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ABSTRACT

Scientific experiments and large-scale simulations produce
massive amounts of data. Many of these scientific datasets
are arrays, and are stored in file formats such as HDF5
and NetCDF. Although scientific data management systems,
such as SciDB, are designed to manipulate arrays, there are
challenges in integrating these systems into existing analy-
sis workflows. Major barriers include the expensive task of
preparing and loading data before querying, and convert-
ing the final results to a format that is understood by the
existing post-processing and visualization tools. As a con-
sequence, integrating a data management system into an
existing scientific data analysis workflow is time-consuming
and requires extensive user involvement.

In this paper, we present the design of a new scientific
data analysis system that efficiently processes queries di-
rectly over data stored in the HDF5 file format. This design
choice eliminates the tedious and error-prone data loading
process, and makes the query results readily available to the
next processing steps of the analysis workflow. Our design
leverages the increasing main memory capacities found in
supercomputers through bitmap indexing and in-memory
query execution. In addition, query processing over the
HDF5 data format can be effortlessly parallelized to utilize
the ample concurrency available in large-scale supercomput-
ers and modern parallel file systems. We evaluate the per-
formance of our system on a large supercomputing system
and experiment with both a synthetic dataset and a real
cosmology observation dataset. Our system frequently out-
performs the relational database system that the cosmology
team currently uses, and is more than 10× faster than Hive
when processing data in parallel. Overall, by eliminating
the data loading step, our query processing system is more
effective in supporting in situ scientific analysis workflows.

1. INTRODUCTION
The volume of scientific datasets has been increasing rapidly.
Scientific observations, experiments, and large-scale simula-
tions in many domains, such as astronomy, environment,
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and physics, produce massive amounts of data. The size of
these datasets typically ranges from hundreds of gigabytes
to tens of petabytes. For example, the Intergovernmen-
tal Panel on Climate Change (IPCC) multi-model CMIP-5
archive, which is used for the AR-5 report [22], contains over
10 petabytes of climate model data. Scientific experiments,
such as the LHC experiment routinely store many gigabytes
of data per second for future analysis. As the resolution of
scientific data is increasing rapidly due to novel measure-
ment techniques for experimental data and computational
advances for simulation data, the data volume is expected
to grow even further in the near future.

Scientific data are often stored in data formats that sup-
port arrays. The Hierarchical Data Format version 5 (HDF5)
[2] and the Network Common Data Form (NetCDF) [1] are
two well-known scientific file formats for array data. These
file formats are containers for collections of data objects and
metadata pertaining to each object. Scientific data stored in
these formats is accessed through high-level interfaces, and
the library can transparently optimize the I/O depending
on the particular storage environment. Applications that
use these data format libraries can achieve the peak I/O
bandwidth from parallel file systems on large supercomput-
ers [6]. These file formats are well-accepted for scientific
computing and are widely supported by visualization and
post-processing tools.

The analysis of massive scientific datasets is critical for
extracting valuable scientific information. Often, the most
vital pieces of information for scientific insights consist of
a small fraction of these massive datasets. Because these
scientific file format libraries are optimized for storing and
retrieving consecutive parts of the data, there are several
inefficiencies in accessing individual elements. It is impor-
tant for the scientific data analysis systems to support such
selective data accesses efficiently.

Additionally, scientific file format libraries commonly lack
sophisticated query interfaces. For example, searching for
data that satisfy a given condition in an HDF5 file today
requires accessing the entire dataset and sifting through the
data for values that satisfy the condition. Moreover, users
analyzing the data need to write custom code to perform this
straightforward operation. In comparison, with a database
management system (DBMS), searches can be expressed as
declarative SQL queries. Existing high-level interfaces for
scientific file formats do not support such declarative query-
ing and management capabilities.

Scientific data management and analysis systems, such as
SciDB [11], SciQL [39], and ArrayStore [30], have been re-
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cently developed to manage and query scientific data stored
as arrays. However, there are major challenges in integrat-
ing these systems into scientific data production and analysis
workflows. In particular, in order to benefit from the query-
ing capabilities and the storage optimizations of a scientific
data management system, the data need to be prepared into
a format that the system can load. Preparing and loading
large scientific datasets is a tedious and error-prone task for
a domain scientist to perform, and hurts scientific productiv-
ity during exploratory analysis. Moreover, after executing
queries in a data management system, the scientists need
to convert the results into a file format that is understood
by other tools for further processing and visualization. As
a result, the integration of data management systems in sci-
entific data processing workflows has been scarce and the
users frequently revert to inefficient and ad hoc methods for
data analysis.

In this paper, we describe the design of a prototype sys-
tem, called SDS/Q, that can process queries directly over
data that are stored in the HDF5 file format1. SDS/Q stands
for Scientific Data Services [18], and we describe the Query
engine component. Our goal is to support data analysis di-
rectly on file formats that are familiar to scientific users. The
choice of the HDF5 storage format is based on its popularity.

SDS/Q is capable of executing SQL queries on data stored
in the HDF5 file format in an in situ fashion, which elim-
inates the need for expensive data preparation and loading
processes. While query processing in database systems is a
matured concept, developing the same level of support on
array storage formats directly is a challenge. The capability
to perform complex operations, such as JOIN operations on
different HDF5 datasets increases the complexity further.
To optimize sifting through massive amounts of data, we
designed SDS/Q to use the parallelism available on large
supercomputer systems, and we have used in-memory query-
ing execution and bitmap indexing to take advantage of the
increasing memory capacities.

We evaluate the performance of SDS/Q on a large super-
computing system and experiment with a real cosmology
observations database, called the Palomar Transient Fac-
tory (PTF), which is a PostgreSQL database. The schema
and the queries running on PostgreSQL were already op-
timized by a professional database administrator, so this
choice gives us a realistic comparison baseline. Our tests
show that our system frequently performs better than Post-
greSQL without the laborious process of preparing and load-
ing the original data into the data management system. In
addition, SDS/Q can effortlessly speed up query processing
by requesting more processors from the supercomputer, and
outperforms Hive by more than 10× on the same cosmology
dataset. This ease of parallelization is an important feature
of SDS/Q for processing scientific data.

The following are the contributions of our work:

• We design and develop a prototype in situ relational
query processing system for querying scientific data
in the HDF5 file format. Our prototype system can
effortlessly speed up query processing by leveraging the
massive parallelism of modern supercomputer systems.

1The ability to query data directly in their native file for-
mat has been referred to as in situ processing in the data
management community [3].

• We combine an in-memory query execution engine and
bitmap indexing to significantly improve performance
for highly selective queries over HDF5 data.

• We systematically explore the performance of the pro-
totype system when processing data in the HDF5 file
format.

• We demonstrate that in situ SQL query processing
outperforms PostgreSQL when querying a real cosmol-
ogy dataset, and is more than 10× faster than Hive
when querying this dataset in parallel.

