
Oracle® Database Express Edition
2 Day Developer Guide

10g Release 2 (10.2)

B25108-01

February 2006

Oracle Database Express Edition 2 Day Developer Guide, 10g Release 2 (10.2)

B25108-01

Copyright © 2005, 2006, Oracle. All rights reserved.

Contributors: Eric Belden, Bjorn Engsig, Nancy Greenberg, Christopher Jones, Simon Law, Mark Townsend

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... xiii

Documentation Topics.. xiii
Audience... xiv
Documentation Accessibility ... xiv
Related Documentation.. xiv
Conventions ... xv

1 Overview of Development

Overview of Developing Applications With Oracle Database XE ... 1-1
Oracle Database Express Edition ... 1-2
SQL... 1-2
PL/SQL.. 1-3
Database Objects .. 1-3
Basic Application Development Concepts ... 1-3
Development Tools .. 1-4

Logging in to the Database Home Page .. 1-4
Sample HR Account... 1-5

Other Development Environments... 1-6
Oracle Call Interface and Oracle C++ Call Interface... 1-6
Open Database Connectivity.. 1-6
Oracle Provider for OLE DB... 1-7
Oracle Data Provider for .NET... 1-7
Oracle Database Extensions for .NET ... 1-7
Oracle Developer Tools for Visual Studio .NET.. 1-8
Oracle Application Express .. 1-8
Oracle Java Database Connectivity (JDBC) .. 1-8
PHP... 1-9

2 Managing Database Objects

Overview of Managing Objects .. 2-1
Database Objects for Your Application... 2-2
Managing Database Objects With Object Browser.. 2-2
Viewing Data in Tables With Object Browser ... 2-5
Viewing Information With Object Reports... 2-6

Using Datatypes.. 2-7

iv

Storing Character Data .. 2-7
What Are the Character Datatypes?... 2-8
Choosing Between the Character Datatypes... 2-8

Storing Numeric Data.. 2-9
What Are the Numeric Datatypes? .. 2-9
Using the NUMBER Datatype .. 2-9
Using Floating-Point Number Formats .. 2-10

Storing Date and Time Data .. 2-10
Using DATE and TIMESTAMP Datatypes .. 2-11

Storing Large Objects.. 2-12
Managing Tables ... 2-12

Ensuring Data Integrity in Tables With Constraints.. 2-13
Column Default Value .. 2-14
NOT NULL Constraint.. 2-14
Check Constraint.. 2-14
Unique Constraint.. 2-15
Primary Key Constraint .. 2-15
Foreign Key Constraint ... 2-16

Creating a Table... 2-16
Adding a Column To a Table .. 2-18
Modifying a Column In a Table .. 2-18
Dropping a Column From a Table.. 2-19
Adding a Check Constraint ... 2-19
Adding a Unique Constraint ... 2-20
Adding a Primary Key Constraint.. 2-21
Adding a Foreign Key Constraint... 2-22
Viewing Existing Constraints.. 2-23
Disabling and Enabling a Constraint ... 2-23
Dropping a Constraint.. 2-24
Adding Data to a Table .. 2-24
Modifying Data in a Table ... 2-25
Removing a Row in a Table ... 2-26
Dropping a Table... 2-26

Managing Indexes ... 2-26
Index Types.. 2-27
Indexes for Use with Constraints.. 2-28
Guidelines for Creating Indexes ... 2-28

Index the Correct Tables and Columns .. 2-28
Limit the Number of Indexes for Each Table... 2-29
Drop Indexes That Are No Longer Required ... 2-29

Creating an Index.. 2-29
Displaying an Index for a Table .. 2-30
Dropping an Index.. 2-31

Managing Views .. 2-31
Creating a View ... 2-32
Displaying a View... 2-33
Dropping a View... 2-33

v

Managing Sequences .. 2-34
Creating a Sequence.. 2-34
Displaying a Sequence.. 2-35
Dropping a Sequence.. 2-35

Managing Synonyms .. 2-35
Creating a Synonym ... 2-36
Displaying a Synonym ... 2-36
Dropping a Synonym ... 2-36

3 Using SQL

Overview of SQL .. 3-1
Running SQL Statements ... 3-2

Running SQL Statements on the SQL Commands Page .. 3-2
Running SQL Statements in the Script Editor Page .. 3-3

