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Abstract. Probabilistic graphical models that encode indistinguish-
able objects and relations among them use first-order logic con-
structs to compress a propositional factorised model for more effi-
cient (lifted) inference. To obtain a lifted representation, the state-
of-the-art algorithm Advanced Colour Passing (ACP) groups factors
that represent matching distributions. In an approximate version us-
ing ε as a hyperparameter, factors are grouped that differ by a factor
of at most (1 ± ε). However, finding a suitable ε is not obvious and
may need a lot of exploration, possibly requiring many ACP runs
with different ε values. Additionally, varying ε can yield wildly dif-
ferent models, leading to decreased interpretability. Therefore, this
paper presents a hierarchical approach to lifted model construction
that is hyperparameter-free. It efficiently computes a hierarchy of ε
values that ensures a hierarchy of models, meaning that once factors
are grouped together given some ε, these factors will be grouped to-
gether for larger ε as well. The hierarchy of ε values also leads to a
hierarchy of error bounds. This allows for explicitly weighing com-
pression versus accuracy when choosing specific ε values to run ACP
with and enables interpretability between the different models.

1 Introduction

Probabilistic graphical models (PGMs) allow for modelling environ-
ments under uncertainty by encoding features in random variables
(randvars) and relations between them in factors. Lifted or first-order
versions of PGMs such as parametric factor graphs (FGs) [17] and
Markov logic networks [18] incorporate logic constructs to encode
indistinguishable objects and relations among them in a compact
way. Probabilistic inference on such first-order models is tractable in
the domain size if using representatives for indistinguishable objects
[16], a technique referred to as lifting [17]. Lifting has been used to
great effect in probabilistic inference including lifting various query
answering algorithms [1, 2, 8, 9, 19, 22] next to lifting queries [3, 20]
or evidence [19, 21].

Advanced Colour Passing (ACP) is the state-of-the-art algorithm
to get a first-order model from a propositional one, specifically turn-
ing FGs into parametric FGs, grouping factors with identical po-
tentials [1, 13]. The newest version, ε-Advanced Colour Passing
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(ε-ACP), considers approximate indistinguishability, using a num-
ber ε to group factors whose potentials differ by a factor of at most
(1± ε) and are therefore considered ε-equivalent, with ε as a hyper-
parameter [14]. ε-ACP allows for compressing a propositional model
to a larger degree with increasing ε, leading to better runtime for in-
ference tasks. It also allows for computing an approximation error
for such inference tasks, which helps assess the accuracy versus the
compression gained. However, if a chosen ε does not fulfil either a
requirement for compression or accuracy, shortcomings become ap-
parent: A new run of ε-ACP with a different ε does not guarantee a
model consistent with the previous one. E.g., with a larger ε, mak-
ing more factors ε-equivalent, factors that were previously grouped
together might no longer be part of the same group, because a differ-
ent grouping appears more suitable. That is, the models do not form
a hierarchy, where groups of factors under a larger ε can only form
by merging groups under a smaller ε. This inconsistency in models
from one ε to the next makes it hard to interpret the models regarding
each other. Additionally, ε is a hyperparameter that has to be chosen
by the user. It may not be obvious what a suitable value for ε is, re-
quiring many runs of ε-ACP to find a suitable one with the necessary
compression and accuracy.

To counteract these shortcomings, this paper presents a hierarchi-
cal approach to lifted model construction called hierarchical ACP
(HACP), which is hyperparameter-free, i.e., there is no need to
choose a value for ε in advance. Specifically, we calculate a hier-
archy of ε values that guarantees a hierarchy of compressed models
when running HACP, as more compressed models naturally encom-
pass supersets of grouped ε-equivalent factors from their less com-
pressed counterparts. To do so, this paper contributes the following:

(i) a one-dimensional ε-equivalence distance (1DEED) measure that
reduces the ε-equivalence after computations to a single number
for comparing different factors in contrast to the previous defini-
tion of ε-equivalence,

(ii) an efficient algorithm for computing a hierarchical ordering of ε
values,

(iii) HACP using the hierarchical ordering of ε values, yielding a hier-
archy of parametric FGs, and

(iv) an analysis of the error bounds in the hierarchy of parametric FGs,
showing a hierarchical order as well.



The hierarchical approach has the advantage of being hyperparame-
ter-free: The hierarchy of ε values can be computed before running
HACP and without needing a starting value. In combination with the
error bounds, the hierarchy of ε values allows to choose for which ε
values to actually run HACP, which means that a user does not need
to do a hyperparameter exploration to find the most suitable one. It
also has the upside that one has to run HACP only for those ε values
that are actually of interest. We approach this from the perspective of
distributional deviation (accuracy), but also in the context of group
merging of ε-equivalent factors by controlling ε (compression). In
this context, we also investigate the potential loss of accuracy by the
forced hierarchical structure in comparison to the ε-ACP. Finally,
the different models as a result of the ε values in the hierarchy are
consistent and as such interpretable with respect to each other. This
provides insight into the underlying symmetries within the different
levels of the approximated FG, where its complexity is implicitly
captured by the variations and proximity of distinct ε values and the
heterogeneity of group memberships. Consequently, this allows for
an informed choice of an appropriate ε in a way that suits specific
requirements for applications.

The remaining part of this paper is structured as follows: The paper
starts with introducing necessary notations and briefly recaps ε-ACP,
which is followed by the main part, which provides a definition of
1DEED, specifies how to calculate a hierarchical ordering of ε val-
ues, and presents HACP. Then, it shows maximal error bounds for
HACP and ends with a discussion and conclusion. The technical ap-
pendix includes more detailed proofs and illustrations.

2 Background
We start by defining an FG as a propositional probabilistic graphical
model to compactly encode a full joint probability distribution over a
set of randvars [7, 12]. The following definitions are given via [14].

Definition 1 (Factor Graph). An FG M = (V ,E) is an undirected
bipartite graph consisting of a node set V = R ∪ Φ, where R =
{R1, . . . , Rn} is a set of randvars and Φ = {ϕ1, . . . , ϕm} is a set
of factors (functions), as well as a set of edges E ⊆ R ×Φ. There
is an edge between a randvar Ri ∈ R and a factor ϕj ∈ Φ in E
if Ri appears in the argument list of ϕj . A factor ϕj(Rj) defines a
function ϕj : ×R∈Rj range(R) → R>0 that maps the ranges of its
arguments Rj (a sequence of randvars from R) to a positive real
number, called potential. The term range(R) denotes the possible
values a randvar R can take. We further define the joint potential for
an assignment r (with r being a shorthand notation for R = r) as

ψ(r) =

m∏
j=1

ϕj(rj), (1)

where rj is a projection of r to the argument list of ϕj . With
Z =

∑
r

∏m
j=1 ϕj(rj) as the normalisation constant, the full joint

probability distribution encoded by M is then given by

PM (r) =
1

Z

m∏
j=1

ϕj(rj) =
1

Z
ψ(r). (2)

Example 1. Consider the FG illustrated in Fig. 1. It holds that R =
{A,B,C}, Φ = {ϕ1, ϕ2}, and E = {{A, ϕ1}, {B,ϕ1}, {B,ϕ2},
{C, ϕ2}}. For the sake of this example, let range(A) = range(B) =
range(C) = {true, false}. The potential tables of ϕ1 and ϕ2 are
shown on the right of Fig. 1 with ϕ1(true, true) = φ1 and so on,
where φi ∈ R>0, i = 1, . . . , 4, are arbitrary positive real numbers.