The remainder of the paper is structured as follows. First,
we discuss related work on scientific data management in
Section 2. Then, in Section 3, we describe the SDS/Q pro-
totype. Section 4 follows with a description of the experi-
mental setup and presents the performance evaluation. We
conclude and briefly discuss future work in Section 5.

2. RELATED WORK
Several technologies have been proposed to make scientific
data manipulation more elegant and efficient. Among these
technologies, Array Query Language (AQL) [24], RasDaMan
[5], ArrayDB [25], GLADE [16], Chiron [26], Relational Ar-
ray Mapping (RAM) [34], ArrayStore [30], SciQL [39], Mon-
etDB [21], and SciDB [11] have gained prominence in analyz-
ing scientific data. Libkin et al. [24] propose a declarative
query language, called Array Query Language (AQL), for
multi-dimensional arrays. AQL treats arrays as functions
from index sets to values rather than as collection types.
Libkin et al. provide readers/writers for data exchange for-
mats like NetCDF to tie their system to legacy scientific
data. ArrayStore [30] is a storage manager for storing array
data using regular and arbitrary chunking strategies. Array-
Store supports full scan, subsampling, join, and clustering
operations on array data.

Scientific data management systems can operate on ar-
rays and support declarative querying capabilities. Ras-
DaMan [5] is a domain-independent array DBMS for multi-
dimensional arrays. It provides a SQL-based array query
language, called RasQL, for optimizing data storage, trans-
fer, and query execution. ArrayDB [25] is a prototype ar-
ray database system that provides Array Manipulation Lan-
guage (AML). AML is customizable to support a wide-variety
of domain-specific operations on arrays stored in a database.
MonetDB [21] is a column-store DBMS supporting applica-
tions in data mining, OLAP and data warehousing. Rela-
tional Array Mapping (RAM) [34] and SciQL [39] are im-
plemented on top of MonetDB to take advantage of the
vertically-fragmented storage model and other optimizations
for scientific data. SciQL provides a SQL-based declarative
query language for scientific data stored either in tables or
arrays. SciDB [11] is a shared-nothing parallel database sys-
tem for processing multidimensional dense arrays. SciDB
supports both the Array Functional Language (AFL) and
the Array Query Language (AQL) for analyzing array data.
Although these systems can process array data, scientific
datasets stored in “legacy” file formats, such as HDF5 and
NetCDF, have to be prepared and loaded into these data
systems first in order to reap the benefits of their rich query-
ing functionality and performance. In contrast, our solution
provides in situ analysis support, and allows users to analyze
data using SQL queries directly over the HDF5 scientific file
format.
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Figure 1: Overview of SDS/Q, the querying compo-
nent of a prototype scientific data management sys-
tem. The new components are highlighted in gray.

There have also been efforts to query data in their orig-
inal file formats. Alagiannis et al. eliminate the data load
step for PostgreSQL and run queries directly over comma-
separated value files [3]. In this paper, we adapt the po-
sitional map Alagiannis et al. proposed and index HDF5
data (see Algorithm 2) and experimentally evaluate its suit-
ability for SDS/Q in Section 4.4.3. Several recent efforts
propose techniques to support efficient selections and ag-
gregations over scientific data formats, and are important
building blocks for advanced SDS/Q querying capabilities,
such as joins between different datasets. Wang et al. [36] pro-
pose to automatically annotate HDF5 files with metadata to
allow users to query data with a SQL-like language. Fast-
Bit [37], an open-source bitmap indexing technology, sup-
ports some features of in situ analysis as indexes can be
queried and stored alongside the original data. FastQuery
[17], implemented on top of FastBit, parallelizes FastBit’s
index generation and query processing operations, and pro-
vides a programming interface for executing simple lookups.
DIRAQ [23] is a parallel data encoding and reorganization
technique that supports range queries while data is being
produced by scientific simulations. FlexQuery [40] is an-
other proposed system to perform range queries to support
visualization of data while the data is being generated. Su et
al. [32] implemented user-defined subsetting and aggregation
operations on NetCDF data. Finally, several MapReduce-
based solutions have been proposed to query scientific data.
SciHadoop [12] enables parallel processing through Hadoop
for data stored in the NetCDF format. Wang et al. [35]
propose a unified scientific data processing API to enable
MapReduce-style processing directly on different scientific
file formats.

3. A SCIENTIFIC DATA ANALYSIS SYSTEM
A scientist today uses a diverse set of tools for scientific
computation and analysis, such as simulations, visualiza-
tion tools, and custom scripts to process data. Scientific
file format libraries, however, lack the sophisticated query-

ing capabilities found in database management systems. We
address this shortcoming by adding relational querying ca-
pabilities directly over data stored in the HDF5 file format.

Figure 1 shows an overview of SDS/Q, a prototype in situ

scientific data analysis system. Compared to a database
management system, SDS/Q faces three unique technical
challenges. First, SDS/Q relies on the HDF5 library for fast
data access. Section 3.1 presents how data are stored in
and retrieved from the HDF5 file format. Second, SDS/Q
does not have the opportunity to reorganize the original data
because legacy applications may manipulate the HDF5 file
directly. SDS/Q employs external bitmap indexing to im-
prove performance for highly selective queries, which is de-
scribed in Section 3.2. Third, SDS/Q needs to leverage the
abundant parallelism of large-scale supercomputers which
is exposed through a batch processing execution environ-
ment. Section 3.3 describes how the query processing is
parallelized across and within nodes, presents how HDF5
data are ingested in parallel, and discusses the integration
of the bitmap indexing capabilities in the SDS/Q prototype.

3.1 Storing scientific data in HDF5
The Hierarchical Data Format version 5 (HDF5) is a portable
file format and library for storing scientific data. The HDF5
library defines an abstract data model, which includes files,
data groups, datasets, metadata objects, datatypes, prop-
erties, and links between objects. The parallel implemen-
tation of the HDF5 library is designed to operate on large
supercomputers. This implementation relies on the Message
Passing Interface (MPI) [20] and on the I/O implementation
of the MPI, known as MPI-IO [33]. The HDF5 library and
the MPI-IO layers of the parallel I/O subsystem offer var-
ious performance tuning parameters to achieve peak I/O
bandwidth on large-scale computing systems [6].

A key concept in HDF5 is the dataset, which is a multi-
dimensional array of data elements. An HDF5 dataset can
contain basic datatypes, such as integers, floats, or charac-
ters, as well as composite or user-defined datatypes. The
elements of an HDF5 dataset are either stored as a contin-
uous stream of bytes in a file, or in a chunked form. The
elements within one chunk of an HDF5 dataset are stored
contiguously, but chunks may be scattered within the HDF5
file. HDF5 datasets that represent variables from the same
event or experiment can be structured as a group. Groups,
in turn, can be contained in other groups and form a group
hierarchy.