Retrieving Data With Queries ... 3-5
Displaying Data Using the SELECT Statement ... 3-5
Using a Column Alias to Change Headings When Selecting Data .. 3-6
Restricting Data Using the WHERE Clause ... 3-6

Using Character Literals in SQL Statements... 3-7
Using Regular Expressions When Selecting Data ... 3-8
Sorting Data Using the ORDER BY Clause .. 3-9
Displaying Data From Multiple Tables.. 3-10
Using Bind Variables With the SQL Commands Page .. 3-12

Using Pseudocolumns, Sequences, and SQL Functions.. 3-12
Using ROWNUM, SYSDATE, and USER Pseudocolumns With SQL 3-13
Using Arithmetic Operators .. 3-13
Using Numeric Functions .. 3-14
Using Character Functions .. 3-14
Using Date Functions ... 3-15
Using Conversion Functions ... 3-16
Using Aggregate Functions ... 3-17
Using NULL Value Functions ... 3-18
Using Conditional Functions... 3-19

Manipulating Data With SQL Statements ... 3-20
Adding Data With the INSERT Statement .. 3-20
Updating Data With the UPDATE Statement... 3-20
Deleting Data With the DELETE Statement.. 3-21

Using Transaction Control Statements.. 3-21
Committing Transaction Changes .. 3-22
Rolling Back a Transaction... 3-22

Using Data Definition Language Statements to Manage Database Objects 3-22
Creating a Table With SQL .. 3-23
Adding, Altering, and Dropping a Table Column With SQL .. 3-24
Creating and Altering a Constraint With SQL.. 3-24
Renaming a Table With SQL ... 3-25
Dropping a Table With SQL .. 3-25
Creating, Altering, and Dropping an Index With SQL ... 3-25

vi

Creating and Dropping a View With SQL .. 3-26
Creating and Dropping a Sequence With SQL ... 3-26
Creating and Dropping a Synonym With SQL... 3-27

4 Using PL/SQL

Overview of PL/SQL.. 4-1
Entering and Running PL/SQL Code ... 4-2

Running PL/SQL Code in the SQL Commands Page .. 4-2
Using the Main Features of PL/SQL ... 4-3

Using the PL/SQL Block Structure ... 4-4
Inputting and Outputting Data with PL/SQL... 4-5
Using Comments.. 4-6
Declaring Variables and Constants ... 4-6
Using Identifiers in PL/SQL .. 4-7
Assigning Values to a Variable With the Assignment Operator .. 4-8
Using Literals.. 4-8
Declaring Variables With the DEFAULT Keyword or NOT NULL Constraint 4-11
Assigning Values to a Variable With the PL/SQL SELECT INTO Statement 4-11
Using %TYPE and %ROWTYPE Attributes to Declare Identical Datatypes.......................... 4-12

Using the %TYPE Attribute to Declare Variables ... 4-12
Using the %ROWTYPE Attribute to Declare Variables ... 4-12

Using PL/SQL Control Structures.. 4-13
Conditional Control With IF-THEN.. 4-13
Conditional Control With the CASE Statement .. 4-14
Iterative Control With LOOPs ... 4-15
Sequential Control With GOTO... 4-17

Using Local PL/SQL Procedures and Functions in PL/SQL Blocks....................................... 4-17
Using Cursors and Cursor Variables To Retrieve Data... 4-19

Explicit Cursors .. 4-20
Cursor Variables (REF CURSORs) .. 4-22
Cursor Attributes ... 4-23

Working With PL/SQL Data Structures.. 4-24
Using Record Types... 4-24
Using Collections ... 4-25

Using Bind Variables With PL/SQL .. 4-27
Using Dynamic SQL in PL/SQL... 4-27

Handling PL/SQL Errors .. 4-28
Summary of Predefined PL/SQL Exceptions ... 4-29
Using the Exception Handler .. 4-30
Declaring PL/SQL Exceptions .. 4-30
Scope Rules for PL/SQL Exceptions .. 4-31
Continuing After an Exception Is Raised .. 4-31