In Def. 1, we stipulate that all potentials are strictly greater than
zero to avoid division by zero when analysing theoretical bounds in
subsequent sections of this paper. In general, it is sufficient to have
at least one non-zero potential in every potential table to ensure a
well-defined semantics of an FG. However, our requirement of hav-
ing strictly positive potentials is no restriction in practice as zeros can
easily be replaced by tiny numbers that are close to zero. An FG can
be queried to compute marginal distributions of randvars given ob-
servations for other randvars (referred to as probabilistic inference).

Definition 2 (Query). A query P (Q | E1 = e1, . . . , Ek = ek) con-
sists of a query term Q and a set of events {Ej = ej}kj=1 where Q
and allEj , j = 1, . . . , k, are randvars. To query a specific probabil-
ity instead of a distribution, the query term is an event Q = q.

Lifted inference exploits identical behaviour of indistinguishable
objects to answer queries more efficiently. The idea behind lifting
is to use a representative of indistinguishable objects for computa-
tions. Formally, this corresponds to making use of exponentiation
instead of multiplying identical potentials several times (for an ex-
ample, see Appendix C). To exploit exponentiation during inference,
equivalent factors have to be grouped. We next introduce the concept
of ε-equivalent factors [14], which allows us to determine factors that
can potentially be grouped for lifted inference.

Definition 3 (ε-Equivalence). Let ε ∈ R>0 be a positive real
number. Two potentials φ1, φ2 ∈ R>0 are ε-equivalent, denoted
as φ1 =ε φ2, if φ1 ∈ [φ2 · (1 − ε), φ2 · (1 + ε)] and φ2 ∈
[φ1 · (1 − ε), φ1 · (1 + ε)]. Further, two factors ϕ1(R1, . . . , Rn)
and ϕ2(R

′
1, . . . , R

′
n) are ε-equivalent, denoted as ϕ1 =ε ϕ2, if there

exists a permutation π of {1, . . . , n} such that for all assignments
(r1, . . . , rn) ∈ ×n

i=1range(Ri), where ϕ1(r1, . . . , rn) = φ1 and
ϕ2(rπ(1), . . . , rπ(n)) = φ2, it holds that φ1 =ε φ2.

Example 2. Consider the potentials φ1 = 0.49, φ2 = 0.5, and
ε = 0.1. Since it holds that φ2 = 0.5 ∈ [φ1 · (1− ε) = 0.441, φ1 ·
(1+ε) = 0.539] andφ1 = 0.49 ∈ [φ2·(1−ε) = 0.45, φ2·(1+ε) =
0.55], φ1 and φ2 are ε-equivalent (for ε = 0.1).

The notion of ε-equivalence is symmetric. Moreover, it might hap-
pen that indistinguishable objects are located at different positions
in the argument list of their respective factors, which is the reason
the definition considers permutations of arguments. For simplicity,
in this paper, we stipulate that π is the identity function. However, all
presented results also apply to any other choice of π [14].

The ε-ACP algorithm [14] computes groups of pairwise ε-
equivalent factors to compress a given FG. In particular, as poten-
tials are often estimated in practice, potentials that should actually
be considered equal might slightly differ and the ε-ACP algorithm
accounts for such deviations using a hyperparameter ε, which con-
trols the trade-off between compression and accuracy of the resulting
lifted representation. To allow for exponentiation, ε-ACP computes
the mean potentials for each group of pairwise ε-equivalent factors
and replaces the original potentials of the factors by the respective
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ϕ1
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A B ϕ1(A,B) C B ϕ2(C,B)
true true φ1 true true φ1

true false φ2 true false φ2

false true φ3 false true φ3

false false φ4 false false φ4

Figure 1. An exemplary FG encoding a full joint probability distribution
over three randvars A, B, and C.



mean potentials. Thus, the semantics of the FG changes after the re-
placement of potentials. However, replacing potentials by their mean
guarantees specific error bounds (more details follow in Section 4).

Note 1. ε-ACP uses the introduced concept of ε-equivalence includ-
ing the corresponding hyperparameter ε ∈ R>0 requiring repeated,
dimension-wise grouping checks with no reusable aggregate struc-
ture. This can be interpreted as a regularisation approach from the
original model (with ε ≈ 0) to the most trivial model by reducing
complexity by increasing ε. For arbitrary large ε ≫ 0, it reduces
the model to an FG that considers all factors of the same dimension
and its corresponding multiset of randvars with same range sizes as
pairwise ε-equivalent, where the dimension of a factor ϕ refers to
the number of rows in the potential table of ϕ. ε-ACP does not yield
hierarchical models, since the grouping process is independent for
each choice of ε.

Next, we present a hierarchical version of ε-ACP that ensures a
hierarchy of models over increasing ε.

3 Hierarchical Lifted Model Construction
As mentioned above, ε-ACP lacks a mechanism to ensure the core
property of hierarchical methods: the consistent embedding of sim-
pler models into more complex ones. To construct a principled hi-
erarchical organisation of models, a clear mechanism for defining
and transferring group membership across levels is essential. Con-
cretely, we define a hierarchy, in which higher levels inherit structural
properties from lower levels, thereby inducing a consistent reduction
in the complexity of the FG. To this end, we present the 1DEED,
a more effective criterion for determining ε-equivalence. To do so,
we treat the potential table of a factor ϕ as a vector in Rn

>0, where
ϕ(k) denotes the k-th entry, i.e., the potential associated with the
k-th row in the potential table of ϕ. For example, factor ϕ1(A,B)
in Fig. 1 is represented as the vector (φ1, φ2, φ3, φ4), with, e.g.,
ϕ1(true, false) = ϕ1(2) = φ2. After introducing 1DEED, we use it
to set up a hierarchical ordering of ε-equivalent factors, which forms
the backbone to a hierarchical approach for lifted model construction
based on ε-ACP.

3.1 One-dimensional ε-Equivalence Distance

We define 1DEED as a measure to compare two n-dimensional,
strictly positive vectors, representing factors in an FG, i.e., ϕi ∈ Rn

>0

with ϕi(k) > 0 for all k.

Definition 4 (One-dimensional ε-equivalence distance). 1DEED de-
fined as the mapping d∞ : Rn

>0 × Rn
>0 → R for two n-dimensional

vectors ϕ1, ϕ2 ∈ Rn
>0 is given by:

d∞(ϕ1, ϕ2) := max
k=1,...,n

{∣∣∣∣ϕ1(k)− ϕ2(k)

ϕ1(k)

∣∣∣∣ , ∣∣∣∣ϕ1(k)− ϕ2(k)

ϕ2(k)

∣∣∣∣}
= max

k=1,...,n

{
|ϕ1(k)− ϕ2(k)|

min{|ϕ1(k)|, |ϕ2(k)|}

}
(3)

The first properties of 1DEED as a distance measure are direct
results of its definition.

Corollary 1. The following properties hold for 1DEED.

