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ABSTRACT

Complex Event Processing (CEP) systems are designed to
process large amount of information by simultaneously eval-
uating multiple queries over event streams. Two main re-
quirements imposed by the users of the CEP systems are: (1)
ability to process high throughput event data and (2) ability
to answer queries with very low latency. In order to meet
above requirements CEP systems are becoming increasingly
distributed. Distribution of queries as well as event streams
across multiple nodes facilitates increasing the throughput of
CEP systems while simultaneously maintaining low response
times.
The widespread adoption of cloud computing and the ac-

companying pay-as-you-go model has added new dimensions
to the problem of complex event processing in a distributed
system. Nowadays, it is not only important to be able to
scale the processing out to a large number of nodes, it is also
equally important to be able to scale the processing down,
as soon as the load or user requirements decrease. The abil-
ity to scale processing up and down along with the load and
user requirements is called elasticity.
The goal of the thesis described in this paper is to de-

velop a component allowing for elastic scaling of distributed
CEP systems in response to variations in the load and con-
tractual obligations regarding the quality of service. To this
end, the thesis described in this paper will address following
three major topics: (1) multi query optimization, (2) op-
erator placement in distributed environments, and (3) cost
efficiency. This paper outlines the state of art for the three
aforementioned topics and presents the overall draft of the
solution for the problem of the elastic complex event process-
ing.

1. INTRODUCTION
Complex Event Processing (CEP) systems [21] are used

in various scenarios, including (but not limited to): stock
trading [20], click stream monitoring [11], and information
integration workflows [7]. Moreover, Complex Event Pro-
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cessing is becoming a central component of Business Intelli-
gence (BI) systems, as it facilitates solving BI task in (near)
real time by short cutting the pipeline between raw data and
the dashboard layer [7]. In contrast to classical database
systems, CEP systems avoid persisting of incoming events,
processing the data directly in memory. This allows CEP
systems to process event streams with several thousands of
events per second with sub millisecond latency [34].

With the increasing amount of data available for analy-
sis [14] and increasing complexity and availability of the
Business Intelligence analysis tools, single machine-based
solutions are quickly becoming overloaded. Based on re-
ports from SAP customers one can currently expect that
CEP systems will have to cope with as much as 22.000 si-
multaneous users with estimated 5 queries being asked by
every single user. The Options Price Reporting Authority
(OPRA), which aggregates all quotes and trades from op-
tions exchanges, estimated peak rates of 456,000 events/sec
(July 2007), with rates roughly doubling every year [33].
Since load shedding is not an applicable strategy when the
correctness of results is required, distribution of the complex
event processing emerges as the only viable option. First
attempts at creating distributed CEP systems have been al-
ready undertaken and have resulted in systems, like: RAPI-
DE [22], Borealis [1], and DCEP [28].

However, in order to be able to competitively run large-
scale distributed systems, cloud computing [8] resources have
to be used. The key feature provided by cloud computing
is the notion of elasticity. Elasticity has been defined [24]
as: [. . . ] capabilities [which] can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale in. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Elasticity involves not only transparent scale up of the sys-
tem, but also transparent scaling down if the current setup
is too big with respect to the current load or requested qual-
ity of service. In contrast, a classical distributed CEP sys-
tem [22, 1, 28] is designed to always support for the peak
load. Therefore, it is periodically scaled up in case the input
rate increases. However, in practice, the load imposed on a
distributed system is not increasing linearly, but shows an
unpredictable variability – see Figure 1. Using a static re-
source provisioning either not enough resources are available
(underprovisioning) and requests are dropped, or too many
resources are used (overprovisioning), creating unnecessary
costs. In contrast, using elastic resource provisioning, the
system can alter its resource utilization dynamically, which
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Figure 1: Comparison of static and elastic resource
provisioning – source: [35]

avoids over- as well as underprovisioning.
Recently a number of prototypes for cloud-based CEP en-

gines has been proposed, including: SEEP [25], an exten-
sion for System S [27], Flood [4], StreamCloud [12] and
Kleiminger et al. [17]. In the following table (Table 1) we
characterize aforementioned systems based on the level at
which the elasticity is realized.