An HDF5 dataset may be stored on disk in a number of
different physical layouts. The HDF5 dataspace abstraction
decouples the logical data view at the application level from
the physical representation of the data on disk. Through
this abstraction, applications become more portable as they
can control the in-memory representation of scientific data
without implementing endianness or dimensionality trans-
formations for common operations, such as sub-setting, sub-
sampling, and scatter-gather access. In addition, analysis
becomes more efficient, as applications can take advantage
of transparent optimizations within the HDF5 library, such
as compression, without any modifications.

Reading data from the disk into the memory requires a
mapping between the source dataspace (the file dataspace,
or filespace) and the destination dataspace (the memory
dataspace, or memspace). The file and the memory datas-
paces may have different shapes or sizes, and neither datas-
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pace needs to be continuous. A mapping between datas-
paces of the same shape but different size performs array
sub-setting. A mapping between dataspaces that hold the
same number of elements but have different shapes triggers
an array transformation. Finally, mapping a non-continuous
filespace onto a continuous memspace performs a gather op-
eration. Once a mapping has been set up, the H5Dread()

function of the HDF5 library loads the data from disk into
memory.

3.2 Indexing HDF5 data
Indexing is an essential tool for accelerating highly-selective
queries in relational database management systems. The
same is true for scientific data management systems [29].
However, in order to work with scientific data files in situ,
one mainly uses secondary indexes, as the original data records
cannot usually be reorganized. Other characteristics of sci-
entific workloads include that the data is frequently append-
only and that the accesses are read-dominant. Hence, the
performance of analytical queries is much more important
than the performance of data manipulation queries. Bitmap
indexing has been shown to be effective given the above sci-
entific data characteristics [27]. The original bitmap index
described by O’Neil [27] indexes each key value precisely and
only supports equality encoding. Researchers have since ex-
tended bitmap indexing to support range encoding [14] and
interval encoding [15]. Scientific datasets often have a large
number of distinct values which leads to large bitmap in-
dexes. In many scientific applications, and especially dur-
ing exploratory analysis, the constants involved in queries
are low precision numbers, such as 1-degree temperature in-
crements. Binning techniques have been proposed to allow
the user to control the number of bitmaps produced, and
indirectly control the index size. Compression is another
common technique to control the bitmap index sizes [38].

For this work we use FastBit, an open-source bitmap in-
dexing library [37]. In addition to implementing many bitmap
indexing techniques, FastBit also adopts techniques seen in
data warehousing engines. For example, it organizes its data
in a vertical organization and it implements cost-based opti-
mization for dynamically selecting the most efficient execu-
tion strategy among the possible ways of resolving a query
condition. Although FastBit is optimized for bitmap indexes
that fit in memory, it can handle bitmap indexes that are
larger than memory too. If a small part of an index file is
needed to resolve the relevant query condition, FastBit only
retrieves the necessary part of the index files. FastBit also
monitors its own memory usage and could free the unused
indexing data structures when the memory is needed for
other operations. Most importantly, the FastBit software
has a feature that makes it particularly suitable for in situ

data analysis: its bitmap indexes are generated alongside
the base data, without needing to reorganize the base files.

Probing the FastBit index on every lookup, however, is
prohibitively expensive because many optimizations in the
FastBit implementation aim to maximize throughput for
bulk processing. Although these optimizations benefit cer-
tain types of scientific data analysis, one needs to optimize
for latency to achieve good performance for highly selec-
tive queries. To improve the efficiency of point lookups in
SDS/Q, we have separated the index lookup operation into
three discrete actions: prepare(), refine() and perform().
The first, prepare() is called once per query and permits

FastBit to optimize for static conditions, that is, conditions
that are known or can be inferred from the query plan dur-
ing initialization. In our existing prototype, these are join
conditions and user-defined predicates that can be pushed
down to the index. Once this initial optimization has been
completed, the query execution engine invokes the refine()
function to further restrict the index condition (for example,
to look for a particular key value or key range). Because re-
fine() may be invoked multiple times per lookup, we only
allow the index condition to be passed in programmatically,
as parsing a SQL statement would be prohibitively expen-
sive. Finally, the engine invokes the perform() function to
do the lookup. FastBit can choose to optimize the execution
strategy again prior to retrieving the data, if the optimiza-
tion is deemed worthwhile.

3.2.1 Automatic index invalidation by in situ updates

SDS/Q maintains scientific data in their original format
for in situ data analysis, and augments the raw scientific
data with indexing information for efficiency. By storing in-
dexing information separately, legacy applications that di-
rectly update or append scientific data through the HDF5
library would render indexing information stale. As a con-
sequence, analysis tasks that use indexes may miss newer
data and return wrong results. This would severely limit
the effectiveness of indexing for certain classes of applica-
tions. To ensure the consistency of the index data in the
presence of updates, SDS/Q needs to detect that the orig-
inal dataset has been modified or appended to, and act on
the knowledge that the index data are now stale.

We leverage the Virtual Object Layer (VOL) abstraction
of the HDF5 library to intercept writes to HDF5 objects and
to generate notifications when a dataset changes during in

situ processing. VOL allows users to customize how HDF5
metadata structures and scientific data are represented on
disk. A VOL plugin acts as an intermediary between the
HDF5 API and the actual driver that performs the I/O.
Using VOL, we can intercept HDF5 I/O requests initiated
by legacy applications and notify SDS/Q to invalidate all
index data for the dataset in question. In the future, we plan
to avoid the expensive index regeneration step and update
index data directly.

3.3 Analyzing scientific data
A key component of SDS/Q is a query execution engine
that ingests and analyzes data stored in the HDF5 format.
The query engine is written in C++, and intermediate re-
sults that are produced during query execution are stored in
memory. The engine accepts queries in the form of a physical
execution plan, which is a tree of relational operators. The
HDF5 scan operator (described in detail in Section 3.3.3)
retrieves elements from different HDF5 datasets and pro-
duces relational tuples. An index scan operator can retrieve
data from FastBit indexes. For additional processing, the
query engine currently supports a number of widely-used re-
lational operators such as expression evaluation, projection,
aggregation, and joins. Aggregations and joins on composite
attributes are also supported. We have implemented both
hash-based and sort-based aggregation and join operators,
as the database research community is currently engaged
in an ongoing debate about the merits of hash-based and
sort-based methods for in-memory query execution [4].
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The execution model is based on the iterator concept,
which is pull-based, and is similar to the Volcano system
[19]. All operators in our query engine have the same inter-
face, which consists of: a start() function for initialization
and operation-specific parameter passing (such as the key
range for performing an index lookup), a next() function
for retrieving data, and a stop() function for termination.
Previous research has shown that retrieving one tuple at a
time is prohibitively expensive [10], so the next() call re-
turns an array of tuples to amortize the cost of function
calls. The pull-based model allows operators to be pipelined
arbitrarily and effortlessly to evaluate complex query plans
in our prototype system.