(i) 1DEED is non-negative and symmetric.
(ii) It holds that d∞(ϕ1, ϕ2) = 0 if and only if |ϕ1(k) − ϕ2(k)| = 0

for all k = 1, . . . , n, which holds if and only if ϕ1 = ϕ2.

This distance is based on the maximum metric (Chebyshev dis-
tance) with an additional deviation. It does not satisfy the triangle
inequality and thus is not a metric, which can be demonstrated using
a counterexample (see Appendix A). Nonetheless, 1DEED is well-
suited for bounding maximum relative deviations in all dimensions,
aligning with practical use in probabilistic inference. The nature of
its definition is no coincidence, but rather subject to the purpose to
induce ε-equivalence by being consistent with the existing concept.

Theorem 2. Two vectors ϕ1, ϕ2 ∈ Rn
>0 are ε-equivalent (Defini-

tion 3) if and only if d∞(ϕ1, ϕ2) ≤ ε holds.

Proof Sketch. In mathematical terms, the claim can be summarised
as ϕ1 =ε ϕ2 ⇔ d∞(ϕ1, ϕ2) ≤ ε, which we prove for any ε > 0 in
Appendix B via equivalence transformations.

The use of relative deviation is essential in probabilistic query-
ing, where percentage-based error bounds directly influence the qual-
ity of inference. However, classical definitions of ε-equivalence re-
quire checking all component-wise comparisons, leading to ineffi-
ciencies in practice and no clear order of ε-equivalent factor groups.
The one-dimensional formulation via d∞ addresses this by provid-
ing a closed-form, computationally minimal characterisation of ε-
equivalence. Specifically, it allows for an efficient computation of the
smallest admissible ε for each pair of factors, facilitating both stor-
age and comparison. That is d∞(ϕ1, ϕ2) = ε0 uniquely determines
the minimal ε0 ≤ ε for which ϕ1 =ε ϕ2 still holds. This scalar
value enables direct comparison, indexing, and efficient classifica-
tion of equivalence classes without enumerating all component-wise
ratios. The formal operational benefits – both in terms of computa-
tional complexity and structural hierarchy – are established in the
next subsection.

3.2 Hierarchical Ordering of ε-Equivalent Factors

To obtain a meaningful hierarchical structure, we need a starting
point or a level 0, which is simply the full model. On the other hand,
if ε is arbitrarily large, all factors of the same dimension would be
grouped together, resulting in a nearly trivial model. However, these
properties alone are insufficient for creating a clear hierarchy be-
tween these extremes. A desired structure would resemble the one
depicted in Fig. 2. Each level in the hierarchy is represented by a line
on the left side of the figure. If we were to cut the figure horizontally
at this point, all connected subtrees would form a group, while the
remaining factors would stay separate. Our goal is to maintain the
property that once multiple factors are grouped together at a lower
level, they should also stay together at higher levels. This property is
known as structure preservation. However, preserving the structure is
not trivial due to the lack of transitivity in d∞.

Thus, we impose a hierarchical pre-ordering on the set of factors
based on pairwise ε-equivalence, determined by the minimal devi-
ation under 1DEED d∞. This unique ordering forms the basis for
HACP described in Section 3.3. Smaller d∞ values correspond to
higher indistinguishability, and the hierarchical construction ensures
that higher-level aggregations preserve the nested structure of pre-
viously merged subgroups. This can be seen as an agglomerative
clustering algorithm based on 1DEED with complete linkage within
maximal deviation (where only completely pairwise ε-equivalent
groups are merged) with complexity O(m3), which is especially in
comparison to the complexity of ACP negligible. The grouping step
of ε-ACP is omitted instead, which is applied per choice of ε.



ϕ1 ϕ2

ε1 ϕ3 ϕ4

ε2 ϕ5 ϕ6

ε3

ε4 ϕ7

ε5

ε7

ϕ8 ϕ9

ε6

ϕ10

ε8

ε9
L

ev
el

s

Figure 2. Exemplary visualisation of a factor ordering with increasing ε.
This information is easily stored in the list L and is easily readable from the
matrix Λ̃. The εi are ordered by size (ε1 being the smallest value of them).
Note that a root ε is always the maximal ε-distance of all pairwise factor

comparisons of all leafs. E.g., ε4 = max{ε1,2, ε1,3, ε1,4, ε2,3, ε2,4, ε3,4}.

Factor ϕ1 ϕ2 · · · · · · ϕm−1 ϕm

ϕ1 0 ε1,2 ε1,3 · · · ε1,m−1 ε1,m
ϕ2 0 0 ε2,3 · · · ε2,m−1 ε2,m
...

...
...

. . .
. . .

...
...

...
...

...
...

. . .
. . .

...
ϕm−1 0 0 0 0 0 εm−1,m

ϕm 0 0 0 0 0 0

Table 1. Upper triangular matrix Λ = (Λij)1≤i,j≤m illustrating the
matrix output of Alg. 1, Phase I. The entries are defined as

Λij = εi,j := d∞(ϕi, ϕj) for 1 ≤ i < j ≤ m, and Λij = 0 otherwise.

To determine this ordering, we follow a two-phase procedure as
described in Alg. 1 with an FG as input. In Phase I, the algo-
rithm creates a matrix Λ as shown in Table 1. Its cell entries are
Λij := εi,j := d∞(ϕi, ϕj) for 1 ≤ i < j ≤ m, where m = |Φ|
is the number of factors in the FG. The symmetric property of d∞
allows for filling the matrix with zeros, thus forming an upper tri-
angular matrix. Next, we examine Phase II of the algorithm in more
detail, which performs a hierarchical ordering of ε-equivalent group
selections across all factors with structural compatibility.

The algorithm iteratively chooses ε values from Λ that allow
(groups of) factors that are pairwise ε-equivalent to be grouped. The
algorithm runs for m − 1 iterations as there are m factors to merge,
meaning there are m − 1 hierarchical levels at the end. The outputs
are an ordered vector ε of length m − 1 of increasing ε values as
well as an ordered nested list of lists L containing a nested grouping
of indices according to the ε values and their hierarchy level (with
an index shift of m for easier identification compared to the indices
identifying factors). Specifically, the algorithm picks the next two
(groups of) factors to merge by selecting the minimal entry εi′,j′ in
Λ, which is then stored in ε at the current level.

Before dealing with L, let us consider how Λ is updated: Since
both (groups of) factors are now considered as a single group, their
respective rows in Λ need to be merged by keeping the maximum of
the two ε values in each column, which ensures that if an entry of this
row is picked in another iteration, all factors are ε-equivalent given
this larger ε. To avoid resizing Λ, there is a set of active indices, and
merging (groups of) factors removes the second index, essentially

Algorithm 1 Hierarchical Ordering of ε-Equivalent Groups

Input: An FGM = (R∪Φ,E) withm = |Φ| and Φ ⊂ Rn×m
>0 ,

and structural compatibility across all factors.
Output: An ordered nested list L of lists,
an ordered vector ε = (ε1 . . . , εm−1) with εi < εi+1.

