Transactional Issues in Sensor Data Management

Levent Gurgen, Claudia Roncancio, Cyril Labbé, Vincent Olive

France Telecom R&D
Grenoble, France

LSR-IMAG
Grenoble, France

{levent.gurgen,vincent.olive}@orange-ft.com
{cyril.labbe, claudia.roncancio}@imag.fr

ABSTRACT

This paper presents a novel research direction in the field
of sensor data management. It concerns transactional sup-
port in heterogeneous large scale sensor systems. Besides
well-known continuous queries on sensor data, system man-
agement queries should be supported in these systems. In-
deed, with increasing capacity and diversity of sensors, new
applications which require complex read-only and update
queries are likely to appear. Those applications will require
challenging properties such as ACID properties. This paper
discusses the relevance of ACID properties in sensor data
management context. It then focuses on the isolation prop-
erty and proposes a concurrency control mechanism to sup-
port concurrent execution of continuous queries and update
transactions on sensor properties.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems — Distributed applications; H.2.4 [Database
Management]: Systems — Concurrency, Distributed data-
bases, Query processing, Transaction processing

General Terms
Algorithms, Design

Keywords

sensor networks, sensor stream data, heterogeneity, scalabil-
ity, transactional data management, concurrency control

1. INTRODUCTION

Traditionally, sensor querying had been made in an appli-
cation dependant way, i.e. each sensor application had its
own sensors, querying scripts, and sensor data processing
techniques. However, with the emergence of new generation
sensors, and the multitude of ”sensor-aided” applications, a
need for a more generic, reusable way of sensor querying had
risen. Sensor database systems [6, 21, 17] attempt to fulfill
this need. In fact, the reason of this evolution is similar to
that of emergence of database systems a couple of decades
ago, i.e. transition from application dependant data files to
the application independent databases.

Proceedings of the 3rd International Workshop on Data
Management for Sensor Networks (DMSN'06), Seoul,
South Korea, 2006

Copyright is held by the authors/owners.

27

However, these tiny yet intelligent devices came with some
challenges addressed to different domains of computer sci-
ence such as networks, operating systems, and databases.
The database community has been investigating new data
management techniques [18, 10, 21] such as continuous queries,
in-network aggregation, approximate query answers, and re-
source sharing. However, in spite of the fact that reliable
transaction processing is the core functionality of a database
management system (DBMS), transactional aspects are not
explored for sensor database systems.

There are two main reasons why transactional data man-
agement has not been studied in the sensor database con-
text. The first one is that, limited sensor resources (e.g.
energy, computing, communication, storage) prevent them
from implementing complex protocols for reliable data process-
ing. And secondly, existing sensor systems were conceived
for read-only sensor data querying purposes. System man-
agement queries were not considered in those systems. There-
fore there was no need for an explicit control mechanism in
order to guarantee sensor data consistency. However, with
increasing capacity and decreasing cost of sensors, we can
therefore ask the following question: would sensors which
henceforth are involved in issues such as self-organizing rout-
ing protocols, continuous query processing, and in-network
aggregation, also involve in transactional sensor data man-
agement? In addition, various types of sensors (e.g. temper-
ature, pressure, and humidity sensors; current and voltage
readers; GPS devices; visual and auditory sensors; RFID
readers; chemical sensors) have already started to contribute
to the anywhere anytime information processing paradigm.
Thus, large scale heterogeneous sensor systems have become
a reality. These systems would include, besides continuous
queries on sensor data, system management queries such as:
update all sensors in a particular location with a new sam-
pling rate; which sensors have the energy level lower than
10%; modify measuring unit from Celcius to Fahrenheit.
These queries may require some transactional properties
such as atomicity (update all sensors or none) or isolation
(isolate continuous read-only queries from update queries).
Therefore, can we talk about a certain sensor database man-
agement system which guarantees ACID properties as con-
ventional DBMSs do? We believe that, a revision of classical
transactional schemes is required for sensor transactions in
order to propose new schemes addressing to unique char-
acteristics of sensor applications; as it has been done for
new generation information systems (e.g. mobile transac-
tions [24]).