3.3.1 Parallelizing across nodes

A scientist analyzes large volumes of data by submitting
a parallel job request to the supercomputer’s batch process-
ing system. The request includes the number of nodes that
need to be allocated before this job starts. When the analy-
sis task is scheduled for execution, the mpirun utility is called
to spawn one SDS/Q process per node. The scan operators
at the leaf level of the query tree partition the input using
the MPI_comm_size() and MPI_comm_rank() functions to re-
trieve the total number of processes and the unique identi-
fier of this process, respectively. Each node then retrieves
and processes a partition of the data, and synchronizes with
other nodes in the supercomputer using MPI primitives such
as MPI_Barrier().

If intermediate results need to be shuffled across nodes to
complete the query, SDS/Q leverages the shared disk archi-
tecture of the supercomputer and shuffles data by writing to
and reading from the parallel file system. For example, each
SDS/Q process participating in a broadcast hash join algo-
rithm produces data in a staging directory in the parallel file
system, and then every process builds a hash table by read-
ing every file in the staging directory. Although disk I/O
is more expensive than native MPI communication primi-
tives (such as MPI_Bcast() and MPI_Alltoall()), storing
intermediate data in the parallel file system greatly simpli-
fies fault tolerance and resource elasticity for our prototype
system.

3.3.2 Parallelizing within a node

At the individual node level, the single SDS/Q process
spawns multiple threads to fully utilize all the CPU cores
of the compute node. We encapsulate thread creation and
management in a specialized operator, the parallelize op-
erator. The main data structure for thread synchroniza-
tion is a multi-producer, single-consumer queue: Multiple
threads produce intermediate results concurrently for all op-
erators rooted under the parallelize operator in the query
tree, but these intermediate results are consumed sequen-
tially by the operator above the parallelize operator. The
start() method spawns the desired number of threads, and
returns to the caller when all spawned threads have propa-
gated the start() call to the subtree. The producer threads
start working and push intermediate results to the queue.
The next() method pops a result from the queue and re-
turns it to the caller. The stop() method of the parallelize

operator propagates the stop() call to the entire subtree,
and signals all threads to terminate.

By using multiple worker threads, and not multiple pro-
cesses per node, all threads can efficiently exchange data,

Figure 2: The HDF5 scan operation. Chunks are
array regions that are stored contiguously on disk.
For every HDF5 dataset di, each SDS/Q process op-
erates on a unique subset of the array (the filespace
fi). Every array subset is linearized in memory in
the one-dimensional memspace mi, which becomes
one column of the final output.

Algorithm 1 The HDF5 scan operator

1: function start(HDF5 datasets {d1, . . . , dn}, int count)
2: for each HDF5 dataset di do

3: open dataset di, verify data type and shape
4: create filespace fi to cover this node’s di partition
5: create memspace mi to hold count elements
6: map mi on fi at element 0
7: end for

8: end function

9: function next()
10: for each filespace fi do

11: call H5Dread() to populate memspace mi from fi
12: copy memspace mi into column i of output buffer
13: advance mapping of mi on fi by count elements
14: if less than count elements remain in filespace fi then
15: shrink memspace mi

16: end if

17: end for

18: end function

synchronize and share data structures through the common
process address space and not rely on expensive inter-process
communication. For example, during a hash join, all threads
can synergistically share a single hash table, synchronize us-
ing spinlocks, and access any hash bucket directly. (This
hash join variant has also been shown to use working mem-
ory judiciously and perform well in practice [7].) If inter-
mediate results need to be shuffled between threads during
query processing (for example, for partitioning), threads ex-
change pointers and read the data directly.

3.3.3 Ingesting data from the HDF5 library

The query engine ingests HDF5 data through the HDF5
scan operator. The HDF5 scan operator reads a set of user-
defined HDF5 datasets (each a multi-dimensional array) and
“stitches”elements into a relational tuple. The HDF5 library
transparently optimizes the data access pattern at the MPI-
IO driver layer, while the query execution engine remains
oblivious to where the data is physically stored.

The HDF5 scan operation is described in Algorithm 1.
The operation is initialized by calling the start() method
and providing two parameters: (1) a list of HDF5 datasets to
access ({d1, d2, . . . , dn}), and (2) the desired output buffer
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Algorithm 2 Positional map join

1: function start(Positional index idx, HDF5 datasets
{d1, . . . , dn}, Join key JR from R, int count)

2: for each HDF5 dataset di do

3: open dataset di, verify data type and shape
4: create empty sparse filespace fi
5: end for

6: load idx in memory
7: create empty hash table HT
8: for each tuple r ∈ R do

9: pos← idx.lookup(πJR
(r))

10: if join key πJR
(r) found in idx then

11: expand all filespaces {fi} to cover element at pos
12: store r in HT under join key πJR

(r)
13: end if

14: end for

15: for each filespace fi do

16: create memspace mi to hold count elements
17: map mi on fi at element 0
18: end for

19: allocate buffer BS to hold count elements
20: end function

21: function next(Join key JS from S)
22: for each dataset di do

23: call H5Dread() to populate memspace mi from fi
24: copy memspace mi into column i of buffer BS

25: advance mapping of mi on fi by count elements
26: end for

27: for each tuple s ∈ BS do

28: for each r in HT such that πJS
(s) = πJR

(r) do

29: copy s ✶ r to output buffer
30: end for

31: end for

32: end function

size (count). For example, consider a hypothetical atmo-
spheric dataset shown in Figure 2. The user opens the
two-dimensional HDF5 datasets “temperature” (d1), “pres-
sure” (d2) and “wind velocity” (d3). Every process first
computes partitions of the dataset and constructs the two-
dimensional filespaces {f1, f2, f3}, which define the array re-
gion that will be analyzed by this process. Each process
then creates the one-dimensional memspaces {m1,m2,m3}
to hold count elements. (The user defines how the multi-
dimensional filespace fi is linearized in the one-dimensional
memspace mi.) Finally, the HDF5 scan operator maps each
memspace mi to the beginning of the filespace fi before re-
turning to the caller of the start() function.

When the next() method is invoked, the HDF5 scan oper-
ator iterates through each filespace fi in sequence and calls
H5Dread() to retrieve elements from the filespace fi into
memspace mi. This way, the k-th tuple in the output buffer
is the tuple (m1[k], m2[k], . . . ,mn[k]). Before returning the
filled output buffer to the caller, the operator checks if each
memspace mi needs to be resized because insufficient ele-
ments remain in the filespace fi.