Elastic Action Taken System

Engine
New engine instance is started
and new queries are employed on
this engine

[17]

Query
New query instance is started
and the input data is split

[12, 25]

Operator
New operator instance is created
and the input data is split

[4, 27]

Table 1: Different levels of elasticity and correspond-
ing actions

A CEP engine can be made elastic by parallelizing either
at the engine, query or operator level. Each of these ap-
proaches has benefits and shortcomings. The engine level
approach requires the smallest set of changes to the overall
system, however it also introduces the largest overhead to
initialize a new instance and exposes the smallest flexibility
and granularity. The query level approach imposes less over-
head, however it requires the system to be able to optimize
for a possibly very large amount of queries – see section 4 for
more details on this approach. The query level approach is
also less flexible than the operator level approach. The oper-
ator level approach helps to scale the system in the most fine
grained fashion. However, it also requires fully elastic opera-
tors, which are difficult to implement, especially if a system
permits user defined operators. Moreover, too high degree
of distribution might result in communication overhead be-
coming a limiting factor with respect to scalability [12].
In order to exploit elasticity a complex event processing

system has to be designed in an elastic way, allowing for
operation with a variable number of nodes. To be able to
realize such systems, a solution for the following three issues
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Figure 2: Example dataflow on StreamMine

has to be created [35]:

1. Which components or layers in my application archi-
tecture can become elastic?

2. What will it take to make them elastic?

3. What will be the impact of realizing elasticity onto my
overall system architecture?

The current focus of most CEP systems is on implement-
ing answers to questions (1) and (2). None of the works has
done an intensive study on the extensions needed for making
the elasticity transparent to the user. The thesis described
in this paper tries to fill this gap by researching question (3).
The system needs to decide automatically, when to scale up
and also when to scale down again to reduce the monetary
cost. In addition, the system has to detect operators becom-
ing bottlenecks and react by e.g. moving them to another
node.

The remainder of this paper is structured as follows: Sec-
tion 2 introduces the system model and general architecture
of the CEP system which will be used as a foundation for the
work carried out within the described thesis. In Section 3
main components of the proposed system are introduced, in-
cluding multi query optimization, operator placement, and
cost efficiency. Section 7 describes the planned evaluation
strategy and plan for the whole system. Section 8 concludes
this paper.

2. SYSTEM MODEL
The thesis described in this paper is part of the SRT-151 re-

search project. The SRT-15 research project is funded by the
European Commission within the Seventh Framework Pro-
gramme (FP7) under the Grant Agreement number 257843
in the area of Internet of Services, Software & Virtualisation
(ICT-2009.1.2).

A software foundation for both the SRT-15 research project
and the described thesis the StreamMine [23] system. This
StreamMine system is a framework for processes of events
using a stage-based approach, where each stage can be pro-
grammed to express an independent logic unit and store in-
dependent state. Within a single stage multiple instances
of the stage logic realize the same functionality for different
data. In order to achieve this, StreamMine offers functional-
ity to split the input data using a key-based approach – see
Figure 2 for the architectural overview.

1Project homepage: http://www.srt-15.eu
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Figure 3: Thesis prototype

StreamMine can be executed in a distributed environment.
For each execution all involved stages have to be assigned to
physical underlying system nodes. Subsequently, stages have
to be explicitly connected using point to point connections.
This allows to scale the different stages based on expected
event load by: (1) adding new stages to the already existing
system or (2) adding additional nodes to already running
stages. StreamMine can therefore be used to realize elastic-
ity on an operator level.
Within the thesis, described in this paper, we define typ-

ical CEP operators (Selection, Join, Aggregation and Se-
quence) on top of the StreamMine model. We assume that
input for the CEP system, running on top of StreamMine,
consists of a set of infinite event streams and a set of con-
tinuous queries. The number of queries can change during
runtime, as new queries can be added and removed dynam-
ically. We also assume that queries submitted to the CEP
system model the data flow as an acyclic graph. Figure 2 il-
lustrates such data flow consisting of two Selection operators
and one Join operator.