This paper aims to expand the open questions mentioned

above, and tries to find some answers. It particularly deals
with concurrency control problem which arises with coexis-
tence of update transactions and continuous queries. Firstly,
section 2 gives our vision of large scale sensor database sys-
tems, and introduces different sensor transactions that can
exist in these systems. The relevance of traditional ACID
properties for sensors context is also given in that section.
Section 3 proposes a temporally nested transactional model
to represent continuous queries in a finer way, and then pro-
poses a concurrency control mechanism based on this model.
Finally, section 4 concludes and gives directions for future
work.

2. TRANSACTIONS INSENSOR DATABASES

Before introducing sensor transactions, let us first give our
sensor database vision and an application scenario.

2.1 Sensor Databases

We can classify existing sensor database solutions into
three categories according to the place where query process-
ing takes place: distributed [4, 21, 6, 17|, centralized [10,
5, 2, 7], and hybrid systems [20, 11, 3, 9]. We adopt the
distributed hybrid approach presented in [11] which is an
integrated view of sensor networks and data stream man-
agement systems (DSMS). Our architecture is composed of
three main levels: control sites, gateways and sensors (see
Figure 1). A control site receives queries from users or ap-
plications, decomposes the query, and sends the sub-queries
to the concerned gateways. Gateways are distributed ac-
cording to their location. They group different kinds of sen-
sors, more precisely their proxies. A proxy is the software
controlling one or more sensors. There is also one adapter
per proxy which is the interface between the sensor specific
proxy and our sensor management system. Sensors are phys-
ically distributed in an environment and send their measures
to their proxies in a periodic or aperiodic manner. Sensors
may have some query processing and storage capabilities.
Different parts of the queries can be evaluated at control
sites, gateways, proxies, or sensors. The hybrid approach
aims, firstly to be scalable by distributing query evaluation
among different levels of the architecture, and secondly to
integrate heterogeneous sensor data.

As in conventional relational database systems, sensor
data is represented by tuples which conform to a data schema.
Queries are formulated according to that schema. Mostly,
queries pertain to three parts of sensor data: meta-information
of sensor (identification, location, type, unit of measure,
etc.), sensor’s measurement (temperature, pressure, GPS
coordinates, RFID tag Id, etc.), and timestamp of the mea-
surement. Continuous query operators execute on sensor
measurement (e.g. sensors measuring less than 10). How-
ever, in order to localize sensors whose data will be in-
terrogated, a part of the query is executed on the sensor
meta-information (e.g. temperature sensors in room A
measuring less than 10 Celsius). Finally, time is also con-
cerned by most of the queries (e.g. temperature sensors in
room A measuring in average less than 10 Celsius in a slid-
ing window of 5 minutes). Hence, we differentiate three
types of sensor data attributes: properties, measurement
and timestamp.

2.2 Application Scenario
Consider a factory equipped with two kinds of sensors,

28

temperature sensors and RFID readers. In the factory, each
product passes by a certain number of sections during its
lifecycle. Each section has a gateway responsible for the
sensors present at that section. At every section there are,
several sensors which measure temperature of the section,
and one RFID reader detecting product tags (see Figure 1).

Sensor data is distributed at different levels of the ar-
chitecture (see Figure 2). Meta-information is distributed
on control sites, gateways, and proxies (in gateways, proz-
ies, and sensors table). Sensor stream data is represented
by a virtual table called measures. Queries are formulated
according to a common global schema. A simple schema ex-
ample could be as sensor_stream = < sensorld,location,
type, rate, unit, measurement, timestamp >. This schema
actually represents a view over different materialized data-
bases and non-materialized data stream of sensors:
sensor_stream = Tist—attr (gateways Xard proxies Nprq
$ensors Wsensorra measures)
where list — attr =< sensorld, location, type, rate, unit,
measurement, timestamp >

The first five attributes form the properties of sensor data.
The measurement field represents the measurement made by
the sensor at the time indicated by the timestamp attribute.