We have experimentally observed that optimally sizing the
output buffer of the HDF5 scan operator represents a trade-
off between two antagonistic factors. The parallel filesystem
and the HDF5 library are optimized for bulk transfers and
have high fixed overheads for each read. We have found that
transferring less than 4MB per H5Dread() call is very ineffi-
cient. Amortizing these fixed costs over larger buffer sizes in-
creases performance. On the other hand, buffer sizes greater
than 256MB result in large intermediate results. This in-
creases the memory management overhead, and causes final
results to arrive unpredictably and in batches, instead of

Algorithm 3 Semi-join with FastBit index

1: function start(FastBit index idx, Predicate p on S, Join
key JR from R, int count)

2: idx.prepare(p)
3: create empty predicate q(·)
4: create empty hash table HT
5: for each tuple r ∈ R do

6: store r in HT under join key πJR
(r)

7: q(·) ← q(·) ∨
(

πJR
(·) = πJR

(r)
)

8: end for

9: idx.refine(q)
10: allocate buffer BS to hold count elements
11: end function

12: function next(Join key JS from S)
13: BS ← idx.perform(count)
14: for each tuple s ∈ BS do

15: for each r in HT such that πJS
(s) = πJR

(r) do

16: copy s ✶ r to output buffer
17: end for

18: end for

19: end function

continuously. Very large buffer sizes, therefore, eliminate
many of the benefits of continuous pipelined query execu-
tion [13]. We have experimentally found that a 32MB out-
put buffer balances these two factors, and we use this output
buffer size for our experiments in Section 4.

3.3.4 Positional map join

In addition to index scans, SDS/Q can use indexes to
accelerate join processing for in situ data processing. Ala-
giannis et al. have proposed maintaining positional maps to
remember the locations of attributes in text files and avoid
the expensive parsing and tokenization overheads [3]. We
extend the idea of maintaining positional information to
quickly navigate through HDF5 data, and we exploit this
information for join processing. In particular, we use po-
sitional information from a separate index file which stores
(key, position) pairs, and use this information to create a
sparse filespace fi over the elements of interest in an HDF5
dataset. Mapping a sparse filespace fi onto a continuous
memspace mi triggers the HDF5 gather operation, and the
selected data elements are selectively retrieved from disk
without loading the entire dataset.

Algorithm 2 describes the positional map join algorithm.
R is the table that is streamed in from the next operator in
the query tree, and S is the table that the positional index
has been built on. The algorithm first creates an empty
sparse filespace fi for each dataset of interest and loads the
entire positional map in memory (lines 2–7). The index
is probed with the join key of each input tuple, and if a
matching position (pos) is found in the index, the input
tuple is stored in a hash table and the position is added
to the filespace fi (lines 8–14). When the next() method
is called, count elements at the selected positions in fi are
retrieved from the HDF5 file and stored in buffer BS (lines
22–26). Finally, a hash join is performed between BS and
the hash table (lines 27–31) and the results are returned to
the caller.

3.3.5 FastBit index semi-join

We now describe an efficient semi-join based index join
over the FastBit index (Algorithm 3). We assume that R is
the table that is streamed in from the operator below the
FastBit semi-join operator, and S is the table that is stored
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in the FastBit index. The FastBit index semi-join operator
accepts: (1) the FastBit index file (idx), (2) an optional se-
lection σ(·) to directly apply on the indexed table S, (3) the
join key projection πj(·) and the columns of interest π(·) of
the streamed input table R, and (4) the number of elements
that the output buffer will return (count). The optional fil-
tering condition σ(·) is passed to the initialization function
prepare() to allow FastBit to perform initial optimizations
for static information in the query plan. As the input R is
consumed, the algorithm stores the input π(R) in a hash ta-
ble, and adds the join keys πj(R) to the σj predicate. When
the entire build input has been processed, the σj predicate is
passed to the refine() method to further restrict the index
condition before performing the index lookup. The algo-
rithm’s next() method populates the BS buffer with count

tuples from FastBit and joins BS with the hash table.

4. EXPERIMENTAL SETUP AND RESULTS
In this section we evaluate the performance of the SDS/Q
prototype for in situ analysis of scientific data. Since our
goal is to provide SQL query processing capabilities directly
on scientific file formats, we looked for real scientific datasets
that are already queried using SQL. We have chosen a Post-
greSQL database that contains cosmological observation data
from the Palomar Transient Factory (PTF) sky survey. The
purpose of our experiments is to run the workload the sci-
entists currently run on PostgreSQL, and compare the query
response time to running the same SQL queries on our SDS/Q
system, which runs directly on top of HDF5. The advantage
of taking this experimental approach is that the relational
schema has already been designed by the application scien-
tists, and PostgreSQL has been tuned and optimized by an
expert database administrator. This makes our comparisons
more realistic.

We conduct our experimental evaluation on the Carver
supercomputer at the National Energy Research Scientific
Computing Center (NERSC). We describe the NERSC in-
frastructure in more detail in Section 4.1, and provide the
details of our experimental methodology in Section 4.2. We
first evaluate the performance of reading data from the HDF5
file format library through controlled experiments with a
synthetic workload in Section 4.3. We complete the evalu-
ation of our SDS/Q prototype using the PTF observation
database in Section 4.4.

4.1 Computational Platform
NERSC is a high-performance computing facility that serves
a large number of scientific teams around the world. We use
the Carver system at NERSC for all our experiments, which
is an IBM iDataPlex cluster with 1,202 compute nodes. The
majority of these compute nodes have dual quad-core Intel
Xeon X5550 (“Nehalem”) 2.67 GHz processors, for a total
of eight cores per node, and 24 GB of memory. The nodes
have no local disk; the root file system resides in RAM, and
user data are stored in a parallel file system (GPFS).

Scientific applications run on the NERSC infrastructure
as a series of batch jobs. The user submits a batch script
to the scheduler that specifies (1) an executable to be run,
(2) the number of nodes and processing cores that will be
needed to run the job, and (3) a wall-clock time limit, af-
ter which the job will be terminated. When the requested
resources become available, the job starts running and the
scheduler begins charging the user (in CPU hours) based on

the elapsed wall-clock time and the number of processing
cores allocated to the job.

4.2 Experimental methodology
Evaluating system performance on large-scale shared infras-
tructure poses some unique challenges, as ten-thousand-core
parallel systems such as the Carver system are rarely idle.
Although the batch queuing system guarantees that a num-
ber of compute nodes will be exclusively reserved to a partic-
ular task, the parallel file system and the network intercon-
nect offer no performance isolation guarantees. Scientific
workloads, in particular, commonly exhibit sudden bursts
of I/O activity, such as when a large-scale simulation com-
pletes and materializes all data to disk. We have observed
that disk performance is volatile, and sudden throughput
swings of more than 200% over a period of a few minutes
are common. Another challenge is isolating the effect of
caching that may happen in multiple layers of the parallel
file system and is opaque to user applications. Although
requesting different nodes from the batch scheduler for dif-
ferent iterations of the same task bypasses caching at the
compute node level, the underlying layers of the parallel file
system infrastructure are still shared.