3. SYSTEM ARCHITECTURE
The main challenge (and simultaneously advantage) when

designing a cloud-based CEP engine is that it must handle
a rapidly changing set of events and queries, where both the
number of queries and the event rate is very hard to predict.
As outlined in Section 1 peak load rates can be as high

as 100,000 concurrent queries and 400,000 events per second.
However, the normal load is expected to significantly differ
from the above values, depending mostly on the application
type. This in turn, requires the system to be able to au-
tomatically scale up and down along with the varying load,
no user interaction is involved in the elastic scaling process.
In order to allow for such functionality we propose a system
architecture presented in Figure 3.
The key concept of the thesis prototype with respect to its

architecture, is that it will be decoupled from the underlying
elastic CEP system. All communication between the thesis
prototype and the underlying CEP system will be executed
via generic interfaces. This allows to use of the thesis proto-
type in combination with any elastic CEP engine, as long as
the underlying CEP engine implements the specified inter-
faces and the required functionality including a distributed
execution, dynamic addition of queries, operators and op-
erator instances as well as dynamic movement of operators

instances to other nodes. The prototype consists of three
major components:

Multiple query optimization Given a large amount of
concurrently running queries it is likely that results
produced by parts of or even whole queries are identi-
cal. In order to lower the load on the system such over-
laps should be exploited. A solution can be based on
multiple query optimization [29] – a technique which
allows creation of global query plans reusing common
results.

Operator placement Based on a global query plan and
a set of available nodes an assignment of operators or
queries onto the physical nodes has to be performed.
In order to accommodate for the varying load operator
placement has to be aware of the current load levels as
well as the current utilization of system nodes. More-
over, considering a deployment in the cloud, the opera-
tor placement component must be able to request and
release resources as needed in order to cope with the
varying workload and quality of service requirements
like a maximal end to end latency or an expected min-
imal throughput.

Cost efficiency In most scenarios users provide not only
event sources and queries to run against them but also
a monetary budget and quality of service requirements
which need to be met. Therefore, both aforementioned
components must be able to operate in a cost efficient
way. This means that the query plan and its execu-
tion must be tuned in such a way as to minimize the
execution cost, while simultaneously meeting the speci-
fied quality of service requirements. In addition, newly
added queries should be rejected by an admission con-
trol in case they can not be executed with the given
budget.

In the following sections we will describe each of the afore-
mentioned components in more detail. Specifically, we will
motivate the design decisions regarding the components’ de-
sign and we will present related work and the progress be-
yond the state of the art.

4. MULTIPLE QUERY OPTIMIZATION

FOR ELASTIC CEP
The goal of the Multiple Query Optimization [29] (MQO)

is to reduce the number of concurrently running queries in
a CEP and/or database system. A MQO approach involves
identification and reuse of identical results produced by op-
erators within a global query plan. MQO allows avoiding
repetitive computation of identical results and is specifically
well suited for CEP systems, which are working with long
running queries [7]. Figure 4 illustrates the multi query op-
timization approach.

The solution to the MQO is a global query plan incor-
porating multiple queries. The goal of the MQO when cre-
ating the global query plan is to minimize a cost metric,
such as the sum of all operators cost. The task is known to
be NP-complete [30], because the global optimal plan can-
not be constructed by simply combining optimal per query
plans. Instead, all possible query plans for all queries have
to be examined, which leads to an exponential growth of the
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Figure 4: Example for an incremental multi query
optimization

search space. To avoid this problem most approaches use
heuristics [26] to find a near optimal query plan.
The MQO approach used in context of this thesis should

be incremental, allowing adding new queries and removing
queries during runtime. The global query plan should only
contain the current active queries to allow an efficient re-
source usage. Many classical approaches used in database
systems [6, 26] are not incremental algorithms, which means
that each time a new query arrives the computation to find
the optimal query plan has to be restarted. This can become
very expensive, especially when the query arrival frequency
is high. In addition, when adding new queries the already
running ones should not be interrupted, i.e., changes to the
currently executed global query plan should be avoided. If
the position of operators within a running global query plan
is changed this might involve changes in the semantics of
the current operator state (e.g. the previously seen and still
valid events inside a join operator), which either results in a
complex reinitialization or incorrect results.
In the context of data streaming the usage of multi query