2.3 Sensor Transactions

Generally speaking, we can define a sensor transaction as
a set of operations performed on a sensor database. We will
differentiate three types of sensor transactions:

One-time query transactions. These are one-time queries
in the sense that the query will be executed on the current
state of sensor data. Mostly, these queries will be evaluated
on the sensor properties and not on the sensor measure-
ments. Typical queries include: Where are the temperature
sensors? Are there any sensors with memory full? How
many RFID readers are there in building A? Which sensors
measure with the Celsius unit? Etc.

Update transactions. These transactions modify sensor
” property’ attributes: set the name of the temperature sen-
sor having the Id number ”1”, to the value ”temp_sensor”;
change the location attribute value ”Section A” of the gate-
ways to the new value ”Section I”; double the sampling
rate of temperature sensors in section B; update firmware
of the sensors; etc. Update transactions also include ar-
rival/departure of gateways, proxies, or sensors (i.e. in-
sert/delete queries).

Continuous query transactions. These are the contin-
uous queries over sensor stream data. Such queries involve
reading measurements of sensors. They include filters, slid-
ing window aggregates, joins, etc. Mostly, they succeed one-
time queries which are used to localize the sensors to query.
For instance, consider a continuous query asking the average
temperature of the section A every 5 seconds. Firstly,
the gateway of the section A, and then the proxy of temper-
ature sensors are localized by a one-time query. Next, data
stream of the chosen sensors is initiated and finally contin-
uous query can be evaluated, every 5 seconds, on the sensor
stream data.

As in traditional database systems, we argue that exe-
cuting queries or update operations in transactional mode
could lead us to keep a consistent state of the sensor infor-
mation system. However, due to the unique characteristics
of sensor systems, additional challenges are likely to occur.
These points are discussed in the next section.

proxies

NN
PR il

e gateway. h

0~ |

Uy, e gl
control site - N
I E]

|

gateway

.

| SectionA

N
- RFID Reader
Ll

6 d Temperature Sensor

[0 Product with RFID tag

SectionB

proxies
)

E "

gateway

.
6 Section C

™

Figure 1: Architecture and application scenario

2.4 ACID properties for sensor transactions

This section discusses relevance of conventional ACID prop-
erties in the sensor database context. This is a first step of a
work including more detailed analysis of the problems that
could be encountered while dealing with sensor transactions.

2.4.1 Atomicity

Challenges: Consider the case where a transaction wants
to update the sampling rate of all temperature sensors in the
factory. The atomicity property implies that, either all sen-
sors are updated, or none. However, as sensors are mostly
prone to the failures, it is strongly probable that several
sensors among hundreds can not successfully complete the
operation. What to do in this case? If we abort the en-
tire transaction, the successful changes made on the sensors
should be undone and this can cause a performance degra-
dation of the system. On the other hand, if we tolerate
the violation of the atomicity property, and let some sen-
sors continue with their old sampling rate, this can cause
some incoherence of the measures made by the sensors with
different sampling rates.

Possible solutions: As we can notice in the example,
a flexible transaction management is necessary for sensor
transactions. Such flexibility is proposed by nested transac-
tion models [8], in which a transaction can split into several
sub-transactions that can execute relatively independent one
from the other. Therefore, commit decisions on a set of sub-
transactions can be made independently by the coordinators
at different levels (e.g. gateways, proxies). If we take back
the updating example, we can imagine a sub-coordinator at
each gateway which is responsible for partial commit deci-
sions. With the assumption that sensors at different sec-
tions can sample with different rates, the global transaction
initiated on the control site can commit even if one of the
sub-coordinators does not commit. Relaxing atomicity can
lead us to find a trade-off between system performance and
data incoherence.