5 Using Procedures, Functions, and Packages

Overview of Procedures, Functions, and Packages ... 5-1
Stored Procedures and Functions .. 5-2
Packages .. 5-2

vii

Managing Stored Procedures and Functions .. 5-3
Creating a Procedure or Function With the SQL Commands Page ... 5-4
Creating a Procedure or Function With the Object Browser Page.. 5-5
Viewing Procedures or Functions With the Object Browser Page.. 5-6
Creating Stored Procedures With SQL CREATE PROCEDURE... 5-7
Creating a Stored Procedure That Uses Parameters ... 5-7
Creating a Stored Procedure With the AUTHID Clause.. 5-9
Creating Stored Functions With the SQL CREATE FUNCTION Statement 5-10
Calling Stored Procedures or Functions .. 5-11
Editing Procedures or Functions .. 5-12
Dropping a Procedure or Function... 5-13

Managing Packages... 5-13
Writing Packages With PL/SQL Code... 5-14

Guidelines for Writing Packages ... 5-14
Creating Packages in the SQL Commands Page .. 5-14
Creating Packages With the Object Browser Page ... 5-15
Viewing Packages With the Object Browser Page ... 5-16
Creating Packages With the SQL CREATE PACKAGE Statement ... 5-16
Editing Packages ... 5-18
Dropping Packages ... 5-19
Calling Procedures and Functions in Packages .. 5-20
Accessing Variables in Packages... 5-20
Accessing Types in Packages... 5-21

Oracle Provided Packages.. 5-23
List of Oracle Database XE Packages ... 5-23
Overview of Some Useful Packages ... 5-27

DBMS_OUTPUT Package... 5-27
DBMS_RANDOM Package .. 5-27
HTP Package... 5-28
UTL_FILE Package .. 5-30

6 Using Triggers

Overview of Triggers ... 6-1
Types of Triggers ... 6-2
Naming Triggers ... 6-2
When Is a Trigger Fired? .. 6-2
Controlling When a Trigger Is Fired .. 6-3

Firing Triggers With the BEORE and AFTER Options.. 6-3
Firing Triggers With the FOR EACH ROW Option ... 6-3
Firing Triggers Based on Conditions (WHEN Clause) ... 6-4
Firing Triggers With the INSTEAD OF Option.. 6-4

Accessing Column Values in Row Triggers .. 6-4
Detecting the DML Operation That Fired a Trigger ... 6-5
Enabled and Disabled Trigger Modes... 6-5
Error Conditions and Exceptions in the Trigger Body .. 6-5

Designing Triggers ... 6-5
Guidelines For Triggers... 6-6

viii

Restrictions For Creating Triggers .. 6-6
Privileges Needed to Work with Triggers ... 6-7

Managing Triggers in the Database .. 6-7
Creating a Trigger With the SQL Commands Page .. 6-8
Creating a Trigger With the Object Browser Page .. 6-9
Viewing a Trigger With Object Browser.. 6-10
Creating a Trigger With the AFTER and FOR EACH ROW Option 6-11
Creating a Trigger With the BEFORE Option and WHEN Clause .. 6-12
Creating a Trigger With the INSTEAD OF Option .. 6-12
Creating a Trigger With an Exception Handler.. 6-13
Creating a Trigger That Fires Once For Each Update.. 6-14
Creating LOGON and LOGOFF Triggers ... 6-15
Modifying Triggers .. 6-16
Dropping Triggers .. 6-16
Disabling Triggers .. 6-16
Enabling Triggers ... 6-17
Compiling Triggers .. 6-17

Trigger Errors ... 6-17
Dependencies for Triggers ... 6-18
Recompiling Triggers ... 6-18

7 Working in a Global Environment

Overview of Globalization Support ... 7-1
Globalization Support Features ... 7-2
Running the Examples .. 7-3

Setting Up the Globalization Support Environment .. 7-3
Choosing a Locale with the NLS_LANG Environment Variable ... 7-4
Setting NLS Parameters... 7-4
Language and Territory Parameters ... 7-5

NLS_LANGUAGE Parameter... 7-6
NLS_TERRITORY Parameter.. 7-7

Date and Time Parameters.. 7-8
Date Formats.. 7-8
Time Formats.. 7-10

Calendar Definitions... 7-11
Calendar Formats... 7-11
NLS_CALENDAR Parameter .. 7-12

Numeric and List Parameters.. 7-12
Numeric Formats ... 7-12
NLS_NUMERIC_CHARACTERS Parameter .. 7-13

Monetary Parameters ... 7-14
Currency Formats .. 7-14
NLS_CURRENCY Parameter... 7-14
NLS_ISO_CURRENCY Parameter .. 7-15
NLS_DUAL_CURRENCY Parameter ... 7-15