optimization was first addressed in [13, 16]. Both approaches
show an efficient way to optimize a large amount of contin-
uous queries. However, both approaches do not allow for
addition nor removal of queries during runtime. A system
for incremental query optimization has been first proposed
in [15] – it uses internal index structures to easily identify
possible merge points for new queries. Additionally, the au-
thors use query subsumption [3] for filter expressions, which
results in a higher results reuse. However, the set of opera-
tors supported in the above system is very limited and the
operators are only executed on the same input stream.
The thesis described in this paper will extend the above

approach to: (1) accommodate a full set of CEP operators
as well as (2) multiple input streams and (3) query removal
from the system. In addition, instead of comparing the se-
mantics of the operators, a stream annotation approach will
be used. In our approach every stream is annotated with a
set of predicates based on the operator semantics defining
tuples contained within this stream. The goal is to avoid
query rewriting and make use of efficient index structures to
allow for fast integration of new queries.

5. OPERATOR PLACEMENT FOR ELAS-

TIC CEP
Given a query plan and a set of available nodes, it has to

be decided which operators are to be mapped onto which
nodes and how many nodes should execute a given opera-
tor. This problem can be solved by operator placement algo-
rithms [19] which try to place a set of operators on a fixed set
of distributed nodes. A number of approaches [2, 16, 32, 36]
which try to optimize operator placement based on a speci-
fied metric have been proposed. Authors in [19] outline dif-
ferent design dimensions for operator placement algorithms,
in the following we mention those which are relevant to the
thesis described in this paper:

Architecture Existing approaches can be categorized be-
ing an independent module [16, 32] or as distributed
logic [2, 36]. With respect to the architecture the the-
sis prototype described in this paper is implemented
as a centralized and independent module.

Metric The operator placement can be optimized based on
various metrics including load, latency, network band-
width or operator importance. Within the thesis de-
scribed in this paper different metrics including mone-
tary cost (see Section 6) will be evaluated.

Adjustment The operator placement can either be static,
with new placement calculated only when a new query
arrives or departs, or dynamic with the placement be-
ing adjusted, subject to varying load and node utiliza-
tion. Within the thesis described in this paper a dy-
namic operator placement based on the system load
and utilization will be used.

With the thesis described in this paper two additional
problems will be investigated: (1) it has to be decided, how
many nodes per operator are needed and (2) how to perform
an a priori (instead of an a posteriori) node provisioning.

The first problem can be solved in a two phased approach.
First, an initial estimate based on the number of available
nodes and the complexity of the operator is performed. Sub-
sequently, after deployment has taken place, runtime infor-
mation is used in order to further refine the number of nodes
used to handle the operator load.

The second problem stems from the fact that the number
of available nodes is not fixed. Nodes are purchased on de-
mand from the cloud provider. Ideally, one should try to
avoid situations where nodes are becoming bottlenecks (un-
derprovisioning) as well as overprovisioning of the overall
system. The major challenge is to be able to detect such
situations early enough to migrate the operator to another
machine before violating given QoS constraints. This is mo-
tivated by the fact that both allocation of a new node and
moving of an operator to a newly allocated node are not
instantaneous. Moreover, a frequent allocation and deallo-
cation of nodes (called thrashing) as a result of a bursty load
should be avoided.

The overall idea for the operator placement is to provide a
fast and simple initial placement strategy and perform sub-
sequent adjustments according to the varying load. The
motivation is based on following facts: (1) in CEP systems,
unlike in classical data bases, it is not possible to predict the
load and (2) initial operator placement is only the starting
point for the search of an (sub) optimal solution.
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Figure 5: Cost efficient execution of queries