▷ Phase I: Generate upper triangular Matrix Λ
1: Initialise Λ ∈ Rm×m with zeros
2: for i = 1 to m− 1 do
3: for j = i+ 1 to m do
4: Compute d∞(ϕi, ϕj) =: εi,j
5: Store result in Λij

6: Save Λ
▷ Phase II: Generate ordered list L and vector ε

7: Initialise empty list L ← [ ]
8: Initialise vector ε = (ε1 . . . , εm−1) with zeros
9: Initialise active index set A ← {1, . . . ,m}

10: Initialise active matrix Λ̃ := Λ
11: for ℓ = 1 to m− 1 do
12: Find (i′, j′) = argmin{Λ̃ij | i < j, i, j ∈ A}
13: Save εl := Λ̃i′j′

14: if i′ appears in direct parent group Gp ∈ L then
15: if j′ appears in direct parent group G′

p ∈ L then
16: Update Gp and G′

p as one new group [Gp, G
′
p, ℓ+m]

17: else
18: Update Gp as Gp = [Gp, j

′, ℓ+m]

19: else if j′ appears in direct parent group Gp ∈ L then
20: Update Gp as Gp = [Gp, i

′, ℓ+m]
21: else ▷ Neither i′ nor j′ appears in any parent group
22: Append [[i′, j′, ℓ+m]] to L
23: for k ∈ A \ {i′, j′} do
24: if k > j′ then
25: Λ̃i′k ← max{Λ̃i′k, Λ̃j′k}
26: else if k < i′ then
27: Λ̃ki′ ← max{Λ̃ki′ , Λ̃kj′}
28: else if i′ < k < j′ then
29: Λ̃i′k ← max{Λ̃i′k, Λ̃kj′}
30: Remove j′ from active set: A ← A \ {j′}

deactivating the row. The entries of the row of the first index are then
updated to the maximum value.

Regarding L, a new entry is formed, which is essentially a list of
a 3-tuple l = [ei′ , ej′ , h]: one element ei′ for the first (group of)
factor(s), one element ej′ for the second (group of) factor(s), and the
last element h being the current hierarchy level shifted by m. If i′ or
j′ identify a single factor, then ei′ or ej′ store the index identifying
the factor. If i′ or j′ identify a group of factors, then there already ex-
ists an entry l′ in L for it from a previous merging, which is removed
from L and then stored in ei′ or ej′ . Next, we look at an example.

Example 3. Let M = (R ∪Φ,E) be an FG with m = |Φ| = 10
factors, all of identical dimension. Assume distances between factors
leading to a hierarchy corresponding to Fig. 2, that is, factors ϕ1 and
ϕ2 have the smallest distance among all factors, ϕ3 and ϕ4 the next
smallest distance, followed by ϕ5 and ϕ6, after which the first two
pairings have the smallest distance, and so on.

During the first iteration of Phase II in Alg. 1, ε1,2 is minimal in Λ.
Therefore, an entry in L is created with [1, 2, 11], containing the two
indices 1, 2 identifying the factors and the current hierarchy level 1
shifted by m = 10. The matrix update looks as follows:



Factor ϕ2 ϕ3 ϕ4 ϕ5 · · ·

ϕ1 ε1,2 max
i=1,2

εi,3 max
i=1,2

εi,4 max
i=1,2

εi,5 · · ·
ϕ2 0 ε2,3 ε2,4 ε2,5 . . .
ϕ3 0 0 ε3,4 ε3,5 · · ·
ϕ4 0 0 0 ε4,5 · · ·
... 0 0 0 0 · · ·

The row of index 1 is updated to the maximum value of the two entries
of the rows 1, 2. The row of index 2 is deactivated, which is depicted
by the crossed out line.

In the next iteration, ε3,4 is minimal in Λ̃, which means adding an
entry [3, 4, 12] to L, with the matrix update being the following:

Factor ϕ2 ϕ3 ϕ4 ϕ5 · · ·

ϕ1 ε1,2 max
i=1,2
j=3,4

εi,j max
i=1,2

εi,4 max
i=1,2

εi,5 · · ·

ϕ2 0 ε2,3 ε2,4 ε2,5 . . .
ϕ3 0 0 ε3,4 max

i=3,4
εi,5 · · ·

ϕ4 0 0 0 ε4,5 · · ·
... 0 0 0 0 · · ·

When Λ̃13 is the next value to choose, both indices identify groups
of factors. As such, their entries inL, namely, [1, 2, 11] and [3, 4, 12],
are replaced by an entry [[1, 2, 11], [3, 4, 12], 14]. At the end, the out-
put of Alg. 1 looks as follows:

L = [ [[[1, 2, 11], [3, 4, 12], 14], [[5, 6, 13], 7, 15], 17],

[[8, 9, 16], 10, 18], 19 ]

ε = (ε1, . . . , ε9) with ε1 = min
i,j=1,...,10

i<j

{εi,j} = Λ12,

ε2 = min
i,j=1,3,...,10

i<j

{εi,j} = Λ̃34, ε3 = min
i,j=1,3,5,...,10

i<j

{εi,j} = Λ̃56,

ε4 = min
i,j=1,3,5,7,...,10

i<j

{εi,j} = Λ̃13, . . .

This results in a total hierarchy of maximal 10 different levels (and
models). Appendix D shows an overview of the group sizes in the
hierarchy, illustrating the compression possible with increasing ε.

Thus, in the output, each εi corresponds to an increasingly coarse
partitioning, reflecting group memberships under growing tolerance
thresholds for higher levels. Selecting a specific εi implies fixing a
hierarchical level i, which determines the groupings from L. Run-
ning Alg. 1 is rather efficient, depending on the number of factors
only and needing to compute pairwise distances only once.

3.3 Hierarchical Advanced Colour Passing Algorithm

HACP provides a hyperparameter-free hierarchical approach to lifted
model construction. It uses the output of Alg. 1 to determine for a
given level which groups get the same colour assigned, which is then
the input to standard ACP, which runs independent of ε. Specifically,
HACP proceeds in three phases, loading groups, running ACP, and
updating potentials. Alg. 2 shows an overview, which is specified for
a given hierarchy level i for the sake of brevity but could be easily
extended to build parametric models for all levels of the hierarchy. It
takes an FG, an index i, and the output of Alg. 1 for the FG as input.

Phase I provides a systematic procedure for forming the groups of
factors in the input FG given the nested list L of the output of Alg. 1.

Algorithm 2 Hierarchical Advanced Colour Passing
Input: An FG M = (R ∪Φ,E), an index i ∈ {1, . . . ,m− 1},
and the outcome of Alg. 1 run on M .
Output: A lifted representation M ′, encoded as a parametric
FG, which is approximately equivalent to M .

