors,
and edges with dashed lines the result is a 1.5-slice TPM of Gex→ with gIt−1 and
gIt added. Fig. 8 shows a corresponding FO jtree. To label the in-cluster, LDJT

LT0(X,X ′),
S0(X),

C0(X), C0(X ′)

{g10 gI0}

out-clusterin-cluster C2
0

W0(X),
C0(X),
S0(X)

{g00}

C1
0

C0(X),
S0(X)

Fig. 7. FO jtree J0 for Gex
0

LTt(X,X
′), Ct−1(X),

Ct(X), Ct(X
′),

St−1(X), St(X)

{gS , gC ,
gIt g1t }

out-clusterC2
t

Wt(X),
Ct(X),
St(X)

{g0t }

C1
t

LTt−1(X,X ′),
LTt(X,X

′),
Ct−1(X), St−1(X)

{gLT , gIt−1}

in-clusterC3
t

Ct(X),
St(X)

LTt(X,X
′),

Ct−1(X), St−1(X)

Fig. 8. FO jtree Jt for Gex
→

10 Marcel Gehrke et al.

searches for a parcluster with gIt−1 in its local model, which C3
t has, and labels the

parcluster as in-cluster. LDJT does the same for gIt and labels C2
t as out-cluster.

3.5 LDJT: Reasoning with FO Jtrees from PDMs

Alg. 2 provides the steps for answering queries. Since J0 and Jt are static, LDJT
uses LJT as a subroutine passing on an already constructed FO jtree, queries,
and evidence for step t and lets LJT handle evidence entering, message passing,
and query answering. For the first time step t = 0, LDJT uses J0, takes the
queries and evidence for t = 0 and uses LJT to answer the queries. After all
queries are answered, LDJT needs to preserve the current state to pass it on to
the next time slice. Therefore, LDJT uses the out-cluster parcluster, sums out
all non-interface PRVs from that parcluster, and saves the result in message α0,
which holds the state of the PRVs that have an impact on the next time slice
and thus, encodes the current state. Afterwards, LDJT increases t by one.

For time steps t > 0, LDJT uses Jt and first recovers the state of the previous
time step by adding αt−1 to the in-cluster of Jt. LDJT then uses LJT to perform
filtering. During message passing of LJT, information from the previous state
is distributed through the FO jtree. After query answering, LDJT sums out all
non-interface PRVs from the out-cluster of Jt, saves the result in message αt,
and increases t. Using the interface clusters, the FO jtrees are m-separated from
one time step to the next and LDJT can use Jt once constructed for all t > 0.

Fig. 9 depicts how LDJT uses the interface to pass on the current state
from time step three to four. First, LDJT enters evidence for t = 3 using LJT.
Afterwards, LJT distributes local information by message passing. To capture
the state at t = 3, LDJT needs to sum out the non-interface PRVs C2(X),
C3(X ′), and S2(X) from C2

3 and save the result in message α3. Thus, LDJT
sums out the non-interface PRVs of the parfactors gS , gC , gI3 , g

1
3 and the received

messages m12
3 and m32

3 . After increasing t by one, LDJT adds α3 to the in-cluster
of J4, C3

4. α3 is then distributed by message passing and accounted for in α4.

Algorithm 2 LDJT Alg. for PDM (G0, G→), Queries {Q}Tt=0, Evidence {E}Tt=0

procedure LDJT(G0, G→, {Q}Tt=0, {E}Tt=0)
t := 0
(J0, Jt, It) := DFO-JTREE(G0, G→)
while t 6= T do

if t = 0 then
J0 := LJT(J0,Q0,E0) . Including query answering, no FO jtree const.
α0 :=

∑
J0(out-cluster)\I0 J0(out-cluster)

t := t+ 1
else

Jt(in-cluster) := αt−1 ∪ Jt(in-cluster)
Jt := LJT(Jt,Qt,Et) . Including query answering, no FO jtree const.
αt :=

∑
Jt(out-cluster)\It Jt(out-cluster)

t := t+ 1

Lifted Dynamic Junction Tree Algorithm 11

LT3(X,X ′), C2(X),
C3(X), C3(X ′),
S2(X), S3(X)