Linguistic Sorting and Searching.. 7-15
NLS_SORT Parameter ... 7-16

ix

NLS_COMP Parameter ... 7-17
Case-Insensitive and Accent-Insensitive Searching.. 7-18

Length Semantics .. 7-18
NLS_LENGTH_SEMANTICS Parameter... 7-19

SQL and PL/SQL Programming with Unicode.. 7-19
Overview of Unicode.. 7-20
SQL NCHAR Datatypes... 7-20

NCHAR Datatype .. 7-20
NVARCHAR2 Datatype ... 7-21

Unicode String Literals... 7-21
NCHAR Literal Replacement.. 7-22

Locale-Dependent SQL Functions with Optional NLS Parameters.. 7-22
Default Values for NLS Parameters in SQL Functions.. 7-23
Specifying NLS Parameters in SQL Functions.. 7-23
Unacceptable NLS Parameters in SQL Functions .. 7-25

A Using SQL Command Line

Overview of SQL Command Line.. A-1
Using SQL Command Line ... A-1

Starting and Exiting SQL Command Line... A-2
Displaying Help With SQL Command Line ... A-2
Entering and Executing SQL Statements and Commands.. A-3
SQL Command Line DESCRIBE Command ... A-3
SQL Command Line SET Commands.. A-4
Running Scripts From SQL Command Line ... A-4
Spooling From SQL Command Line .. A-4
Using Variables With SQL Command Line .. A-5

Prompting for a Variable Value in a Query ... A-5
Reusing a Variable Value in a Query .. A-5
Defining a Variable Value for a Query ... A-6

B Reserved Words

SQL Reserved Words .. B-1
PL/SQL Reserved Words .. B-2

C Using a PL/SQL Procedure With PHP

PHP and Oracle Database XE.. C-1
Creating a PHP Program That Calls a PL/SQL Stored Procedure .. C-1

D Using a PL/SQL Procedure With JDBC

JDBC and Oracle Database XE.. D-1
Creating a Java Program That Calls a PL/SQL Procedure ... D-1

Index

x

List of Examples

3–1 Using the SQL SELECT Statement to Query All Data From a Table 3-5
3–2 Using the SQL SELECT Statement to Query Data From Specific Columns....................... 3-6
3–3 Using the SQL SELECT Statement to Query Data in a View ... 3-6
3–4 Using a Column Alias for a Descriptive Heading in a SQL Query 3-6
3–5 Selecting Data With the SQL WHERE Clause to Restrict Data .. 3-7
3–6 Using Regular Expressions With the SQL SELECT Statement .. 3-8
3–7 Selecting Data With the SQL ORDER BY Clause to Sort the Data 3-9
3–8 Selecting Data From Two Tables With the SQL NATURAL JOIN Syntax...................... 3-10
3–9 Selecting Data From Multiple Tables WIth the SQL JOIN USING Syntax...................... 3-10
3–10 Selecting Data From Multiple Tables With the SQL JOIN ON Syntax 3-11
3–11 Self Joining a Table With the SQL JOIN ON Syntax... 3-11
3–12 Using SQL Outer Joins .. 3-11
3–13 Using the SQL SYSDATE Pseudocolumn .. 3-13
3–14 Using the SQL USER Pseudocolumn.. 3-13
3–15 Using the SQL ROWNUM Pseudocolumn .. 3-13
3–16 Using SQL Arithmetic Operators .. 3-14
3–17 Using SQL Numeric Functions .. 3-14
3–18 Using SQL Character Functions... 3-14
3–19 Using SQL Date Functions.. 3-15
3–20 Using the SQL Character Conversion Function .. 3-16
3–21 Using the SQL Number Conversion Function... 3-16
3–22 Using SQL Date Conversion Functions .. 3-16
3–23 Using SQL Aggregate Functions ... 3-17
3–24 Using the SQL NVL Function .. 3-19
3–25 Using the SQL NVL2 Function .. 3-19
3–26 Using the SQL CASE Function... 3-19
3–27 Using the SQL DECODE Function.. 3-19
3–28 Using the SQL INSERT Statement to Add Rows to a Table .. 3-20
3–29 Using the SQL UPDATE Statement to Update Data in a Table .. 3-21
3–30 Using the SQL DELETE Statement to Remove Rows From a Table................................. 3-21
3–31 Using the SQL COMMIT Statement to Save Changes.. 3-22
3–32 Using the SQL ROLLBACK Statement to Undo Changes ... 3-22
3–33 Creating a Simple Table Using SQL.. 3-23
3–34 Creating a Table With NOT NULL Constraints Using SQL.. 3-23
3–35 Adding, Altering, and Dropping a Table Column Using SQL ... 3-24
3–36 Creating, Altering, and Dropping Constraints Using SQL.. 3-24
3–37 Renaming a Table Using SQL .. 3-25
3–38 Dropping a Table Using SQL ... 3-25
3–39 Creating, Modifying, and Dropping an Index Using SQL .. 3-25
3–40 Creating a View Using SQL.. 3-26
3–41 Dropping a View Using SQL.. 3-26
3–42 Creating a Sequence Using SQL .. 3-26
3–43 Dropping a Sequence Using SQL .. 3-27
3–44 Creating a Synonym Using SQL .. 3-27
3–45 Dropping a Synonym Using SQL.. 3-27
4–1 Using a Simple PL/SQL Block.. 4-4
4–2 Using DBMS_OUTPUT.PUT_LINE to Display PL/SQL Output .. 4-5
4–3 Using Comments in PL/SQL .. 4-6
4–4 Declaring Variables in PL/SQL .. 4-7
4–5 Using Identifiers for Variables in PL/SQL.. 4-7
4–6 Assigning Values to Variables With the PL/SQL Assignment Operator........................... 4-8
4–7 Using Numeric Literals in PL/SQL.. 4-9
4–8 Using Character Literals in PL/SQL.. 4-9
4–9 Using String Literals in PL/SQL... 4-9