In conclusion, we argue that due to the large number
of sensors and unreliable nature of sensor systems, a com-
mit protocol adapted to sensors context (e.g. few message
exchanges), on top of a flexible transaction model should be
chosen for sensor transactions.

2.4.2 Consistency

29

proxies (Pid. type,GId)

1. Temperature, 1
2.RFD.T

gateways (Gid, location) N

sensors (Sid rate, unit, Pld)
sensors (Sid,rate, unit, Pld)

1. null, nul, 2

measures (Sidmsrmnt, tmstmp)

1. Section A adapter” | 1.1234567.10.23.24
2. Section B adapten 1| 101234567, 10 2336
23t . wi | e 0
/ ~ _— 11234567, 102417

1.1234567, 10:23:18

_— gateway Temp. proxy RFID proxy
- manager

measures (Sidmsrmnt, tmstmp) ey

1.80,10:23:34 [
1,30, 10:23:36
1.31,10:23:38
1,32,10:24:40
1,31,10:23:42

control
site

Section A

Section B ..

| | m e
¢ 8

Figure 2: Schema examples

Challenges: In sensors context, in addition to the log-
ical consistency, temporal consistency may also need to be
maintained. Temporal consistency ensures that sensor data
indeed reflects the current state of the environment (absolute
temporal consistency). In addition, a relative temporal con-
sistency may be required. It concerns maintaining a tempo-
ral consistency "between” the measures made at quasi-same
instant by different sensors, in order to guarantee the accu-
racy of query results concerning several sensors.

Possible solutions: Real-time database systems (RT-
DBS) have made a significant research on temporal con-
sistency [23]. In these systems, transactions have tempo-
ral constraints to terminate. Hence, blocking protocols are
avoided. Priority-based protocols are chosen instead to let
most critical transactions terminate earlier. Although most
sensor database systems are not considered as much ”real-
time” as RTDBSSs, time-cognizant protocols should be used
in order to reflect the temporal dimension of sensor data [12].

In conclusion, temporal consistency, just as logical con-
sistency, may be required for sensor databases. Results is-
sued from RTDBS community will certainly be helpful in
answering temporal requirements of sensor transactions.

2.4.3 Isolation

Challenges: Isolation guarantees the correctness of data
even in presence of concurrent access to the resources. In or-
der to illustrate the necessity of a concurrency control mech-
anism, consider, in the factory example, a continuous query
which asks for the average temperature in Celsius unit for
each section. The result of this query carries a significant
importance, because if the average passes a certain thresh-
old, an alarm will be triggered. During the execution of
the query, consider an update transaction which modifies
the measuring unit of sensors in Section A to Fahrenheit.
If there’s no concurrency control mechanism in the system,
the modification will be done and therefore the calculated
average temperature would be wrong, which may eventually
cause a false alarm.

Possible solutions: Mainly, there are two families of
concurrency control protocols: pessimistic and optimistic
protocols [22]. Pessimistic protocols detect conflicts before
executing the transactions and conflicts are resolved by lock-
ing the resources. Clearly, this is not an optimal solution
for sensor transactions as continuous queries can last during
long and eventually undetermined time. On the other hand,

in optimistic protocols transactions are allowed to progress
until a validation phase where conflicts are detected. If a
conflict is detected, conflicting transactions are restarted
according to a validation scheme. However, optimistic pro-
tocols can lead useless redundant restarts of update trans-
actions when they are in conflict with continuous queries.
Hence, a finer view of continuous queries is needed in order
to increase the concurrency with the update transactions
(see section 3.1).

In conclusion, modifications over sensor properties can
lead inconsistent data reads for the concurrent transactions
(e.g. continuous queries). A concurrency control mechanism
taking into account sensor specificities (continuous queries,
real-time nature, limited resources, etc.) should be used (see
section 3.2).

2.4.4 Durability
Challenges: Durability property is maintained by com-

mit protocols including recovery and termination procedures.