{gS , gC ,
gI3 g13}

out-clusterC2
3

LT2(X,X ′),
LT3(X,X ′),
C2(X), S2(X)

{gLT , gI2}

in-clusterC3
3

α3

LT3(X,X ′),
LT4(X,X ′),
C3(X), S3(X)

{gLT , gI3}

in-clusterC3
4

LT4(X,X ′), C3(X),
C4(X), C4(X ′),
S3(X), S4(X)

{gS , gC ,
gI4 g14}

out-clusterC2
4

W4(X),
C4(X),
S4(X)

{g04}

C1
4

LT3(X,X ′),
C2(X), S2(X)

C4(X),
S4(X)

LT4(X,X ′),
C3(X), S3(X)

∑ ∪

Fig. 9. LDJT passes on the current state to the next time step, J3 shown without C1
3

Given a stream of evidence, a stream of queries, which can be the same for
each time step, and a PDM, LDJT performs filtering and prediction. To per-
form filtering, LDJT enters the current evidence, e.g., the patients weight, into
the current FO jtree, which already accounts for the past, and answers queries,
e.g. what is the condition of a patient. Further, LDJT performs prediction, for
example given the evidence so far what is the condition of the patient in 10 time
steps. To perform prediction, LDJT has to enter the current evidence, e.g. the
patients weight, in the current FO jtree and passes on this information through
all FO jtrees until LDJT reaches the time step the query is designated for and
then answers the queries. LDJT efficiently solves the problem of performing fil-
tering and prediction for PDMs by using a compact structure, which is also
reused for all t > 0. Further, LDJT only calculates one additional message per
time step for temporal m-separation.

Theorem 1. LDJT is correct regarding filtering and prediction

Proof. The interface PRVs m-separate the time slices for a given PDM. Using
interface parfactors, LDJT ensures that the FO jtrees for the initial time step
and the copy pattern G→ have an in-cluster and an out-cluster. The interface
parfactors have uniform potentials in the mappings, therefore, have no impact
on message passing or calculating answers to queries, besides a scaling factor.
Further, the interface message αt is equivalent to having the PDM unrolled for
t time steps with evidence entered for each time step and calculating a query
over the interface. To perform filtering for t + 1, LDJT uses LJT to distribute
the information contained in αt, which accounts for all evidence until time step
t, and the entered evidence for time step t + 1 in Jt+1 during the inbound and
outbound phase of message passing. Hence, all parclusters of Jt+1 receive infor-
mation accounting for all evidence until time step t+1. Therefore, LDJT can use
Jt+1 to perform filtering for t+ 1 and prediction can be reformulated as filtering
without new evidence added.

4 Evaluation

For different maximum time steps and domain sizes, we evaluate the largest
(par)cluster and the number of (par)clusters in the (FO) jtrees for LDJT, LJT
based on an unrolled model, and a ground interface approach, named JT. The
number of (par)clusters n in an (FO) jtree determines the number of messages

12 Marcel Gehrke et al.

0 100 200 300 400 500

0
50

0
10

00
20

00

JT
LJT
LDJT

Fig. 10. (Par)clusters (y-axis) for differ-
ent time steps (x-axis)

0 100 200 300 400 500

0
20

0
60

0
10

00

JT
LJT
LDJT

Fig. 11. (P)RVs in largest (par)cluster
(y-axis) for different time steps (x-axis)

calculated during message passing. In general, message passing consists of cal-
culating 2 · (n − 1) messages. Given new evidence, e.g., for a new time step,
we need to calculate and parse new messages. The number of (P)RVs m in the
largest (par)cluster, indicates how many variables we need to sum out, namely
in the worst case we need to sum out m− 1 (P)RVs for each message. Further,
the largest (par)cluster and the number of (par)clusters can also be used to
determine the complexity of VE and LVE a priori.

For Gex Fig. 10 depicts the number of (par)clusters and Fig. 11 shows the
number of (P)RVs in the largest (par)cluster for LDJT, LJT, and JT, with a
domain size D(X) = D(X ′) = 32, for different maximum time steps. In these
figures, we see that with increasing maximum time steps, the size of the FO jtree
and the number of PRVs in the largest parcluster increase for LJT, while they
remain constant for LDJT and JT. With increasing time steps, the unrolled
model becomes larger. Therefore, the size input model increases with the time
steps for LJT, while the input model remains constant for LDJT and JT.