xi

4–10 Using BOOLEAN Literals in PL/SQL .. 4-10
4–11 Using Date-time Literals in PL/SQL... 4-10
4–12 Using DEFAULT and NOT NULL in PL/SQL.. 4-11
4–13 Assigning Values to Variables Using PL/SQL SELECT INTO... 4-11
4–14 Using %TYPE With Table Columns in PL/SQL ... 4-12
4–15 Using %ROWTYPE with a PL/SQL Record .. 4-13
4–16 Using a Simple IF-THEN Statement in PL/SQL ... 4-14
4–17 Using the IF-THEN-ELSEIF Statement in PL/SQL .. 4-14
4–18 Using the CASE-WHEN Statement in PL/SQL .. 4-14
4–19 Using the IF-THEN_ELSE and CASE Statement in PL/SQL .. 4-15
4–20 Using the FOR-LOOP in PL/SQL ... 4-16
4–21 Using WHILE-LOOP for Control in PL/SQL.. 4-16
4–22 Using the EXIT-WHEN Statement in PL/SQL.. 4-16
4–23 Using the GOTO Statement in PL/SQL ... 4-17
4–24 Declaring a Local PL/SQL Procedure With IN OUT Parameters 4-18
4–25 Declaring a Local PL/SQL Function With IN Parameters... 4-18
4–26 Declaring a Complex Local Procedure in a PL/SQL Block ... 4-19
4–27 Fetching a Single Row With a Cursor in PL/SQL... 4-20
4–28 Fetching Multiple Rows With a Cursor in PL/SQL ... 4-20
4–29 Passing Parameters to a Cursor in PL/SQL... 4-21
4–30 Using a Cursor Variable (REF CURSOR) ... 4-22
4–31 Declaring and Initializing a PL/SQL Record Type... 4-24
4–32 Using %ROWTYPE With a Cursor When Declaring a PL/SQL Record 4-25
4–33 Using a PL/SQL VARRAY Type With Character Elements ... 4-25
4–34 Using a PL/SQL VARRAY Type With Record Type Elements .. 4-26
4–35 Using Dynamic SQL to Manipulate Data in PL/SQL .. 4-27
4–36 Using Dynamic SQL to Create a Table in PL/SQL... 4-28
4–37 Managing Multiple Errors With a Single PL/SQL Exception Handler 4-30
4–38 Determining the Scope of PL/SQL Exceptions ... 4-31
4–39 Continuing After an Exception in PL/SQL.. 4-32
5–1 Creating a Simple Stored Procedure .. 5-7
5–2 Creating a Stored Procedure That Uses Parameters .. 5-7
5–3 Creating a Stored Procedure With the AUTHID Clause... 5-9
5–4 Creating a Stored Function That Returns a String .. 5-10
5–5 Creating a Stored Function That Returns a Number.. 5-10
5–6 Techniques for Calling Stored Procedures or Functions.. 5-11
5–7 Dropping Subprograms With the DROP Statement... 5-13
5–8 Creating a Package Specification ... 5-17
5–9 Creating a Package Body .. 5-17
5–10 Calling a Subprogram in a Package .. 5-20
5–11 Creating Variables in a PL/SQL Package Specification... 5-21
5–12 Using Variables From a Package Specification.. 5-21
5–13 Creating Types and Variables in a PL/SQL Package Specification 5-21
5–14 Using the emp_refcur_typ REF CURSOR From a Package Specification 5-22
5–15 Using the my_refcur_typ REF CURSOR From a Package Specification......................... 5-22
5–16 Using the DBMS_RANDOM Package .. 5-28
5–17 Using HTP Print Procedure.. 5-29
5–18 Setting up a Directory for Use With UTL_FILE .. 5-30
5–19 Using the UTL_FILE Package .. 5-30
6–1 Creating a Database Trigger WIth the AFTER Option... 6-11
6–2 Creating a Database Trigger With the BEFORE Option... 6-12
6–3 Creating a View That is Updated With an INSTEAD OF Trigger.................................... 6-12
6–4 Creating an INSTEAD OF Trigger for Updating a View ... 6-13
6–5 Creating a Database Trigger With an Exception Handler ... 6-13
6–6 Creating a Trigger That Fires Only Once ... 6-14

