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Abstract

This extended abstract summarises the content of our tutorial titled “StaRAI: From a Probabilistic Propositional
Model to a Highly Compressed Probabilistic Relational Model” presented at the 18th European Conference on
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2025) held on September 23—
26, 2025, in Hagen, Germany.

1. Introduction

Our surrounding world is inherently uncertain and relational. The field of Statistical Relational
AT (StaRAI) has emerged to account for both uncertainty and relational modelling, for example in
probabilistic graphical models [1]. In StaRAI, probabilistic models explicitly encode objects and rela-
tions, which enables algorithms to exploit repeated structures, i.e., subgraphs with matching associated
probability functions as well as identical graph structure, for efficiency gains during inference (2, 3, 4].
To exploit repeated structures, they first have to be identified. While such repeated structures frequently
occur in many practical applications, they are generally not explicitly represented in a learned model
and thus cannot be exploited by inference algorithms. By identifying and compactifying repeated
structures, the size of a model can be significantly reduced, resulting in inference algorithms no longer
running in time exponential, but only polynomial, with respect to so-called domain sizes [5, 6, 7]. It is
therefore crucial to efficiently identify and compactify repeated structures to enable efficient inference.

2. Compression of Probabilistic Relational Models

Our tutorial provides a look at recent advances in the field of computing a highly compressed probabilistic
relational model from a given probabilistic propositional model. In the past, it has been shown that
a colour passing procedure based on a belief propagation scheme can be used to identify repeated
structures in a propositional probabilistic model [4, 8]. Identified repeated structures can then be
exploited to compress the model, which results in a significant reduction in storage requirements and
drastically increases the efficiency of inference algorithms while at the same time maintaining exact
inference results [7]. The current state-of-the-art algorithm to identify and compress repeated structures
in a propositional probabilistic model is the Advanced Colour Passing (ACP) algorithm [9], which builds
on the CompressFactorGraph algorithm introduced by Kersting et al. [8]. ACP compresses repeated
structures by introducing so-called logical variables such that the resulting compressed model allows
for efficient inference independent of a specific inference algorithm, whereas the CompressFactorGraph
algorithm is tied to the belief propagation inference algorithm. Additional major advancements of ACP
compared to its predecessor are that ACP is able to handle (i) commutative functions (i.e., associated
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probability functions that map to a unique output value regardless of the order of some input values)
and (ii) arbitrary orders of arguments in associated probability functions. By tackling both (i) and (ii),
ACP solves significant practical limitations, as commutative functions frequently occur in practical
applications and no specific order of arguments can be guaranteed in a learned model. Accounting
for commutative functions and arbitrary orders of arguments requires additional offline computations,
which have been efficiently implemented by using histograms that count the occurrences of specific
input values for a (sub)set of a function’s arguments [10, 11]. By deploying histograms within the ACP
algorithm, ACP is able to efficiently identify and compress a given probabilistic propositional model
while at the same time ensuring exact inference results when applying the resulting compressed model.

The ACP algorithm requires the associated probability functions to exactly match in order to identify
and group repeated structures. However, in practical applications, associated probability functions
slightly differ even if they should be considered equal due to inaccurate estimates, e.g., when learning
the functions from data. To solve the problem of constructing a compressed representation from a given
probabilistic propositional model taking inaccurate estimates of associated probability functions into
account, the e-Advanced Colour Passing (¢-ACP) algorithm has been introduced as a generalisation of
the ACP algorithm [12]. The e-ACP algorithm allows for a deviation between functions depending on a
hyperparameter ¢ in order for functions to be considered equivalent. By doing so, e-ACP efficiently
identifies and compresses repeated structures that are not exactly identical. It has been proven that the
change in query results induced by ¢-ACP is strictly bounded and empirical experiments have shown
that the change in query results is even close to zero in practice, validating that the compressed model
returned by £-ACP is an eligible approximation of the original model. Speller et al. [13] have further
extended the e-ACP algorithm to obtain a hierarchic version called Hierarchical Advanced Colour
Passing (HACP) that efficiently computes a hierarchy of ¢ values, thereby yielding a hyperparameter-
free approach with known error bounds on the change in query results. The HACP algorithm ensures
that repeated structures that have been grouped for a specific choice of € remain grouped for a larger
value of € as well, thus enhancing interpretability. Moreover, HACP allows to control the trade-off
between compression and accuracy of query results by specifying an acceptable error bound on the
change in query results, from which the corresponding value for ¢ is automatically derived (such that
no value for € has to be chosen manually).

To allow for the compression of a probabilistic propositional model containing functions whose
function definitions are unknown, another extension of ACP has been proposed [14, 15]. By analysing
the graph structure of the model, repeated structures are identified and known function definitions of
associated probability functions are transferred to associated probability functions with the same sur-
rounding graph structure but unknown function definitions. The equivalence of associated probability
functions can also be determined by representing their function definitions as vectors and checking for
the collinearity of these vectors, which allows to identify equivalent functions whose range (codomain)
values lie on different scales without having to apply any normalisation step to the functions [16].

Obtaining a compressed probabilistic relational model is not only relevant to perform efficient
probabilistic inference but also opens up new possibilities to efficiently perform causal inference
efficiently. A compressed model computed by ACP that is enriched by causal knowledge can be used to
perform efficient causal inference [17], even if only partial causal knowledge is available [18].

3. Conclusion

In the field of StaRAI probabilistic models explicitly encode objects and relations, thereby allowing
inference algorithms to exploit repeated structures for efficiency gains. Identifying and compressing
these structures are thus fundamental problems that must be solved to enable efficient inference.
Recently, there have been significant advancements in the field of computing a highly compressed
probabilistic relational model from a given probabilistic propositional model. Specifically, the ACP
algorithm and its variants have emerged to identify and compress repeated structures. This work
provides an overview of recent advancements in the field of compressing probabilistic models.
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