A First Step Towards Even More Sparse
Encodings of Probability Distributions

Florian Andreas Marwitz®, Tanya Braun®, and Ralf Moller

Institute of Information Systems, University of Liibeck, Liibeck, Germany
{marwitz@student,braun@ifis,moeller@ifis}.uni-luebeck.de

Abstract. Real world scenarios can be captured with lifted probability
distributions. However, distributions are usually encoded in a table or
list, requiring an exponential number of values. Hence, we propose a
method for extracting first-order formulas from probability distributions
that require significantly less values by reducing the number of values in
a distribution and then extracting, for each value, a logical formula to be
further minimized. This reduction and minimization allows for increasing
the sparsity in the encoding while also generalizing a given distribution.
Our evaluation shows that sparsity can increase immensely by extracting
a small set of short formulas while preserving core information.
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1 Introduction

Modeling real world scenarios requires dealing with uncertainties. A full joint
probability distribution, factorized into local distributions for a sparse encoding,
over a set of random variables (randvars) allows for modeling such scenarios.
With first-order logic, we can compactly encode relationships between large sets
of randvars, representing sets of indistinguishable randvars by parameterizing
randvars with logical variables (logvars). However, encoding local distributions
over (parameterized) randvars usually relies on the values stored in a table or list
for ease of handling the encoding, with more compact encodings like algebraic
decision diagrams leading to a huge overhead [B]. Thus, there is an exponential
number of values to store per local distribution, also called factor or, if logvars
are involved, parfactor.

Turning to first-order logic for a sparse encoding, Markov Logic Networks
(MLNs) [12] use weighted first-order logic (FOL) formulas to represent a proba-
bility distribution compactly. Canonically transforming a parfactor into formulas
translates each entry in the parfactor into one formula (given Boolean ranges of
the randvars), which means an exponential number of formulas [I5]. Therefore,
this paper works towards an even more sparse encoding by reducing the number
of values in a distribution, allowing for combining different entries into a single
formula. Specifically, this article presents CoFE (Compact Formula Extraction),
a method for extracting FOL formulas from parfactors. We test out two strate-
gies for reducing the number of values in a parfactor, guided by an ¢ margin
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that caps the distance between the original distribution and the modified distri-
bution. Our proof-of-concept evaluation shows that CoFE makes a reduction in
the number of formulas possible and can even be robust against noise added to
values, while keeping the error in query answers in the reduced model small.

The theoretical foundations for query answering in parfactor graphs are laid
by Poole with first-order probabilistic inference [I1], also introducing parfactors
as a modeling formalism. Richardson and Domingos introduce MLNs as another
approach to combine FOL and probabilistic graphical models [12]. There exist
various query answering algorithms, exact and approximate, that work with
either parfactors or MLNs, e.g., [BI8I2]. In terms of related work, there exist
well-established techniques in statistics to approximate a discrete randvar with
another discrete or continuous randvar. Please refer to [4] for details. However,
the problem these techniques solve does not apply here as it lacks the first-
order aspect of MLNs and parfactors. There exists a range of probabilistic logic
learners that return a set of weighted FOL formulas, of which ProbLog [0] is a
prominent representative. However, again, the problem setting does not apply as
these learners have a set of (positive and negative) samples, which is not available
in our case. Statistical relational learners such as the boosted tree learner [10]
also focus on the problem of learning a model from a set of samples. We have a
model in the form of a set of parfactors given, which we want to transform into
an MLN to preserve semantics while reducing the number of formulas necessary.

The rest of this paper is structured as follows: First, we define and explore the
required math. Second, we present CoFE. Third, we evaluate CoFE empirically.
Last, we end with a conclusion.

2 Notations and Problem Statement

In this section, we define parfactors and MLNs. Parfactors are functions mapping
argument values to real numbers called potentials. An MLN is a set of pairs of
a FOL formula and a weight. Furthermore, we show the transformation of a
parfactor to an MLN and define a distance for two parfactors. Definitions for
parfactors are mainly based on [14] and for MLNs on [12].