As failures are likely to be occurred in sensor systems, these
protocols gain more importance. Consider an update trans-
action modifying the sampling rates of sensors of a particular
section. When the transaction arrives to the proxy, it sends
the update command to its sensors. The update message
addressed to the sensor or the sensor’s action acknowledge-
ment (or rejection) message to the proxy can be lost result-
ing from the unreliable wireless connectivity. In addition,
some sensors may fail or be blocked during a certain time
after receiving the transaction.

Possible solutions: Due to the fast response require-
ments of sensor systems, the termination protocol imple-
mented on the proxy should avoid long-time blocking. Be-
sides, for recovery purposes, sensors may need to provide a
logging facility which is used to undo (or redo) the trans-
action. However, this additional log information can cause
overhead on the storage of the sensor as its storage capac-
ity is limited. In addition, message exchanges required by
the protocol introduce communication overhead, therefore a
waste of energy, precious resource for sensors. On the other
hand, in some cases the proxy of a sensor may execute the
transaction on behalf of the sensor. This happens when the
sensor would not necessarily be aware of the modifications
made on some of its meta-information such as its name or
location attribute. In these cases the recovery protocol can
be implemented on the proxies.

In conclusion, the balance between little storage re-
quirement, few message exchanges, and high concurrency
should be found for recovery purposes of sensor transactions.
”Lightweight” logging and rollback mechanisms should be
chosen for sensor transactions.

3. CONCURRENCY CONTROL

This section focuses on the isolation property. It firstly
gives a temporally nested model for continuous queries, and
then introduces a concurrency control mechanism based on
this model to support coexistence of continuous queries and
update transactions.

3.1 Temporally Nested Model for Continuous
Queries
Nested transactions provide the flexibility required for
sensor transactions in particular for update and one-time
query transactions. Nevertheless for continuous queries, an
even finer model will be useful to support the coexistence of

30

update transactions and continuous queries on the same site.
As mentioned earlier, continuous queries have two parts:
one-time and continuous. One-time part localizes the sen-
sors whose data will be used to evaluate the continuous part
of the query. Continuous part concerns timely (periodic or
aperiodic) execution of a set of operations on sensor stream
data. We model each execution of these operators as a single
tiny transaction. These transactions represent temporally
nested (TN) sub-transactions of the continuous query:

DEFINITION 1. Let Q be a continuous query transaction
to be executed at one particular site (e.g. control site, gate-
way, proxy), then the temporally nested sub-transaction Q%
represents the it" execution of the continuous part of Q at
instant t, where t belongs to a discrete time domain T.

These tiny transactions are executed on sensor stream
data, mostly on the measurement and timestamp fields. How-
ever, they inherit the read-set of the one-time part of the
query. Modifications by update transactions on the attributes
contained in this read-set causes conflicts. To illustrate, con-
sider a continuous query transaction asking ”the measures of
all temperature sensors measuring in Celsius”. Its read-
set contains the type and wnit attribute. If another trans-
action modifies the sampling unit of sensors of ”Section A”
from Celsius to Fahrenheit (i.e. its write-set contains the
unit attribute), there will be a read/write conflict. Sensors
in ”Section A” are no more in the scope of the continuous
query. Or, if a new temperature sensor appears in the sys-
tem, it should also be included in the set of sensors being
queried. Therefore, one-time part of the query should be
re-executed in order to rediscover the sensors concerned by
the query, and then the continuous part should be retaken.

Our objective by defining temporally nested model is to
be able to execute conflicting update transactions ”during”
continuous queries, with as less as possible interruption to
the continuity of queries. For instance, let ¢; and t2 be time
instants of two consecutive execution of the continuous part
of a query @, Atyr and Ator be, respectively, durations of
an update transaction and the one-time part of @, then if
Atyr + Ator < ta —t1, we can execute the update transac-
tion in a transparent way to the continuous query user (see
Figure 3). However, we don’t always have the necessary in-
formation to realize this (e.g. aperiodic queries). For these
cases, next section proposes a priority-based optimistic con-
currency control mechanism.