▷ Phase I: Load groups of pairwise ε-equivalent factors for εi
1: Let L be the current list of candidate groups.
2: for k = m+ i to m+ 1 do
3: if k occurs in any group in L then
4: Load global parent group Gp(k) ∈ L
5: Store group of ε-equivalent factors:

GΦ(k) := {ϕj | j ∈ Gp(k), j < m} ∈ G
6: Update L ← L \Gp(k)

7: for each factor ϕj ∈ Φ \
(⋃m+i

k=m+1GΦ(k)
)

do
8: Store group GΦ(j) := {ϕj} ∈ G

▷ Phase II: Assign colours to factors and run ACP
9: for each group Gj ∈ G do

10: for each factor ϕi ∈ Gj do
11: ϕi.colour ← j

12: M ′ ← Call ACP on M and G using the assigned colours
▷ Phase III: Update potentials

13: for each parametric factor g ∈M ′ do
14: Gj ← Collect all factors ϕi that were merged into g
15: ϕ∗(r)← 1

|Gj |
∑

ϕi∈Gj
ϕi(r) for all assignments r

16: for each factor ϕi ∈ Gj do
17: ϕi ← ϕ∗

For instance, consider Example 3 and level 4 with ε4. The grouping
induced at this level is:

G ={G1 = {ϕ1, ϕ2, ϕ3, ϕ4},G2 = {ϕ5, ϕ6},
G3 = {ϕ7},G4 = {ϕ8},G5 = {ϕ9},G6 = {ϕ10}}.

Subsequently, Phase II applies the standard ACP with colours as-
signed to each identified group, which returns a parametric FG with
one parametric factor for each group of factors deemed equivalent.
In Phase III, the potentials of each parametric factor are replaced
by the arithmetic mean of the group of equivalent factors. That is,
for each group of potentials {φ1, . . . , φk}, a new potential is com-
puted as φ∗ = argminφ̂

∑k
i=1(φi − φ̂)2. This minimises intra-

group variance and yields an optimal compressed representation. The
constructed factor ϕ∗ = (φ∗

1, . . . , φ
∗
n) is, by design, also pairwise ε-

equivalent to all original factors from its generating group.

4 Hierarchical Bounds: Compression vs. Accuracy
A crucial property of the ε-ACP algorithm is its induced bound on the
change in probabilistic queries based on its hyperparameter ε. HACP
uses predefined groups (selected via Algorithm 2) and still allows
choosing a compressed model of reduced complexity, while preserv-
ing the same asymptotic bounds as its predecessor, ε-ACP, to ensure
consistent and reliable performance (accuracy). The following sub-
sections explore the properties of HACP, examining how to control
this information to apply the algorithm with specific accuracy.

4.1 Asymptotic Properties

A desirable property of the HACP algorithm is that it preserves the
same boundaries on the change in probabilistic queries as the ε-ACP



algorithm. After running ε-ACP, the deviation-wise worst-case sce-
nario for an assignment is bounded. Notably, HACP relies on the
mean values of the potentials of pairwise ε-equivalent factors. To
quantify the difference in probabilistic queries between the original
FG and the hierarchical processed FG after applying the HACP al-
gorithm, we use the symmetric distance measure between two distri-
butions PM and PM′ introduced by Chan and Darwiche [4], which
effectively bounds the maximal deviation of any assignment r:

DCD(PM , PM′) := lnmax
r

PM′(r)

PM (r)
− lnmin

r

PM′(r)

PM (r)
. (4)

For ε-ACP, the following asymptotic bound has been proven [14]:

Theorem 3 (Luttermann et al. [14]). Let M = (R ∪ Φ,E) be an
FG and letM ′ be the output of ε-ACP when run onM . With PM and
PM′ being the underlying full joint probability distributions encoded
by M and M ′, respectively, and m = |Φ|, it holds that

DCD(PM , PM′) ≤ ln

((
1 + m−1

m
ε
)(
1 + ε

)
1 + 1

m
ε

)m

(5)

< ln
(
1 + ε

)2m
< ln

(
1 + ε

1− ε

)m

, (6)

where the bound given in Eq. (5) is optimal (sharp).
We next show that this bound also applies to the HACP algorithm.

Proposition 4. Theorem 3 holds the same way for M ′ being the
output of the HACP algorithm (Alg. 2).

Proof. The core components of the ε-ACP algorithm and its hierar-
chical counterpart HACP (Alg. 2) are identical, aside from enforc-
ing predefined group structures to guarantee a hierarchical structure.
Therefore, the proof can be conducted in the same manner as the
original proof [14, App. A]. The same proposed example can be used
to hit the bound of Eq. (5), showing its optimality.

4.2 Compression versus Accuracy

We continue to give a finer analysis of theoretical properties entailed
by HACP regarding the trade-off between compression and accuracy.
All upcoming results hold for both ε-ACP and HACP.

Theorem 5. The maximal absolute deviation between any initial
probability p = PM (r | e) of r given e in model M and the prob-
ability p′ = PM′(r | e) in the modified model M ′ resulting from
running HACP (Alg. 2) or ε-ACP on M can be bounded by

pmax∆ := max
for any r|e

|p− p′| ≤
√
ed − 1√
ed + 1

with d = DCD(PM , P
′
M ).

Proof Sketch. From Chan and Darwiche [4], we use
pe−d

p(e−d − 1) + 1
≤ p′ = PM′(r | e) ≤ ped

p(ed − 1) + 1
(7)

to define a upper bound function fmax∆ for pmax∆, which is sym-
metric for p′ = 1/2 (see Fig. 3)

fmax∆(p) :=max(fupper(p), flower(p)) for p ∈ [0, 1]

with fupper(p) :=
ped

p(ed − 1) + 1
− p =

p(1− p)(ed − 1)

p(ed − 1) + 1

and flower(p) :=p−
pe−d

p(e−d − 1) + 1
=
p(1− p)(1− e−d)

p(e−d − 1) + 1
,

and calculate its extrema by first- and second-order conditions.
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Figure 3. Showing fupper and flower over [0, 1] with d2 values from
Corollary 6 to use an upper estimate for pmax∆ by bounding it from above.
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Figure 4. The bound on pmax∆ depending on the choice of ε for different
amounts of factors m.

Since Theorem 5 lets us compute DCD(PM , PM′) efficiently -
— without inspecting the full factor graph -— it has direct practical
impact. Since

√
ed−1√
ed+1

= tanh
(
d
4

)
≤ 1 is monotonically strictly

increasing in d, the results of Theorem 3 can be substituted into its
formula, while the directions of the inequalities are obtained.

Corollary 6. With previous notations, the change in any probabilis-
tic query in an initial model M and a modified model M ′ obtained
by running HACP (Alg. 2) or ε-ACP is bounded by

pmax∆ ≤
√
ed1 − 1√
ed1 + 1

with d1 = DCD(PM , P
′
M )

≤
√
ed2 − 1√
ed2 + 1

with d2 = ln

((
1 + m−1

m
ε
)(
1 + ε

)
1 + 1

m
ε

)m

≤
√
ed3 − 1√
ed3 + 1

with d3 = ln
(
1 + ε

)2m
≤
√
ed4 − 1√
ed4 + 1

with d4 = ln

(
1 + ε

1− ε

)m

.

This implies that for a given ε > 0, we can determine the maxi-
mum deviation of pmax∆ (see Fig. 4). However, it is also essential
to consider the reverse perspective to gain insight into the overall
diversity and structural complexity of the FG. Therefore, we inves-
tigate the following question: What choice of ε guarantees that our
probabilities remain within a specified distance, i.e., pmax∆ ≤ p∗∆?



This question is addressed in the subsequent theorem by reversing
the preceding inequalities and solving for ε.