Definition 1 (Parfactor model). Let R be a set of randvar names, L a set
of logical variable (logvar) names, ® a set of factor names, and D a set of con-
stants (universe). All sets are finite. Each logvar L has a domain D(L) CD. A
constraint C' is a tuple (X,Cx) of a sequence of logvars X = (X1,...,X,) and
a set Cx C xI_1D(X;). The symbol T for C marks that no restrictions apply,
i.e., Cx = x"_D(X;). A parameterized randvar (PRV) R(L1,...,Ly),n > 0,
is a syntactical construct of a randvar R € R possibly combined with logvars
Li,...,L, € L. If n =0, the PRV is parameterless and constitutes a proposi-
tional randvar. The term R(A) denotes the possible values (range) of a PRV A.
An event A = a denotes the occurrence of PRV A with range value a € R(A). We
denote a parfactor g by ¢(A)|c with A= (Ai,...,Ay) a sequence of PRVs, ¢ :
x™ 1 R(A;) = RT a potential function with name ¢ € @, and C a constraint on
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the logvars of A. A set of parfactors forms a model G := {g;}*_,. With Z as nor-
malizing constant, G represents the full joint distribution Pg = % ergr(G) I,
with gr(G) referring to the groundings of G w.r.t. given constraints.

Parfactor size refers to the size of the range of the parfactor arguments A, i.e.,
|R(A)|. Parfactors only contain universal quantifiers. For comparing parfactors,
we need to define a distance. In this paper, we use the Hellinger distance, defined
for probability distributions, as it allows to have zeroes in the distribution. One
could however use any distance function of their own choosing. As the potentials
in a parfactor do not need to form a probability distribution, we normalize the
potentials for calculating the Hellinger distance between two parfactors.

Definition 2 (Hellinger distance). Let ¢1(A) and ¢2(A) be two parfactors
defined over the same PRVs A. Let X1 and Yo denote the sum of the potentials
of ¢1 and ¢2, respectively. The Hellinger distance is then defined as

HO(A), 6aA) = 5 | 3 \/ e \/ Sk
ac

R(A)

Definition 3 (MLN). An MLN M is a set of pairs (F;,w;), where F; is an
FOL formula and w; € R. With Z as normalizing constant, M represents the
full joint distribution Py = Uyer(x) ~exp (3, wini(x)), where X is the set of
all grounded randvars in M, w; the weight of formula F;, and n;(x) the number
of true groundings of F; in x.

The Problem We can canonically transform a parfactor into an MLN by adding
a formula for every potential given Boolean ranges of PRVs. For non-boolean
PRVs, transforming parfactors is more elaborate. Due to the exponential func-
tion in the semantics of an MLN, the weight is the natural logarithm of the po-
tential. Consider the parfactor ¢ (Friends(X,Y), Smokes(X), Smokes(Y)) from
the smokers dataset [3], which maps (1,1,1) to the potential 7.39 and the re-
maining range value combinations to the potential 1. We add a formula for each
range value combination of the three PRVs together with the natural logarithm
of the potential: For ¢(1,1,1) = 7.39, we add the pair (a A b A ¢,2), with a, b, ¢
referring to the three PRVs being set to true. For ¢(1,1,0) = 1, we add the pair
(a Ab A —¢,0) and so on. Thus, we have as many formulas as is the parfactor
size. But instead of eight formulas, we would like to extract only two:

0 —friends(X,Y)V —smokes(X) V —smokes(Y) (1)
2 friends(X,Y) A smokes(X) A smokes(Y) (2)

which we could even reduce to one formula given the MLN semantics and the
fact that formulas that evaluate to false receive the weight 0.