xii

6–7 Creating a LOGON Trigger.. 6-15
6–8 Creating a LOGOFF Trigger... 6-15
6–9 Dropping Triggers ... 6-16
6–10 Disabling a Specific Trigger.. 6-17
6–11 Disabling All Triggers on a Table.. 6-17
6–12 Enabling a Specific Trigger... 6-17
6–13 Enabling All Triggers for a Table .. 6-17
6–14 Viewing the Dependencies for a Trigger.. 6-18
6–15 Recompiling a Trigger... 6-18
7–1 Setting NLS_LANGUAGE=ITALIAN ... 7-6
7–2 Setting NLS_LANGUAGE=GERMAN.. 7-6
7–3 Setting NLS_LANGUAGE=AMERICAN, NLS_TERRITORY=AMERICA 7-7
7–4 Setting NLS_LANGUAGE=AMERICAN and NLS_TERRITORY=GERMANY............... 7-7
7–5 Using the Default, Short, and Long Date Formats... 7-9
7–6 Setting NLS_DATE_LANGUAGE=FRENCH: Month and Day .. 7-9
7–7 Setting NLS_TIMESTAMP_TZ_FORMAT... 7-10
7–8 Setting NLS_CALENDAR='English Hijrah' .. 7-12
7–9 Setting NLS_NUMERIC_CHARACTERS=",."... 7-13
7–10 Displaying the Local Currency Symbol.. 7-14
7–11 Setting NLS_ISO_CURRENCY=FRANCE ... 7-15
7–12 Setting NLS_SORT to BINARY.. 7-16
7–13 Setting NLS_SORT to Spanish ... 7-16
7–14 Setting NLS_COMP to BINARY .. 7-17
7–15 Setting NLS_COMP to LINGUISTIC .. 7-18
7–16 Setting Length Semantics and Creating a Table ... 7-19
7–17 Setting NLS_DATE_LANGUAGE=American, NLS_CALENDAR=Gregorian 7-22
7–18 Setting NLS_LANGUAGE in a Query.. 7-22
7–19 Using NLS Parameters in SQL Functions... 7-24
A–1 Prompting for a Variable Value in SQL Command Line ... A-5
A–2 Reusing a Variable Value in SQL Command Line.. A-6
A–3 Defining a Variable for a Query in SQL Command Line... A-6
C–1 Creating a PHP Program for Use With a PL/SQL Procedure... C-2
D–1 Creating a Java Program for Use With a PL/SQL Procedure ... D-2

xiii

Preface

This guide explains basic concepts behind development with Oracle Database Express
Edition (Oracle Database XE) and provides examples on how to use basic language
features of SQL and PL/SQL. This guide is intended to be a very basic introduction to
development and references are provided in the text to detailed information about
subjects.

This section contains the following topics:

■ Documentation Topics on page xiii

■ Audience on page xiv

■ Documentation Accessibility on page xiv

■ Related Documentation on page xiv

■ Conventions on page xv

Documentation Topics
This guide contains the following topics:

Title Description

Overview of Development Provides an overview of application development with
Oracle Database Express Edition.