In order to discount the effect of caching and disk con-
tention, all experimental results we present in this paper
have been obtained by repeating each experiment every four
hours over at least a three day period. As the Carver sys-
tem has a backlog of analysis jobs, a cool-down period of
a few hours ensures that the data touched in a particu-
lar experiment will most likely have been evicted from all
caches. We report median response times when presenting
the performance results to reduce the effect of unpredictable
background I/O activity from other analysis tasks.

The PTF cosmology workload we used in this study is
a PostgreSQL workload and is described in detail in Sec-
tion 4.4. We use PostgreSQL version 9.3.1 for evaluation,
and we report the response time returned from the \tim-

ing command. We have increased the working memory
per query (option work_mem) to ensure that intermediate
data are not spilled to disk during query execution, and
we have also disabled synchronous logging and increased
the checkpointing frequency to improve load performance.
For the parallel processing performance evaluation, we use
Hive (version 0.12) for query processing and Hadoop (version
0.20) as the underlying execution engine, and we schedule
one map task per requested processor. All SDS/Q experi-
ments use version 1.8.9 of the HDF5 library and the MPI-IO
driver to optimize and parallelize data accesses.

4.3 Evaluation of the HDF5 read performance
through a synthetic workload

We now evaluate the efficiency of in situ data analysis over
the HDF5 array format through a synthetic workload. We
consider two access patterns. Section 4.3.1 describes the per-
formance of the full scan operation, where the query engine
retrieves all elements of one or more arrays. Section 4.3.2
presents performance results for point lookups, where indi-
vidual elements are retrieved from specific array locations.

Consider a hypothetical climatology research application
that manipulates different observed variables, such as tem-
perature, pressure, etc. We generate synthetic data for eval-
uation that contain one billion observations and twelve vari-
ables v1, . . . , v12. (Each variable is a random double-precision
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Figure 3: Median response time (in seconds) as a
function of the number of HDF5 datasets that are
retrieved from the HDF5 file for a full scan.

floating point number.) We store this synthetic dataset in
two forms: an HDF5 file and a PostgreSQL database. The
HDF5 file contains twelve different HDF5 datasets, one for
each variable, and each HDF5 dataset is a one-dimensional
array that contains one billion eight-byte floating point num-
bers. Under the relational data model, we represent the
same data as a single table with one billion rows and thir-
teen attributes (id, v1, . . . , v12): The first attribute id is
a four-byte observation identifier, followed by twelve eight-
byte attributes v1, . . . , v12 (one attribute for each variable).
Thus, the PostgreSQL table is 100 bytes wide.

4.3.1 Full scan performance

Suppose a scientist wants to combine information from dif-
ferent variables of this hypothetical climatology data collec-
tion into a new array and then compute a simple summary
statistic over the resulting array. We evaluate the perfor-
mance of this type of data analysis through a query that
retrieves each of v1[i], v2[i], . . . , vn[i], where n ≤ 12. For
PostgreSQL, the SQL query we run is:

SELECT AVG(v1 + v2 + · · ·+ vn) FROM R;

Figure 3 shows the median response time of this analysis
(in seconds) on the vertical axis, and the horizontal axis is
the number of variables (n) being retrieved. PostgreSQL
(the dotted line) scans and aggregates the entire table in
about 210 seconds. Because different variables are stored
contiguously in a tuple, the disk access pattern is identical
regardless of the number of variables being retrieved. Each
solid line represents a scan over an HDF5 file with a differ-
ent chunk size. For HDF5, each variable has been vertically
decomposed into a separate HDF5 dataset, and is physi-
cally stored in a different location in the HDF5 file. Similar
to column-store database systems [10, 31], accessing multi-
ple HDF5 datasets requires reading from different regions
of the HDF5 file. When comparing data accesses on HDF5
files with different chunk sizes, we observe that full scan
performance benefits from a large chunk size. Based on this
performance result, we fix the HDF5 chunk size to 128MB
for the remainder of the experimental evaluation.

4.3.2 Point lookup performance

Suppose that the scientist exploring the climatology data
decides to inspect specific locations, instead of scan through
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Figure 4: Median response time (in seconds) as a
function of the selectivity of the query.

the entire collection of data. This task is highly selective
and the response time of this query critically depends on
retrieving data items from specific array locations.

For PostgreSQL, we assume that the data have already
been loaded in the relational database system and an index
has already been built on the id attribute. In order to iso-
late the point lookup performance, we force PostgreSQL to
use an index by setting the enable_indexscan parameter to
on, and disabling all other scan types. We then retrieve n

variables at k random locations T = (t1, . . . , tk) by issuing
this SQL query:

SELECT AVG(v1+ v2+ · · ·+ vn) FROM R WHERE id IN T;

We also perform the same analysis directly on the HDF5
data file by specifying a sparse filespace that contains k ran-
dom elements of interest. We then retrieve the data at these
locations from n arrays, where each array is stored as a sep-
arate HDF5 dataset.

Figure 4 shows the median response time (in seconds) on
the vertical axis, as the number of random point lookups
(k) grows on the horizontal axis. The performance of Post-
greSQL is not affected by the number of variables inspected
(n), because data from different variables are stored in sepa-
rate columns of the same tuple and retrieving these variables
does not incur additional I/O. We therefore show a single
line for PostgreSQL for clarity. In comparison, retrieving
each HDF5 variable requires an additional random lookup,
which causes response time to degrade proportionally to the
number of variables being retrieved.

When few random lookups happen, the response time for
accessing data in HDF5 is slower than PostgreSQL. As the
number of random lookups grows, the response time for ac-
cessing HDF5 data increases less rapidly after 2,000 point
lookups, and becomes faster than PostgreSQL after tens of
thousands of lookups. This happens because the first read
in a particular HDF5 chunk is significantly more expensive
than subsequent accesses. When there is a single lookup
per HDF5 chunk, the dominating cost is the access penalty
associated with retrieving chunk metadata to compute the
appropriate read location. When many random array loca-
tions are accessed, the number of read requests per chunk
increases and the chunk metadata access cost is amortized
over more lookups. As a result, query response time in-
creases less rapidly.
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Table Cardinality Columns
candidate 672,912,156 48

rb_classifier 672,906,737 9
subtraction 1,039,758 51

Table 1: Our snapshot of the PTF database.

Matching Tuples in
σs time subtraction Cardinality

Query interval that match σs of the result
Q1 hour 226 5,878
Q2 night 2,876 42,530
Q3 week 21,026 339,634

Table 2: Number of tuples that match the filter
condition, and cardinalities of the final answers.