The smokers example showcases the power of compactly encoding a distri-
bution with few formulas. However, the potentials are rarely distributed this
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Table 1: Reduction result for a parfactor ¢ : {0,1}% — R*. The last two columns

show which numbers are mapped to the same one when applying the respective

strategy. DBSCAN parameters are ; = 1,6, = 1. Without reduction, we need

eight formulas. With quartiles, we need four formulas and two with clustering.
a€{0,1} be{0,1} c€ {0,1} &(a,b,c) quartile cluster

0 0 0 1 1 1
0 0 1 4.7 1 2
0 1 0 4.8 2 2
0 1 1 4.9 2 2
1 0 0 5 3 2
1 0 1 5.1 3 2
1 1 0 5.2 4 2
1 1 1 5.3 4 2

nicely. Consider the example parfactor in the first four columns of Table [} With
the canonical transformation, we transform the parfactor into eight formulas.
But if we reduce the number of different potentials, a single formula can encode
more than one potential. If we map, for example, lines 2 to 7 to the potential
5, reducing the number of different potentials from 8 to 2, we can encode the
same information in two formulas, (ma A=bA—c,In1) and (aVbVc,In5). In this
example, we have an exponential reduction in the amount of extracted formulas.

3 CoFE: Compact Formula Extraction

As we argue above, directly transforming parfactors to formulas still requires an
exponential number of values. Therefore, we propose CoFE for extracting com-
pact formulas from parfactors by reducing the number of different potentials in
a parfactor. The formula extraction process consists of three steps, (1) reduction,
(2) extraction, and (3) minimization. The individual steps are explained below.

The first step is reduction. The goal is to reduce the amount of different
numbers in a parfactor while modifying the distribution only minimally. We for-
malize the notion of minimal modification by considering the distance between
the original and the modified version, which should be lower than a predefined
maximum distance e. For reduction, we test out two straight-forward strate-
gies, based on quantiles and clustering, respectively. Investigating more complex
strategies is left as future work. In the quantile strategy, we calculate g-quantiles
and map each number belonging to a quantile to the mean of the quantile. We
increase ¢ (¢ = 1,2,3,...,parfactor size — 1) until the distance is smaller or
equal to e. In the worst case, we do not modify the potential function at all as
all gs might yield a distance larger than e. In the clustering strategy, we cluster
the numbers in the potentials and map each number of a cluster to the mean
of the cluster. For clustering, we use DBSCAN [7IT3], a density-based cluster-
ing algorithm, as it does not need the amount of clusters (k) as input. It needs
two other parameters, though: a threshold distance between two points to be
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considered neighbors (64) and a minimum number of neighbors to be classified
as a cluster (6,,), which are user-defined. Other clustering methods can be used
as well. If such a method requires a k as an input, a similar approach can be
followed as for the quantile strategy, starting with & = 1 and increasing k& up
until the parfactor size minus one. Note that both strategies use the mean as
mapping target because the distance between numbers and their mean is short.
An example for both strategies is given in Table [, showing which cluster or
quantile (¢ = 4, i.e., quartiles) an entry is mapped to. The quantile strategy
maps to four numbers. Clustering makes use of the accumulation around the
number five and maps to only two distinct numbers. In the implementation for
the evaluation, CoFE actually chooses the result of the strategy that maps to
fewer different numbers, breaking ties by lower distance.

Next, the extraction step follows: CoFE extracts logical formulas in the same
way as a parfactor is transformed into an MLN, getting a list of formulas, each
assigned with a weight. The third step is minimization, for which CoFE sorts the
formulas sharing the same weight into buckets labeled with this weight. Then,
the formulas of each bucket are set to be minimized into one minimal formula, for
which CoFE uses the Quine-McCluskey algorithm [9]. The output for a parfactor
is the set of minimized logical formulas, each assigned with a weight. Consider
the smokers example again: When we use the parfactor v, as described above,
as input for CoFE with parameters ¢ = 0.1,04 = 0.1,0,, = 1, CoFE correctly
returns the two formulas given in Egs. and . We could also apply CoFE
to answers to queries for (conditional) probability distributions over a set of
randvars, turning answers into formulas as well.