3.2 Concurrency Control Mechanism

SDBSs and RTDBSs [23] have similarities in that, both
have to deal with temporal issues. As SDBSs are mostly
conceived for monitoring sensor data in ”quasi-real time”,
timely deliverance of sensor data gains importance. We be-
lieve that concurrency control protocols proposed for RT-
DBSs can certainly have reusable aspects for transactional
sensor data management. In RTDBSs, optimistic protocols
are mostly preferred against blocking protocols in order to
deal with temporal constraints [16, 25, 15]. Similarly, we
adopt the optimistic approach [19] for concurrency control.
The transactions have three phases: work, validate, and
commit. During the work phase, transactions read data,
perform operations, and pre-write the result to a local vari-
able. In the validate phase, conflicts are detected. If there
is no conflict, in the commit phase the results are made per-
manent. Otherwise, the conflict resolution policy is applied.
For instance, the work phase for a TN transaction consists

Qor Oy Qny Qny Qny Gy

Q« }—< }—< }—< }—<
—
ur

time
(a) Q conflicted with a UT

Figure 3: @: A continuous query transaction, Qor:
transactions of Q, UT: A conflicting update transaction.

of dequeueing the tuple(s) from the input stream, perform-
ing operations, and writing the result to a local variable.
In the validate phase, conflicts with update transactions are
checked. Finally, commit phase consists of enqeueuing the
result to the output stream.

3.2.1 Conflict Detection

Optimistic protocols differ in two ways according to their
conflict detection scheme: backward and forward validation
scheme [13]. In backward validation, conflicts are checked
against already committed transactions. At the validation
phase, a read transaction checks if it has read data mod-
ified by a write transaction before the commit of this lat-
ter. If this is the case, the read transaction is aborted
and restarted. In forward validation, conflicts are checked
against currently executing transactions. During the vali-
dation of a write transaction, write set of the transaction
is compared with the read set of currently active trans-
actions. A non-empty intersection of these sets implies a
conflict which is resolved by aborting and restarting one
or more transactions. Forward validation scheme is chosen
by most RTDBSs due to its early conflict detection prop-
erty and flexibility of choosing the transaction to abort in
case of conflicts [15, 14, 16]. This flexibility also provides
the possibility of applying priority-based conflict resolution
schemes [14]. For the same reasons our concurrency control
mechanism uses a forward validation scheme. We deal with
read/write conflicts. Write/write conflicts don’t occur as we
assure that there is only one transaction in wvalidate phase;
and validate and commit phases occur in one critical section.

According to the forward validation scheme, the conflicts
will be detected during the validate phase of update trans-
actions (UT). An UT firstly checks if there is an already
validating transaction®. If it is the case, UT is enqueued to
a waiting queue where it will wait until the end of the val-
idating transaction. When its turn comes to validate, UT
checks if it is conflicted (read/write) by another earlier up-
dating transaction while its waiting period. If it is the case,
conflict resolution decision (discussed in the next section)
will be applied. Otherwise, it checks, if among the currently
active transactions (e.g. TN transactions in work phase),
there are some that conflict with it. Its write set is compared
with the read sets of active transactions. If they intersect,
the conflicting transactions are marked as conflicted by the
UT. If there is no conflict, UT can continue with its commit
phase. At the end of the commit phase, UT’s commit result

!There is only one transaction in validate and commit phase

31

One-time part of Q, Qrn:

Qor Qm Qny Qny Qny Gy
& = = = — —
F——
Ut Qor
time

(b) UT is executed between two consecutive Qrn

Temporally Nested sub-

is notified to the waiting queue®. The completed transac-
tion is then removed from the active transactions list. Note
that, entering to the commit phase does not necessarily sig-
nify that transaction will commit successfully. For instance,
due to sensor related problems (communication latency, un-
availability, etc.) transaction can decide to abort after a
certain number of retries of failed operations on the sensor.