4.3.3 Summary of results from the synthetic dataset

We find that the performance of a sequential data scan
with the HDF5 library is comparable to the performance of
PostgreSQL, if the HDF5 chunk size is hundreds of megabytes.
A full scan over a single HDF5 dataset can be significantly
faster because of the vertically-partitioned nature of the
HDF5 file format. Performance drops when multiple HDF5
datasets are retrieved, because these accesses will be scat-
tered within the HDF5 file. When comparing the point
lookup performance of the HDF5 library with PostgreSQL,
we find that accessing individual elements from multiple
HDF5 datasets can be one order of magnitude slower than
one B-tree lookup in PostgreSQL, because the HDF5 ac-
cesses have no locality.

4.4 Evaluating the SDS/Q prototype using the
Palomar Transient Factory workload

The Palomar Transient Factory is an automated survey of
the sky for transient astronomical events, such as super-
novae. Over the past 15 years, observations of supernovae
have been the basis for scientific breakthroughs such as the
accelerating universe [28]. Because the phenomena are tran-
sient, a critical component of the survey is the automated
transient detection pipeline that enables the early detection
of these events. A delay of a few hours in the data process-
ing pipeline may mean that astronomers will need to wait
for the next night to observe an event of interest.

The data processing pipeline starts on the site of the wide-
field survey camera. The first step is image subtraction,
where event candidates are isolated and extracted. The can-
didates are then classified through a complex machine learn-
ing pipeline [9] which detects whether the candidate is real or
an image artifact, and if it is real, what is the transient type
of the candidate (supernova, variable star, etc.). After this
initial processing, each candidate event is described with 47
different variables, and each image subtraction with 50 vari-
ables. The classifier has produced a list of matches between
candidate events and image subtractions (an M-to-N rela-
tionship) and 7 generated variables containing confidence
scores about each match.

The data are then loaded into a PostgreSQL database for
processing. The database schema consists of three tables.
The candidate table contains one row for each candidate
event, the subtraction table contains one row for each im-
age subtraction, and the rb_classifier table has one row
per potential match between a candidate event and an image

subtraction candidate

rb_classifier

σs σc

σr

✶

✶

(a) PTF query plan.
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Figure 5: Query performance for the three PTF
queries when performing a full scan.

subtraction. Every variable is stored as a separate column,
and an id field is prepended to differentiate each observation
and combine information through joins between the tables.
We have obtained a nightly snapshot of the database used
by the PTF team for near-real-time transient event detec-
tion for evaluating our SDS/Q prototype. The snapshot we
experiment with is a PostgreSQL database of about 180GB
of raw data, with another 200GB of space used by indexes
to speed up query processing. The cardinalities of the three
tables, and the size of each tuple are shown in Table 1.

The workhorse query for this detection workload is a three-
way join. The query seeks to find events in the candi-

date table exceeding certain size and brightness thresholds,
that have been observed in images in the subtraction table
over some time interval of interest, and are high-confidence
matches (based on the scores in the rb_classifier table.)
The final result returns 18 columns for further processing
and visualization by scripts written by the domain experts.
PostgreSQL evaluates this query using the query plan shown
in Figure 5(a). By varying the time interval of interest,
we create three queries with different selectivities from this
query template. Each query corresponds to three different
scientific use cases. Q1 looks for matches over the time span
of one hour and is extremely selective, as it returns only
0.02% of the tuples in the subtraction table. This is an ex-
ample of a near-real-time query that runs periodically during
the night. Q2 matches an entire night of observations, and
returns 0.3% of the tuples in the subtraction table. Finally,
Q3 is looking for matches over last week’s image archive.
The selectivity of the condition on the subtraction table is
about 2%. Table 2 shows how many tuples match the filter
condition, and the cardinality of the answer.

4.4.1 Query performance without indexing

If an index has not been constructed yet, PostgreSQL eval-
uates all PTF queries by scanning the entire input relations,
and uses the hash join as the join algorithm of choice. We
execute the same query plan in SDS/Q to evaluate the per-
formance of in situ data processing in the HDF5 file format.

Figure 5(b) shows the median response time (in seconds)
on the vertical axis for each of the three queries. We find that
the response time of SDS/Q is similar to that of PostgreSQL
for all three queries, and SDS/Q completes all queries about
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Figure 6: PTF Q1 response time as more processors
are requested from the job scheduler.

25% faster. SDS/Q outperforms PostgreSQL because the
query retrieves HDF5 datasets selectively from each table,
as only about 10 out of the approximately 50 attributes of
the candidate and rb_classifier table are accessed. (We
have systematically explored this effect in Section 4.3.1.)
The performance improvement for SDS/Q is because of the
vertically-partitioned layout of the HDF5 datasets that re-
sults in less I/O for the three PTF queries.

4.4.2 Parallel processing of native HDF5 data

All experiments so far have presented single-threaded per-
formance. A major advantage of native scientific data for-
mats such as HDF5 is that they have been designed for par-
allel processing on modern supercomputers. In this section,
we evaluate how the response time for PTF Q1 improves
(on the same data) if one requests more than one processing
core when the batch job is submitted for execution.

Figure 6 shows the response time of the PTF Q1 query
as more processors are requested when the job is submit-
ted for execution. We request n cores to be allocated on
⌈n
8
⌉ compute nodes. PostgreSQL has not been designed for

a parallel computing environment, therefore we only show
response time for a single core. We instead compare the
performance of SDS/Q with the Apache Hadoop data pro-
cessing stack. As the PTF queries generate small interme-
diate results (cf. Table 2), we have rewritten the query to
force each join to use the efficient map-only broadcast join,
instead of the expensive repartition join [8]. Analyzing the
PTF dataset with Hive using 8 processors (one node) takes
30 minutes, but performance improves almost proportion-
ally with the number of processors: the analysis takes less
than two minutes when using 256 cores. The poor perfor-
mance of Hive is rooted in the fact that the Apache Hadoop
stack has not been designed for a high-performance environ-
ment like the Carver supercomputer, where the parallel file
system can offer up to 80GB/sec of disk read throughput.
As indicated by the near-optimal speedup when allocating
more processors, the Hive query is a CPU-bound task in this
environment.

SDS/Q parallelizes the PTF Q1 query to use all n cores
automatically in the HDF5 scan operator (see Algorithm 1),
and uses the broadcast hash join to create identical hash
tables in every node to compute the join result. The perfor-
mance of SDS/Q improves significantly from parallel data
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Figure 7: Median response time of the three PTF
queries when accessing data through an index.

processing, and when using 16 cores (two nodes) the re-
sponse time drops to less than one minute. There are lim-
ited performance improvements when using more than 64
cores. This is caused by two factors. First, there are high
fixed overheads to initiate a new job. Given the small size
of the original database, these fixed overheads become sig-
nificant very quickly at scale. (For example, at 128 cores
each spawned task is processing less than 2GB of data.)
The second factor is skew. The references on the candi-

date and rb_classifier tables exhibit high locality for any
chosen time range on the subtraction table. This causes a
few cores to encounter many matches that propagate across
the two joins, while the majority of the processors find no
matches after the first join and terminate quickly. In sum-
mary, we find that SDS/Q can significantly improve query
processing performance when more processors are requested,
and SDS/Q completes the PTF Q1 query 10× – 15× faster
than Hive on the Carver supercomputer.