On the € and Its Effect on Error and Reduction If applying CoFE to
each parfactor in a parfactor model and unifying the outputs, we get an MLN
representing the same full joint distribution as the set of reduced parfactors. If
using this MLN (or the reduced parfactor model) for query answering, then the
query results can diverge from the result of the original model. As mentioned
before, CoFE relies on a user-defined e. With a large ¢, CoFE is able to reduce
more potentials but we expect the divergence in query results to rise. With a
small €, CoFE most likely reduces fewer numbers while we expect query results to
not diverge to a large extent. In a worst case scenario, CoFE is not able to reduce
the number of formulas at all, i.e., there are ™ formulas for the r™ potentials
the canonical table representation has, with r being the range cardinality of
the n PRVs the parfactor is defined over. However, with a large enough ¢ and
an optimal minimization result, we get k clusters or ¢ quantiles leading to k
or g formulas of length n, which is no longer exponential in n. The upcoming
evaluation looks into both reduction and errors in query answering empirically.

4 Empirical Evaluation

In this section, we evaluate CoFE empirically. First, we describe the test setting
in more detail. Second, we look at CoFE’s capability of reconstructing a given
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formula, distorting potentials by adding noise. Third, we evaluate the number
and length of formulas CoFE outputs as well as the error it incurs during query
answering and briefly discuss the results in the light of readability.

4.1 Test Setting

The first part of the evaluation looks at CoFE’s performance reconstructing
latent formulas under noise: By applying CoFE to a dataset in which noise is
added to potentials, we can show that the algorithm is robust against noise. In
particular, we can simulate extracting latent formulas from a dataset by treating
the original model as the latent one and the noisy model as the given input. We
may not add too much noise, because otherwise the noisy model would lose
information and CoFE could not extract anything useful.

The second part looks at the sparsity as well as the incurred error. A reduced
number of formulas comes along with deviations in query answers if using the
extracted formulas for inference. Thus, we take a look at the number of formulas
and their length as well as the mean error for queries in the reduced model, which
also indicates how much information encoded in a distribution we preserve. As
queries, we use a set of representative queries where for each PRV in a model
we pose a query with an arbitrary grounding. The error is the deviation of the
query answer on the mapped model from the query answer on the noised model.

We perform two tests on the smokers example from [3], which we have used
throughout this article as an example. The tests differ in the noise standard
deviation o. Moreover, we create an artificial dataset for investigating the effect
of the ratio of the cluster sizes. We create a model with nine parfactors, each
defined over three randvars. Parfactor g;,i = 1...9, has i —1 ones and 9 — ¢ twos
in the potentials. We perform two tests with different standard deviations for
noise on the artificial dataset. Table shows the test parameters. We choose
the parameters so that clustering is applicable and that clusters can span over
a standard deviation of the added noise.

Specifically, we have the following steps for each test: First, we add a normally
distributed noise with a mean of zero to the potentials in parfactors. Next, we
apply CoFE to the noised model. For the first part, we calculate the Hellinger
distances between the original model, the noised, and the extracted one. For the
second part, we look at the formulas and the mean error for query answering.

4.2 Distance and Reconstruction

Due to adding noise to the potentials, the model used as input to CoFE has a
certain Hellinger distance to the original model. Figure [I] shows the Hellinger
distances from the original model to the noised and mapped ones. For Smokers1
and Artl, CoFE can effectively filter out the noise and reconstruct the original
distribution. For Smokersl, the mapped model has a Hellinger distance of 0.01
to the original model. For Artl, CoFE at least halves the Hellinger distance
compared to the one of the noised model. When we treat the original distribution
as the latent one underlying the noised model in this tests, we capture the latent
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Table 2: Evaluating CoFE: Number of formulas extracted per parfactor (#),
number of atoms per formula (L), and the mean absolute error (E).