For different domain sizes, Fig. 12 shows the number of (par)clusters and Fig.
13 depicts the number of (P)RVs in the largest (par)cluster for LDJT, LJT for
32 time steps, and JT. In these figures, we can see that with increasing domain
sizes, the size of the jtree and the number of RVs in the largest cluster increase
for JT, while they remain constant for LDJT and LJT. Due to more groundings,
the input model increases with the domain size for JT. LDJT and LJT combine
the instances and handle them as one. Therefore, they remain constant.

0 10 20 30 40 50 60

0
50

10
0

15
0

JT
LJT
LDJT

Fig. 12. (Par)clusters (y-axis) for differ-
ent domain sizes (x-axis)

0 10 20 30 40 50 60

0
10

00
30

00

JT
LJT
LDJT

Fig. 13. (P)RVs in largest (par)cluster
(y-axis) for different domain size (x-axis)

Lifted Dynamic Junction Tree Algorithm 13

Having the numbers for different time steps and domain sizes for LDJT, LJT,
and JT, let us now identify the calculations LDJT performs for each time step to
compare the calculations against LJT and JT. During message passing, LDJT
computes 2 · (3 − 1) = 4 messages. For each message, LDJT sums out at most
6 − 1 = 5 PRVs. Actually, LDJT sums out 1 PRV for each inbound message
and 3 and 4 PRVs for the outbound messages. Additionally, for each time step
LDJT needs to calculate an αt message, for which LDJT needs to sum out all
non-interface PRVs from the out-cluster parcluster. The additional efforts are
similar to answering one additional query. In our case, the out-cluster parcluster
contains 6 and the interface 3 PRVs. Therefore, LDJT sums out 3 PRVs to
calculate an αt message and overall computes 5 messages for each time step.

For a domain size of 32, JT has 70 clusters with maximal 1106 RVs in each
of them. Hence, for every time step JT computes 138 messages and for every
message needs to sum out 1105 RVs in the worst case. For the PDM unrolled
for 64 time steps, LJT has 218 paclusters with at most 95 PRVs. Thus, LJT
computes 434 messages and for every message needs to sum out 94 PRVs in the
worst case. For 64 time steps, LDJT computes 320 messages, each with only
a small friction of summing out operations. Further, only in case all evidence
is known before for all 64 time steps, LJT computes 434 messages to be able
to answer queries for all time steps. In case evidence is provided incrementally,
LJT needs to perform message passing for each new evidence, which can result
in 27776 messages. Therefore, accounting for the temporal and relational aspects
of the model in LDJT significantly reduces the number of computations.

5 Conclusion

We present LDJT, a filtering and prediction algorithm for relational temporal
models. LDJT answers multiple queries efficiently by reusing a compact FO jtree
structure for multiple queries. Further, due to temporal m-separation, which is
ensured by the in- and out-clusters, LDJT uses the same compact structure for
all time steps t > 0. Furthermore, LDJT does not need to know the maximum
number of time steps and allows for efficiently adding time steps dynamically.
First results show that the number of computations LDJT saves compared to
LJT and JT is significant.

We currently work on extending LDJT to also perform smoothing. Smooth-
ing could also be helpful to deal with incrementally changing models. Other
interesting future work includes a tailored automatic learning for PDMs, paral-
lelisation as well as using local symmetries. Additionally, it would be interesting
to include our work in PDBs, e.g., to handle correlated PDBs [8].

References

1. Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S.: Exploiting Symmetries
for Scaling Loopy Belief Propagation and Relational Training. Machine learning
92(1), 91–132 (2013)

14 Marcel Gehrke et al.

2. Braun, T., Möller, R.: Lifted Junction Tree Algorithm. In: Proceedings of the Joint
German/Austrian Conference on Artificial Intelligence (Künstliche Intelligenz). pp.
30–42. Springer (2016)

3. Braun, T., Möller, R.: Counting and Conjunctive Queries in the Lifted Junction
Tree Algorithm. In: Graph Structures for Knowledge Representation and Reason-
ing - 5th International Workshop (2017)

4. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge Uni-
versity Press (2009)

5. Dignös, A., Böhlen, M.H., Gamper, J.: Temporal Alignment. In: Proceedings of
the 2012 ACM SIGMOD International Conference on Management of Data. pp.
433–444. ACM (2012)

6. Dylla, M., Miliaraki, I., Theobald, M.: A Temporal-Probabilistic Database Model
for Information Extraction. Proceedings of the VLDB Endowment 6(14), 1810–
1821 (2013)

7. Geier, T., Biundo, S.: Approximate Online Inference for Dynamic Markov Logic
Networks. In: Proceedings of the 23rd IEEE International Conference on Tools
with Artificial Intelligence (ICTAI). pp. 764–768. IEEE (2011)

8. Kanagal, B., Deshpande, A.: Lineage Processing over Correlated Probabilistic
Databases. In: Proceedings of the 2010 ACM SIGMOD International Conference
on Management of data. pp. 675–686. ACM (2010)

9. Lauritzen, S.L., Spiegelhalter, D.J.: Local Computations with Probabilities on
Graphical Structures and their Application to Expert Systems. Journal of the
Royal Statistical Society. Series B (Methodological) pp. 157–224 (1988)

10. Manfredotti, C.E.: Modeling and Inference with Relational Dynamic Bayesian Net-
works. Ph.D. thesis, Ph. D. Dissertation, University of Milano-Bicocca (2009)

11. Milch, B., Zettlemoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted
Probabilistic Inference with Counting Formulas. In: Proceedings of AAAI. vol. 8,
pp. 1062–1068 (2008)

12. Murphy, K., Weiss, Y.: The Factored Frontier Algorithm for Approximate Infer-
ence in DBNs. In: Proceedings of the Seventeenth conference on Uncertainty in
artificial intelligence. pp. 378–385. Morgan Kaufmann Publishers Inc. (2001)

13. Murphy, K.P.: Dynamic Bayesian Networks: Representation, Inference and Learn-
ing. Ph.D. thesis, University of California, Berkeley (2002)

14. Nitti, D., De Laet, T., De Raedt, L.: A particle Filter for Hybrid Relational Do-
mains. In: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). pp. 2764–2771. IEEE (2013)

15. Papai, T., Kautz, H., Stefankovic, D.: Slice Normalized Dynamic Markov Logic
Networks. In: Proceedings of the Advances in Neural Information Processing Sys-
tems. pp. 1907–1915 (2012)

16. Poole, D.: First-order probabilistic inference. In: Proceedings of IJCAI. vol. 3, pp.
985–991 (2003)

17. Richardson, M., Domingos, P.: Markov Logic Networks. Machine learning 62(1),
107–136 (2006)

18. de Salvo Braz, R.: Lifted First-Order Probabilistic Inference. Ph.D. thesis, Ph. D.
Dissertation, University of Illinois at Urbana Champaign (2007)

19. Taghipour, N., Davis, J., Blockeel, H.: First-order Decomposition Trees. In: Pro-
ceedings of the Advances in Neural Information Processing Systems. pp. 1052–1060
(2013)

20. Taghipour, N., Fierens, D., Davis, J., Blockeel, H.: Lifted Variable Elimination:
Decoupling the Operators from the Constraint Language. Journal of Artificial In-
telligence Research 47(1), 393–439 (2013)

Lifted Dynamic Junction Tree Algorithm 15

21. Thon, I., Landwehr, N., De Raedt, L.: Stochastic relational processes: Efficient
inference and applications. Machine Learning 82(2), 239–272 (2011)

22. Vlasselaer, J., Van den Broeck, G., Kimmig, A., Meert, W., De Raedt, L.: TP-
Compilation for Inference in Probabilistic Logic Programs. International Journal
of Approximate Reasoning 78, 15–32 (2016)

23. Vlasselaer, J., Meert, W., Van den Broeck, G., De Raedt, L.: Efficient Probabilis-
tic Inference for Dynamic Relational Models. In: Proceedings of the 13th AAAI
Conference on Statistical Relational AI. pp. 131–132. AAAIWS’14-13, AAAI Press
(2014)

	Lifted Dynamic Junction Tree Algorithm