Theorem 7. For any given p∗∆ ∈ (0, 1
2
], the output of HACP guar-

antees for any ε ∈ (0, 1), which is smaller or equal to

ε1 = −
1 + m−1

m − 1
m

m√
ed

2 m−1
m

+

√√√√(
−

1 + m−1
m − 1

m

m√
ed

2 m−1
m

)2
−

1 − m√
ed

m−1
m

with d = ln
(

p∗∆+1

1−p∗∆

)2
the bound pmax∆ ≤ p∗∆.

Proof. Using Theorem 5, we get for d = DCD(PM , P
′
M ):

pmax∆ ≤
√
ed − 1√
ed + 1

=: p∗∆

⇔ ln

(
p∗∆ + 1

1− p∗∆

)2

= d = DCD(PM , P
′
M ).

Additionally, we use Eq. (5) from Theorem 3 and the correspond-
ing version for HACP (Proposition 4) and solve the inequality for ε,
when it reaches equality:

d = ln

((
1 + m−1

m
ε
)(
1 + ε

)
1 + 1

m
ε

)m

.

This means that we can bound the maximal deviation p∗∆, which is
tight [14], of HACP and ε-ACP, respectively, by calculating ε1(p∗∆)
before we run it. However, these bounds are mostly of theoretical
nature and the deviations are rarely encountered in reality [14].

Note 2. Choosing, for instance, a 10 times larger ε has pretty much
the same effect as choosing 10 times the number of factors m on the
bound on the change in probabilistic queries (cf. Fig. 3).

Thus, this subsection lays the groundwork for leveraging the sup-
plementary insights from Alg. 1 to develop a holistic understanding
of the structural and computational complexity of the FG. Depending
on sensitivity to ε, pmax∆/p

∗
∆, and m, one can assess the implica-

tions of specific parameter choices on the effect of compressing a
given FG, or alternatively, prioritise model fidelity. The HACP algo-
rithm enables such assessments across multiple structural levels.

5 Discussion
Related work. Lifted inference exploits the indistinguishability
of objects in probabilistic (relational) models, enabling more effi-
cient query answering (marginals of randvars given observations)
with exact results [16]. First introduced by Poole [17], parametric
FGs, which combine relational logic and probabilistic modelling,
and lifted variable elimination enable lifted probabilistic inference
to speed up query answering by exploiting the indistinguishabil-
ity of objects. Over the past years, lifted variable elimination has
continuously been refined by many researchers to reach its current
form [3, 5, 6, 11, 15, 19]. To construct a lifted (i.e., first-order) rep-
resentation such as a parametric FG, the ACP algorithm [13], which
generalises the CompressFactorGraph algorithm [1, 10], is the cur-
rent state of the art. ACP runs a colour passing procedure to de-
tect symmetric subgraphs in a probabilistic graphical model, simi-
lar to the Weisfeiler-Leman algorithm [23], which is a well-known
algorithm to test for graph isomorphism. It groups symmetric sub-
graphs and exploits exponentiation during probabilistic inference.
While ACP is able to construct a parametric FG entailing equiva-
lent semantics as a given propositional model, it requires potentials

of factors to exactly match before grouping them. In practice, how-
ever, potentials are often estimates and hence might slightly differ
even for indistinguishable objects. To account for small deviations
between potentials, the ε-ACP algorithm [14] has been introduced,
generalising ACP by introducing a hyperparameter ε that controls the
trade-off between the exactness and the compactness of the resulting
lifted representation. While the original formulation assumes factors
with identical dimensions and range structures, the general concept
naturally extends to heterogeneous dimensions. In such cases, care
must be taken to preserve structural consistency to ensure that exist-
ing symmetries remain valid when reasoning across dimensions.

Pre-ordering means pre-analysing. Our hierarchical algorithm
(Alg. 1) imposes a predetermined nesting structure on the fac-
tor graph before any colour passing procedure, enabling a priori
application-specific level selection. By specifying levels before ap-
plying Alg. 2 to the adjusted graph, one can predict and implicitly
control the resulting complexity of ε-equivalent group structure and
thereby enhance interpretability. In contrast to ε-ACP, which may
produce ε-equivalent groupings that lack consistent nesting across
runs or parameter settings, our hierarchical approach (HACP) en-
sures structural coherence and comparability across instances. More-
over, the explicit composition of each level can be monitored to trace
modification impacts throughout the hierarchy. Large d∞ values in-
dicate low symmetry and are generally unsuitable for approximating
the FG in most applications. Conversely, many small d∞ values close
to each other suggest high potential for similar factor structures. Such
an analysis is not feasible with ε-ACP, which requires an a priori
choice of ε without any guarantees of identifying symmetries.

Trade-off: Compression versus Accuracy. ε-ACP and HACP in-
herit deviation bounds from Luttermann et al. [14], yielding identi-
cal sharp bounds and dependencies for any choice of ε. In practice,
grouping composition controls magnitude and sign of probabilistic
deviations in downstream queries: As the hierarchy level (or ε) in-
creases, theoretical bounds grow, yet actual query deviations may
fluctuate based on group aggregations. Crucially, our hierarchical
bounds facilitate pre-specification of maximal permissible ε values
and corresponding levels. Rather than relying on the generally in-
tractable DCD for approximated models [4], one can derive pmax∆

for a given ε, or select an admissible level that guarantees both de-
sired compression and sufficient accuracy.

HACP operates on a more restricted space of ε-equivalent group-
ings than ε-ACP due to its forced hierarchy, enabling interpretability
and structured level comparisons. Thus, HACP may show slightly
higher average deviations without systematic inferiority on individ-
ual assignments. Importantly, both algorithms retain identical worst-
case deviation bounds by construction.

6 Conclusion

We introduce a novel framework for hierarchical lifting and
model reconciliation in FGs. By presenting a more practical one-
dimensional notion of ε-equivalent factors, we enable the identifi-
cation of (possibly inexact) symmetries, the number and sizes of ε-
equivalent groups and the resulting reduction of computational com-
plexity, thereby allowing for lifted inference. Our theoretical analysis
provides a solid foundation for understanding the structural proper-
ties of FGs. Crucially, the entire hierarchy is fixed prior to initiating
colour passing or inference, ensuring structural consistency and en-
abling theoretical error bounds. This work provides a foundation for
future advances in efficient and interpretable probabilistic inference.
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A Counterexamples
Proposition 8. The 1DEED is not a metric.

Proof. The 1DEED is not a metric, because the ∆-inequality does
not hold, which is exemplarily proven by this counterexample:

ϕ1 =

(
2
0.5

)
, ϕ2 =

(
1
1

)
, ϕ3 =

(
1
2

)
with d∞(ϕ1, ϕ2) + d∞(ϕ2, ϕ3) = 1 + 1 < 3 = d∞(ϕ1, ϕ3).

Proposition 9. ε-equivalency based on 1DEED lacks the transitivity
property.

Proof. Given a Boolean random variable V ar, consider three factors
ϕ1, ϕ2, ϕ3 defined as follows:

V ar ϕ1(V ar) ϕ2(V ar) ϕ3(V ar)

true 0.95 1.0 1.08
false 2.05 1.95 2.10

Using the 1DEED with ε = 0.1, we end up with ϕ1 =ε ϕ2 and
ϕ2 =ε ϕ3, but ϕ1 ̸=ε ϕ3:

ϕ1(true) = 0.95 < 0.972 = (1− ε)1.08 = (1− ε)ϕ3(true).