(a) Test parameters (b) Test results
test name ‘ dataset o e 04 0, test name ‘ # L E
Smokersl | smokers 0.5 0.3 2 2 Smokersl | 23 0.004
Smokers2 | smokers 1 0.3 2 2 Smokers2 | 2 4-7 0.31
Artl artificial 0.1 0.05 0.2 2 Artl 1-2 1-4 0.01
Art2 artificial 0.2 0.1 04 2 Art2 1-2 1-4 0.021

formulas. Considering Smokers2, CoFE can no longer filter out the noise due
to the high standard deviation compared to the absolute potentials. Moreover,
CoFE not even approximately reconstructs the original distribution, but rather
mixes the original clusters. For most parfactors in Art2, CoFE can drastically
reduce the noise and reconstruct the original clusters. But, CoFE mixes the two
clusters in two parfactors. Thus, CoFE only roughly captures the original model.

4.3 Sparsity and Error

Table [2b|shows the number and length of formulas extracted as well as the mean
absolute error. In all tests, we reduce the number of formulas exponentially
compared to the canonical extraction. We extract two formulas per parfactor
instead of the eight formulas we would get with the canonical transformation
to an MLN. Moreover, all formulas, except for Smokers2, are only up to one
atom longer than without simplification and minimization. For Smokers1l, CoFE
correctly returns the two formulas given in Egs. and ([2)). Because of the added
noise, the weights are slightly different: 0.074 for Eq. and 2.03 for Eq. .

For Smokersl and Artl, the error is small and at most 0.01. Comparing Art2
to Artl, the error doubles as does the standard deviation of the noise added. For
Smokers2, the mean absolute error is with 0.31 clearly higher than for Smokersl
due to the higher noise standard deviation.

In summary, we can increase the sparsity of the encoding by extracting signif-
icantly less formulas than without reduction. Moreover, we preserve core infor-
mation and the user can control how much information loss is tolerable. Looking
at the evaluation from a readability viewpoint, we hypothesize that a sparsely
encoded distribution turned into an MLN formula is easier to understand or
more readable as a human. Additionally, the fewer formulas we have, the better
we can understand these formulas; and the shorter the formula is, the better
we can understand this particular formula. Given this hypothesis, we can record
that the formulas extracted with CoFE are at least as readable as the result of
the canonical transformation from a parfactor to an MLN. In the worst case, our
result would not differ in terms of readability from the one without reduction
and minimization. With reduction, we may combine some formulas into one for-
mula. Without minimization, this one formula is as long as the merged formulas
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Fig. 1: Hellinger distances from the original to the noised and mapped models

together. With minimization, we can only shorten the formula or leaving it as
it is. Under this hypothesis, using CoFE on query answers enables another form
of interpretation of query answers. Future work includes to further investigate
this avenue of readability, which also touches on ideas explored in transparent
machine learning or explainable Al

5 Conclusion

We present an algorithm to get an even more sparse encoding of a full joint dis-
tribution encoded in tabular-like parfactors. To this end, the algorithm reduces
the number of different potentials in a parfactor before extracting formulas, up
to a user-defined maximum distance € between the original distribution and the
reduced distribution in the parfactor. With the €, the user can trade off the po-
tential for reduction with the preservation (accuracy) of the original distribution.
Specifically, we test out two different reduction strategies, based on clusters and
quantiles respectively. After formula extraction, a minimization step ensures that
formulas are as short as possible. Because of the reduction step, the algorithm
can extract latent formulas hidden behind distorted potentials, while being able
to preserve core information, with small errors observed in our evaluation with
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a small distance. Furthermore, we hypothesize that human understanding can
improve greatly by extracting few and short formulas.

For future work, we look at testing out further reduction strategies, analyzing

the relationship between the changes in the distribution and resulting reduction
as well as error, and investigating the potential for increased readability and
human understanding.
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