6. COST EFFICIENT ELASTIC CEP
Most cloud providers use a pay-as-you-go model, which

means, that a user is charged for every CPU cycle he uses.
The Elastic CEP prototype will use this property to reduce
the information processing cost for the user as much as possi-
ble. Users of the Elastic CEP prototype will be able to spec-
ify a maximum cost for information processing along with
QoS constraints, such as: a lower bound for the throughput
and upper bound for the latency. The Elastic CEP proto-
type will try to optimize the data flow in such a way so as
to stay within these constraints. From the large number of
possible global query plans ones which fulfill both expected
QoS constraints as well as the cost limits will be selected.
Figure 5 illustrates a set of possible query plans with ex-

pected throughput and associated cost along with an ex-
pected minimal throughput and a maximum budget. The
chosen query plan should meets both criteria – which is true
for the query plan in the dark gray area.
A number of authors [9, 18, 31] have studied the prob-

lem of cost efficient computations, especially in context of
MapReduce [10] and cloud computing. For batch-based tasks
it has been shown [18] how to integrate monetary costs into
the schedule computation using an additional cost dimen-
sion during optimization. An approach proposed by authors
in [9] shows how to combine a pricing model with a provi-
sioning infrastructure and how to incorporate existing SLAs
defined between customers and the service provider. The
authors also demonstrate how service providers have to pay
compensation fees in case of SLA violations. Authors in [31]
present a heuristic method of optimization which speeds up
a given task within a predefined budget by optimizing the
number of allocated machines.
However, the complexity of cost efficient planning for ap-

plications involving streaming data is much higher, because
the concrete rate for the event sources cannot be predicted.
If the number of machines has to be increased (due to an
increased amount of incoming events) the remaining budget
has to be taken into consideration. As a result, the system
has to decide (using an admission control) whether to reject
a new set of queries, due to violation of the available budget.

7. EVALUATION
In order to be able to evaluate the Elastic CEP proto-

type a benchmark, containing both synthetic as well as real-
world data, is needed. The goal of the evaluation is to show

strengths and limitations of the Elastic CEP prototype with
respect to handling varying load (event rates and number of
queries) and the responsiveness of the system. The evalua-
tion will examine following metrics:

Throughput The elastic CEP prototype must be able to
demonstrate handling of query loads exceeding capac-
ity of a single node. The Elastic CEP prototype should
demonstrate the ability to execute a distributed global
query plan.

Query load This metric will evaluate the multiple query
optimization component – both the performance of an
optimized query plan as well as the performance of the
optimizer will be measured.

Responsiveness The responsiveness of the Elastic CEP
prototype describes the time needed to adapt to chang-
ing query loads as well as the ability to detect over-
loaded operators.

Cost efficiency To test the cost efficiency the Elastic CEP
prototype will be faced with situations in which queries
have to be rejected or the available budget is limited.
The system should show its ability to meet the budget
constraints.

The evaluation will be based on real-world and synthetic
test data. Therefore, existing benchmarks will be consid-
ered as starting point for the evaluation. The most common
benchmark for CEP systems is Linear Road [5]. The Linear
Roads benchmark simulates a toll system on a large number
of highways. The system uses a fixed set of queries with
well defined constraints regarding correctness and response
times. The Linear Road benchmark comes with an event
generator, which can change the amount of events sent per
second. The main goal of Linear Road benchmark is to test
the maximum event rate a system can sustain.

However, the both event rates and the query load show
a linear behavior, which does not allow to test for the elas-
ticity of the overall system. Elasticity has to be tested by
additional test cases – therefore, one of the tasks of the the-
sis described within this paper is to develop a benchmark
suite which can be used for comparing the performance of
the elastic CEP systems.

8. CONCLUSION
The thesis described in this paper introduces an extension

to existing CEP systems which reflects the high dynamism
of a cloud environment. This involves studying the problem
of: (1) how to handle a large amount of concurrent queries,
(2) how to make use of allocated resources efficiently and (3)
how to realize a cost efficient computation. Therefore, the
Elastic CEP prototype developed within the thesis will ac-
cept following input: (1) a set of queries, (2) a set of event
sources and a (3) set of available nodes and their utilization.
As an output the component will provide an assignment of
operators to nodes for an elastic CEP system taking into
account the runtime statistics. This research is based on ex-
isting approaches for distributed complex event processing,
however progress beyond the state of the art is made in that
the dynamism of the cloud environment and load are con-
sidered. The Elastic CEP prototype will be evaluated using
a new benchmark system allowing the comparison to other
systems with respect to the support for elasticity.
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