B Detailed Proofs
Theorem 2. Two vectors ϕ1, ϕ2 ∈ Rn

>0 are ε-equivalent (Defini-
tion 3) if and only if d∞(ϕ1, ϕ2) ≤ ε holds.

Proof. In mathematical terms, the claim can be summarised as
ϕ1 =ε ϕ2 ⇔ d∞(ϕ1, ϕ2) ≤ ε, which we prove for any ε > 0:

ϕ1 =ε ϕ2 for two factors ϕ1, ϕ2 ∈ Rn
>0

def.⇔ ϕ1(k) ∈ [(1− ε)ϕ2(k), (1 + ε)ϕ2(k)] and

ϕ2(k) ∈ [(1− ε)ϕ1(k), (1 + ε)ϕ1(k)] for k = 1, . . . , n

⇔ ϕ2(k)− ϕ2(k)ε ≤ ϕ1(k) ≤ ϕ2(k) + εϕ2(k) and

ϕ1(k)− ϕ1(k)ε ≤ ϕ2(k) ≤ ϕ1(k) + εϕ1(k) for k = 1, . . . , n

⇔ −ϕ2(k)ε ≤ ϕ1(k)− ϕ2(k) ≤ εϕ2(k) and

− ϕ1(k)ε ≤ ϕ2(k)− ϕ1(k) ≤ εϕ1(k) for k = 1, . . . , n

⇔ |ϕ1(k)− ϕ2(k)| ≤ εϕ2(k) and

|ϕ1(k)− ϕ2(k)| ≤ εϕ1(k) for k = 1, . . . , n

⇔ |ϕ1(k)− ϕ2(k)|
ϕ2(k)

≤ ε and

|ϕ1(k)− ϕ2(k)|
ϕ1(k)

≤ ε for k = 1, . . . , n

⇔ |ϕ1(k)− ϕ2(k)|
min{ϕ1(k), ϕ2(k)}

≤ ε for k = 1, . . . , n

⇔ max
k=1,...,n

{
|ϕ1(k)− ϕ2(k)|

min{ϕ1(k), ϕ2(k)}

}
≤ ε

def.⇔ d∞(ϕ1, ϕ2) ≤ ε

Theorem 5. The maximal absolute deviation between any initial
probability p = PM (r | e) of r given e in model M and the prob-
ability p′ = PM′(r | e) in the modified model M ′ resulting from
running HACP (Alg. 2) or ε-ACP on M can be bounded by

pmax∆ := max
for any r|e

|p− p′| ≤
√
ed − 1√
ed + 1

with d = DCD(PM , P
′
M ).
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Figure 5. Bounds of Eq. (7) in comparison to p for different d values
depending on m and ε (Eq. (5)). Circles/ crosses are the maximum distances
from those bounds to the function p. Distances to function f(p) = p are later

also referred as f = fupper for p ∈ [0, 1
2
] and f = flower for p ∈ ( 1

2
, 1].

Proof. From Chan and Darwiche [4], we already know that

pe−d

p(e−d − 1) + 1
≤ p′ = PM′(r | e) ≤ ped

p(ed − 1) + 1
(8)

holds (see Fig. 5), where p = PM (r | e) is the probability of r given
e in the original model M and d = DCD(PM , P

′
M ) is the value of

the distance measure introduced by Chan and Darwiche between PM

and P ′
M . Hence, for any r given e, in the worst case, we get

|p− p′| =

{
p′ − p for p ≤ p′

p− p′ for p′ < p
=


ped

p(ed−1)+1
− p for p ≤ p′

p− pe−d

p(e−d−1)+1
for p′ < p.

Becoming independent of p′ guarantees one maximal bound for all
possible queries and can be achieved using the maximum of both
cases in [0, 1] as an upper bound for pmax∆, which is given by the
following function fmax∆(p):

fmax∆(p) :=max(fupper(p), flower(p)) for p ∈ [0, 1]

with fupper(p) :=
ped

p(ed − 1) + 1
− p =

p(1− p)(ed − 1)

p(ed − 1) + 1

and flower(p) :=p−
pe−d

p(e−d − 1) + 1
=
p(1− p)(1− e−d)

p(e−d − 1) + 1
.

It is easy to see that fmax∆ is a symmetric function around p = 0.5
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Figure 6. Showing the fupper and flower functions over [0, 1] with d2
values from Corollary 6 to use an upper estimate for pmax∆ by bounding it

from above.

(see Fig. 6), because fupper(p) = flower(1− p) holds:

flower(1− p) =
(1− p)p(1− e−d)

(1− p)(e−d − 1) + 1

=
(1− p)p(ed − 1)e−d

(1− p)(e−d − 1) + 1

=
(1− p)p(ed − 1)

((1− p)(e−d − 1) + 1)ed

=
p(1− p)(ed − 1)

(1− p)(1− ed) + ed

=
p(1− p)(ed − 1)

1− p+ ped

=
p(1− p)(ed − 1)

p(ed − 1) + 1

= fupper(p)

Now, the choice for p′ to get the maximum of both functions is p =
0.5, while fupper(p) decreases for p > 0.5 and flower(p) increases for
p < 0.5 for d ≥ 0. Therefore, we get

fmax∆(p) :=

{
fupper(p) for 0 ≤ p ≤ 0.5

flower(p) for 0.5 < p ≤ 1
(9)

This means that our search for the maximum deviation leads us to
calculate the derivatives after p

f ′
upper(p) = −

(ed − 1)(p2(ed − 1) + 2p− 1)

(p(e−d − 1) + 1)2
,

f ′′
upper(p) =

−2ed(ed − 1)

(p(ed − 1) + 1)3
,

f ′
lower(p) =

(1− e−d)(p2(1− e−d)− 2p+ 1)

(p(e−d − 1) + 1)2
,

f ′′
lower(p) =

−2ed(ed − 1)

(p+ ed(1− p))3 ,

and to consider initially the first-order conditions. For this purpose,
we first obtain

f ′
upper(p) = 0

⇔p2(ed − 1) + 2p− 1 = 0

⇔pupper 1/2 = − 1

ed − 1
±

√(
−1

ed − 1

)2

+
1

ed − 1

⇔pupper 1/2 = − 1

ed − 1
±
√
ed

ed − 1
=
−1±

√
ed

ed − 1
.

As pupper 2 is smaller than zero, the potential maximum in [0, 1] is at

p1 = pupper 1 =

√
ed − 1

ed − 1
=

1√
ed + 1

.

Analogously, we find a potential maximum for f ′
lower:

f ′
lower(p) = 0

⇔p2(1− e−d)− 2p+ 1 = 0

⇔plower 1/2 =
1

1− e−d
±

√(
1

1− e−d

)2

− 1

1− e−d

⇔plower 1/2 =
1

1− e−d
±
√
e−d

1− e−d
=

1±
√
e−d

1− e−d

As plower 1 is larger than one, the possible maximum in [0, 1] is at

p2 = plower 2 =
1−
√
e−d

1− e−d
=

1√
e−d + 1

=

√
ed√

ed + 1

and the second-order conditions can also be easily checked:
Since ed − 1 > 0 and 1 − p > 0, we get f ′′

upper(p1) < 0 and
f ′′

lower(p2) < 0 and can conclude that p1 is a local maximum of fupper

and p2 is a local maximum of flower. The boundary values 0 and 1
are no possible points for a global maximum, because both functions
fupper and flower take on the value 0 there. Therefore, the only possi-
ble extreme point for the global maximum for fupper is p1 = 1√

ed+1

and flower is p2 =
√
ed√

ed+1
. Note that p1 and p2 are symmetrically

distanced to p = 1/2.