4.4.3 Using an index for highly selective queries

We now turn our attention to how indexing can improve
the response time of highly selective queries. PostgreSQL
relies on an index for the range lookup on subtraction, and
on index-based joins for the rb_classifier and candidate

tables. We adopt the same query plan for SDS/Q.
Figure 7 shows the response time for all PTF queries when

accessing data through an index. We ran a given query
multiple times, in sequence, and report the response time of
the “cold”first query on the left, and the“warm” subsequent
queries on the right. PostgreSQL relies on a B-tree index,
and SDS/Q uses either a positional index (Algorithm 2) or
FastBit (Algorithm 3).

Performance is poor for all queries that use the positional
index. As described in detail in Algorithm 2, this opera-
tion consists of two steps: it first retrieves offsets from the
positional index, and then retrieves specific elements from
the HDF5 file at these offsets. As shown in prior work [3],
retrieving the offsets from the positional index is fast. The
performance bottleneck is retrieving elements at specific off-
sets in the HDF5 file, which we have explored systematically
in Section 4.3.2 (cf. Figure 4). Aside from response time,
another important consideration is the amount of working
memory that a join requires [7]. The FastBit index semi-join
and positional map join have different memory footprints.
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System
Time (minutes)
Load Index

PostgreSQL 212.4 99.6
SDS/Q 0 11.3

Hive 0 N/A

Table 3: Data preparation time (in minutes) of
different systems for the PTF database.

As FastBit is forming an intermediate result table, it may ac-
cess a number of different bitmap indexes for each retrieved
variable, which requires more working memory. Therefore,
positional indexing may still be appropriate when the avail-
able working memory is limited.

Both PostgreSQL and SDS/Q with FastBit return results
nearly instantaneously for the most selective PTF query
(Q1). As the query becomes less selective (Q3), the query
response time from SDS/Q is 3.8× faster than PostgreSQL.
PostgreSQL benefits from high selectivity as it stores each
tuple contiguously: all variables can be retrieved with only
one I/O request. In comparison, SDS/Q relies on FastBit
for both indexing and data access. FastBit partitions data
vertically during indexing, hence SDS/Q needs to perform
multiple I/O requests to retrieve all data. As the query
becomes less selective, SDS/Q can identify all matching tu-
ples at once from the bitmap indexes on rb_classifier and
candidate (see Algorithm 3). In comparison, PostgreSQL
has to perform multiple B-tree traversals to retrieve all data.

To summarize, we find that SDS/Q with FastBit bitmap
indexing delivers performance that is comparable to that of
PostgreSQL for extremely selective queries. As the queries
become less selective, the bitmap index favors SDS/Q, where
it outperforms PostgreSQL by nearly 4×. Positional index-
ing performs poorly due to the inherent cost of performing
random point lookups over HDF5 data.

4.4.4 The user perspective: end-to-end time

The user of a scientific data analysis system wants to un-
derstand the data produced by some simulation or observed
during an experiment. For the case of the PTF dataset, the
astronomer has the choice of loading the data in a relational
database system, which takes significant time (see Table 3).
Alternatively the astronomer can choose to process the data
in situ using SDS/Q or Hadoop [12], leaving data in a file
format that is understood by the analysis scripts and visu-
alization tools she is using already.

Figure 8 shows the time it takes for the astronomer to
gain the desired insight from the PTF database on the ver-
tical axis, as a function of the number of Q1 queries that
need to be completed on the horizontal axis. Using four
Carver compute nodes, the scientist can get an answer to
her first question in about 30 seconds by running SDS/Q on
all processing cores. In comparison, the first answer from
Hive needs approximately eight minutes. PostgreSQL would
respond after the time-consuming data load process is com-
plete, which takes four hours. If the scientist desires to ask
multiple questions over the same dataset, the indexing ca-
pabilities of SDS/Q can produce the final answer faster than
loading and indexing the data in PostgreSQL, or perform-
ing full scans in parallel. Due to the cumbersome data load
process of the PTF database, the sophisticated querying ca-
pabilities of a relational database only outperform SDS/Q
after many thousands of queries. SDS/Q allows scientists
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Figure 8: Time to insight as a function of the num-
ber of the PTF Q1 queries completed. The result for
the first query includes the data preparation time.

to take advantage of the ample parallelism of a supercom-
puter through a parallel relational query processing engine
and a fast bitmap index without modifying their existing
data analysis workflow.

5. CONCLUSIONS
We propose an in situ relational parallel query processing
system that operates directly on the popular HDF5 scien-
tific file format. This prototype system, named SDS/Q,
provides a relational query interface that directly accesses
data stored in the HDF5 format without first loading the
data. By removing the need to convert and load the data
prior to querying, we are able to answer the first query of
the Palomar Transient Factory (PTF) cosmology workload
more than 40× faster than loading and querying the rela-
tional database system that the scientists use today.

In addition, SDS/Q is able to easily take advantage of
the parallelism available in a supercomputing system and
effortlessly speed up query processing by simply requesting
more CPU cores when the batch job is submitted for exe-
cution. Given that parallel database systems are often too
expensive for large scientific applications, this ease of par-
allelization is an important feature of SDS/Q for processing
scientific data. In a test with the same query from the PTF
cosmology dataset, SDS/Q responds 10× faster than Apache
Hive when running on 512 CPU cores.

We also demonstrate that SDS/Q can use bitmap indexes
to significantly reduce query response times. The bitmap
indexes are external indexes and do not alter the base data
stored in the HDF5 files. On sample queries from the same
PTF workload, these bitmap indexes are able to reduce the
query processing time from hundreds of seconds to a few
seconds or less.

We plan to focus our future work in reducing the time to
generate the bitmap indexes. In the current prototype, the
bitmap indexes are built with intermediate data files which
are generated from the HDF5 data. We are working to ac-
celerate the index build phase by directly reading data from
the HDF5 file. This will reduce the time needed to answer
the first query using a bitmap index. We also plan to extend
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our Scientific Data Services to support operations that are
important to scientific applications that manipulate large
scientific datasets, such as transparent transposition, and
reorganization based on query patterns. Finally, query op-
timization on shared-disk supercomputers has unique chal-
lenges and opportunities, and we see this as a promising
avenue for future work.

Source code

The source code for the core SDS/Q components is available:
• Bitmap index: https://sdm.lbl.gov/fastbit/
• Query engine: https://github.com/sblanas/pythia/
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