Similarly, query transactions (OT or TN transactions), in
their validate phase, check if there is an already validating
transaction. If there is, the transaction waits. When its
validation turn comes, it checks if it is marked as conflicted
by an updating transaction. If it is, the conflict resolution
decision is applied. Otherwise it passes to the commit phase.
3.2.2 Conflict resolution

As mentioned earlier, our main objective for defining TN
transactions is to be able to ”insert” the update transac-
tion between two consecutive executions of TN transactions
(see Figure 3). However, if this is not possible, either the
update transaction must wait until the termination of the
continuous query, or the update transaction will delay the
continuous query. In order to deal with these cases, we will
adopt a priority-based approach. Priorities can be assigned
to transactions by users or by system. For instance, higher
priorities could be assigned to update transactions whose
operations should imperatively be executed. On the other
hand, users can assign higher priorities to continuous queries
if they are considered as ”not interruptible”.

Our conflict resolution mechanism is a variant of OPT-
SACRIFICE and OPT-WAIT [14]. Validating update trans-
action UT), checks if there is at least one conflicted high pri-
ority (CHP) transaction. If it is the case, then we adopt
a policy similar to OPT-SACRIFICE. UT is immediately
aborted. However, it is not immediately restarted (as it
would be with OPT-SACRIFICE). This is because eventual
conflicting continuous queries would cause useless redundant
restarts of UT. Thus, instead, its restart is scheduled for
after the completion of the continuous query transaction
having the longest execution time with the highest prior-
ity. Usually, lifetime of continuous queries are defined by
the queries. This can inform the UT about how long it
should wait. If such information is not provided, then it
is restarted once there is some completed CHP continuous
query. If there are no conflicting continuous queries, then it
is restarted immediately.

Although this can be seen as a conventional locking based
approach, this is made in the worst case, thus conforms to

2Note that, a transaction, until it terminates its commit
phase, is considered as ”validating”.

the philosophy of optimistic mechanisms. However, note
that this later scheduling doesn’t guarantee that the trans-
action will commit, as at the moment of restart there can
be more conflicting transactions in the system with higher
priority. Besides, its parent transaction can decide to abort
(e.g. due to expiration of a timer), therefore cancel the
later scheduling. Another solution for the starvation prob-
lem could be to increment the priority of the transaction at
each restart in order to ensure its execution.

In the case that validating transaction is decided to be
committed (there are not any CHP transaction), the mea-
sure taken is based on a waiting approach similar to the
OPT-WAIT policy. However, according to our policy, in-
stead of the validating transaction, the conflicting transac-
tions will wait until the validating transaction terminates.
If it is successfully committed, then waiting transactions are
notified, aborted and restarted. If it can not commit success-
fully, then the conflicting transactions in the waiting queue
is notified (they are not anymore conflicted), therefore the
next transaction can pass to its validate phase.

4. CONCLUSION AND PERSPECTIVES

This paper discussed transactional issues of sensor data
management. These issues not yet explored gain impor-
tance with the emergence of large scale heterogeneous sensor
systems. We believe that revision of classical transactional
issues, already done for mobile transactions, will also need
to be done for sensor transactions. This paper particularly
focused on the isolation property. Concurrent execution of
update transactions and read-only continuous queries may
cause conflicts. Continuous queries should be handled in a
finer way for a more efficient conflict resolution. We pro-
posed a temporally nested transaction model to represent
continuous query transactions, and introduced a priority-
based optimistic concurrency control mechanism inspired by
solutions from RTDBS domain.

We have developed a sensor querying prototype based on
a service-oriented approach for the PISE project [1]. The
aim of this project is to monitor electric power materials
in real-time. Indeed, in this project some need of transac-
tional properties appeared. The implementation of trans-
action management services, as well as the analysis of our
proposal under different scenarios is our future work.

5. REFERENCES

(1] PISE Project, http://www.telecom.gouv.fr/rnrt/rnrt/

projets/PISE.htm.