Both reach exactly the same maximal deviation:

fupper(p1) =

1√
ed+1

(1− 1√
ed+1

)(ed − 1)

1√
ed+1

(ed − 1) + 1

=

1√
ed+1

·
√
ed√

ed+1
· (
√
ed + 1) · (

√
ed − 1)

ed−1+
√
ed+1√

ed+1

=

√
ed(
√
ed − 1)

ed +
√
ed

=

√
ed − 1√
ed + 1

and the same holds for

flower(p2) =

√
ed√

ed+1
(1−

√
ed√

ed+1
)(1− e−d)

√
ed√

ed+1
(e−d − 1) + 1

=

√
ed√

ed+1
· 1√

ed+1
· (1− e−d)

√
ed√

ed+1
· (
√
e−d −

√
ed +

√
ed + 1)

=

√
ed(1−

√
e−d)(1 +

√
e−d)

(
√
e−d + 1)(

√
ed + 1)

=

√
ed − 1√
ed + 1

.

This means:

pmax∆ = max
for any r|e

|p− p′|

≤ fupper(p1) = flower(p2)

=

√
ed − 1√
ed + 1

Theorem 7. For any given p∗∆ ∈ (0, 1
2
], the output of HACP guar-

antees for any ε ∈ (0, 1), which is smaller or equal to

ε1 =−
1 + m−1

m
− 1

m

m
√
ed

2m−1
m

+

√√√√(−1 + m−1
m
− 1

m

m
√
ed

2m−1
m

)2

− 1− m
√
ed

m−1
m

with

d = ln

(
p∗∆ + 1

1− p∗∆

)2

the bound pmax∆ ≤ p∗∆.

This means that we can bound the maximal deviation p∗∆ of HACP
and ε-ACP, respectively, by calculating ε1(p∗∆) before we run it. In
[14], it is shown that the bound is tight.

Proof. Using Theorem 5, we get for d = DCD(PM , P
′
M ):

pmax∆ ≤
√
ed − 1√
ed + 1

=: p∗∆

⇔ p∗∆

(√
ed + 1

)
=
√
ed − 1

⇔ p∗∆ + 1 = (1− p∗∆)
√
ed

⇔ p∗∆ + 1

1− p∗∆
=
√
ed

⇔ ln

(
p∗∆ + 1

1− p∗∆

)2

= d = DCD(PM , P
′
M ).
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Figure 7. The maximal choice of ε depending on the maximal deviation
p∗∆ for different amount of factors m to guarantee pmax∆ ≤ p∗∆ as proven

in Theorem 7.

Additionally, we know from Theorem 3 and the corresponding ver-
sion for HACP (Proposition 4) that

DCD(PM , P
′
M ) ≤ ln

((
1 + m−1

m
ε
)(
1 + ε

)
1 + 1

m
ε

)m

. (10)

Thus, the question we now answer is for which ε this inequality
reaches equality:

d = ln

((
1 + m−1

m
ε
)(
1 + ε

)
1 + 1

m
ε

)m

⇔ m
√
ed =

(
1 + m−1

m
ε
)(
1 + ε

)
1 + 1

m
ε

⇔
(
1 +

1

m
ε
) m
√
ed =

(
1 +

m− 1

m
ε
)(
1 + ε

)
⇔ 0 =

m− 1

m
ε2 +

(
1 +

m− 1

m
− 1

m

m
√
ed
)
ε+ 1− m

√
ed,

which can be solved for ε with q1 =
1+m−1

m
− 1

m

m√
ed

m−1
m

and q2 =

1− m√
ed

m−1
m

, resulting in

ε1/2 = −q1
2
±
√(q1

2

)2 − q2.
Since q1 ≥ 0 ⇔ m−1

m
≥ p∗∆, the minus option ε2 is smaller than 0

and knowing thatm ≥ 2 already guarantees the result of Theorem 7,
for all cases which make sense to apply (better than guessing≥ 0.5),
the only reasonable solution is ε1.



C The Basic Idea of Lifting
To illustrate the idea behind lifting, consider the following example.

Example 4. Take a look at the FG illustrated in Fig. 1 and assume
we want to answer the query P (B = true). We obtain

P (B = true) =
∑

a∈range(A)

∑
c∈range(C)

P (A = a,B = true, C = c)

=
1

Z

∑
a∈range(A)

∑
c∈range(C)

ϕ1(a, true) · ϕ2(c, true)

=
1

Z

(
φ1φ1 + φ1φ3 + φ3φ1 + φ3φ3

)
.

Since ϕ1(A,B) and ϕ2(C,B) are equivalent (in particular, it holds
that ϕ1(a, true) = ϕ2(c, true) for all assignments where a = c), we
can exploit this property to simplify the computation and get

P (B = true) =
1

Z

∑
a∈range(A)

∑
c∈range(C)

ϕ1(a, true) · ϕ2(c, true)

=
1

Z

∑
a∈range(A)

ϕ1(a, true)
∑

c∈range(C)

ϕ2(c, true)

=
1

Z

( ∑
a∈range(A)

ϕ1(a, true)

)2

=
1

Z

( ∑
c∈range(C)

ϕ2(c, true)

)2

=
1

Z

(
φ1 + φ3

)2
.

This example illustrates the idea of using a representative of indis-
tinguishable objects for computations (here, either A or C can be
chosen as a representative for the group consisting of A and C).

The idea of exploiting exponentiation can be generalised to groups
consisting of k indistinguishable objects to significantly reduce the
computational effort for query answering. To be able to exploit ex-
ponentiation during probabilistic inference, we need to ensure that
the potential tables of factors within the same group are identical. In-
distinguishable objects frequently occur in many real world domains.
For example, in an epidemic domain, each person impacts the prob-
ability of having an epidemic equally. That is, the probability of an
epidemic depends on the number of sick people in the universe but is
independent of which specific individual people are sick.

D Group Sizes of an Hierarchical Ordering
Table 2 shows for each level of the hierarchy in Fig. 2 how many
ε-equivalent groups of which size exist. Thus, it illustrates the in-
creasing compression that is possible with increasing ε values.

Level Number of total groups Group Size (Frequency)

0 10 1 (10),
1 9 2 (1), 1 (8)
2 8 2 (2), 1 (6)
3 7 2 (3), 1 (4)
4 6 4 (1), 2 (1), 1 (4)
5 5 4 (1), 3 (1), 1 (3)
6 4 4 (1) , 3 (1), 2 (1), 1 (1)
7 3 7 (1), 2 (1), 1 (1)
8 2 7 (1), 3 (1)
9 1 10 (1)

Table 2. Implicit group sizes for each level for given structure and
pre-ordered FG for Example 3.