[2] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack,

C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and
S. Zdonik. Aurora: a new model and architecture for
data stream management. VLDB J., 2003.

[3] D. Abadi, W. Lindner, S. Madden, and J. Schuler. An
integration framework for sensor networks and data
stream management systems. In VLDB, 2004.

I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and

E. Cayirci. Wireless sensor networks: a survey.

Computer Networks, 38(4), 2002.

[5] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito,
R. Motwani, I. Nishizawa, U. Srivastava, D. Thomas,
R. Varma, and J. Widom. STREAM: The stanford
stream data manager. IEEE Data Eng. Bull.,
26(1):19-26, 2003.

[6] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor
database systems. Lecture Notes in Computer Science,

4

32

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

[22]

23]

24]

[25]

2001.

S. Chandrasekaran, O. Cooper, A. Deshpande,

M. Franklin, J. Hellerstein, W. Hong,

S. Krishnamurthy, S. Madden, V. Raman, F. Reiss,
and M. Shah. TelegraphCQ: Continuous dataflow
processing for an uncertain world. In CIDR, 2003.
A. K. Elmagarmid, editor. Database Transaction
Models for Advanced Applications. Morgan Kaufmann,
1992.

P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and

S. Seshan. Irisnet: An architecture for a world-wide
sensorweb. IEEFE Pervasive Computing, 2003.

L. Golab and M. T. Ozsu. Issues in data stream
management. SIGMOD Rec., 32(2):5-14, 2003.

L. Gurgen, C. Labbé, V. Olive, and C. Roncancio. A
scalable architecture for heterogeneous sensor
management. In MDDS’05, DEXA Workshops, pages
1108-1112, Denmark, 2005.

L. Gurgen, C. Labbé, V. Olive, and C. Roncancio.
SStreaM: A model for representing sensor data and
sensor queries. In International Conference on
Intelligent Systems And Computing: Theory And
Applications (ISYC), Cyprus, 2006.

T. Harder. Observations on optimistic concurrency
control schemes. Inf. Syst., 9(2):111-120, 1984.

J. R. Haritsa, M. J. Carey, and M. Livny. Dynamic
real-time optimistic concurrency control. In IEEE
Real-Time Systems Symposium, 1990.

J. R. Haritsa, M. J. Carey, and M. Livny. On being
optimistic about real-time constraints. In PODS 90,
pages 331-343, NY, USA, 1990.

J. Huang, J. A. Stankovic, K. Ramamritham, and
D. Towsley. Experimental evaluation of real-time
optimistic concurrency control schemes. In VLDB’91.
C. Intanagonwiwat, R. Govindan, D. Estrin,

J. Heidemann, and F. Silva. Directed diffusion for
wireless sensor networking. IEEE/ACM Transactions
on Networking, 11(1):2-16, 2003.

N. Koudas and D. Srivastava. Data stream query
processing. In ICDE, page 1145, 2005.

H. T. Kung and J. T. Robinson. On optimistic
methods for concurrency control. In VLDB, 1979.

S. Madden and M. J. Franklin. Fjording the stream:
An architecture for queries over streaming sensor
data. In ICDE, pages 555-566, 2002.

S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. Tinydb: an acquisitional query processing
system for sensor networks. ACM Trans. Database
Syst., 30(1):122-173, 2005.

D. A. Menascé and T. Nakanishi. Optimistic versus
pessimistic concurrency control mechanisms in
database management systems. Inf. Syst., 7(1), 1982.
K. Ramamritham. Real-time databases. Distributed
and Parallel Databases, 1(2):199-226, 1993.

P. Serrano-Alvarado, C. Roncancio, and M. Adiba. A
survey of mobile transactions. Distrib. Parallel
Databases, 16(2):193-230, 2004.

X. C. Song and J. W. S. Liu. Maintaining temporal
consistency: Pessimistic vs. optimistic concurrency
control. IEEE Transactions on Knowledge and Data
Engineering, 7(5):786-796, 1995.