Managing Database Objects Discusses creating and managing database objects in your
schema, plus design considerations when developing
applications with the Oracle Database XE. Also discusses
the datatypes used with database objects in Oracle
Database XE.

Using SQL Describes how to use SQL with Oracle Database XE,
including how to retrieve and manipulate data, use SQL
functions, and create database objects.

Using PL/SQL Describes the PL/SQL language, which can be used to
develop applications for use with Oracle Database XE.

Using Procedures, Functions, and
Packages

Describes how to develop procedures, functions, and
packages with PL/SQL for use with Oracle Database XE.

Using Triggers Discusses the development of triggers with PL/SQL code
and the use of database triggers with Oracle Database XE.

Working in a Global Environment Discusses how to develop applications in a globalization
support environment, providing information for SQL and
PL/SQL Unicode programming in a global environment.

xiv

Audience
This guide is intended for anyone interested in learning about the Oracle Database
Express Edition development environment.It is primarily an introduction to
application development for beginning developers.

To use this guide, you need to have a general understanding of relational database
concepts as well as an understanding of the operating system environment under
which you are running the Oracle Database XE.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Related Documentation
For more information, see these Oracle resources:

■ Oracle Database Express Edition Getting Started Guide

■ Oracle Database Express Edition Installation Guide for Linux

Using SQL Command Line Provides an introduction to SQL Command Line
(SQL*Plus), an interactive and batch command-line query
tool that is installed with Oracle Database XE.

Reserved Words Lists the Oracle Database XE SQL and PL/SQL reserved
words and keywords.

Using a PL/SQL Procedure With
PHP

Provides an example of the use of a PL/SQL procedure
with PHP.

Using a PL/SQL Procedure With
JDBC

Rrovides an example of the use of a PL/SQL procedure
with Java and JDBC.

Title Description

xv

■ Oracle Database Express Edition Installation Guide for Microsoft Windows

■ Oracle Database Express Edition 2 Day DBA

■ Oracle Database Express Edition Application Express User’s Guide

■ Oracle Database Express Edition 2 Day Plus Application Express Developer Guide

■ Oracle Database Express Edition 2 Day Plus PHP Developer Guide

■ Oracle Database Express Edition 2 Day Plus Java Developer Guide

■ Oracle Database Express Edition 2 Day Plus .NET Developer Guide

■ Oracle Database Express Edition ISV Embedding Guide

■ Oracle Database Application Developer's Guide - Fundamentals

■ Oracle Database Concepts

■ Oracle Database SQL Reference

■ Oracle Database PL/SQL User's Guide and Reference

■ Oracle Database PL/SQL Packages and Types Reference

■ Oracle Database Globalization Support Guide

For the most recent version of the Oracle Database Express Edition documentation, see
the Oracle Database XE online library:

http://www.oracle.com/technology/xe/documentation

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/

For information about additional books

http://www.oracle.com/technology/books/10g_books.html

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xvi

Overview of Development 1-1

1
Overview of Development

This section provides an overview of developing applications with Oracle Database
Express Edition (Oracle Database XE).

This section contains the following topics:

■ Overview of Developing Applications With Oracle Database XE on page 1-1

■ Other Development Environments on page 1-6

Overview of Developing Applications With Oracle Database XE
This section introduces you to developing applications with Oracle Database Express
Edition.

This section contains the following topics:

■ Oracle Database Express Edition on page 1-2

■ SQL on page 1-2

■ PL/SQL on page 1-3

■ Database Objects on page 1-3

■ Basic Application Development Concepts on page 1-3

■ Development Tools on page 1-4

■ Sample HR Account on page 1-5

See Also: Oracle Database Application Developer's Guide -
Fundamentals for a complete overview of application development

Overview of Developing Applications With Oracle Database XE

1-2 Oracle Database Express Edition 2 Day Developer Guide

Oracle Database Express Edition
Oracle Database Express Edition is a relational database that stores and retrieves
collections of related information. A database, also called a database server, is the key
to solving the problems of information management. In a relational database,
collections of related information are organized into structures called tables. Each table
contains rows (records) that are composed of columns (fields). The tables are stored in
the database in structures called schemas, which are logical structures of data where
database users store their tables.

The HR sample schema that is included with Oracle Database XE is an example of a
schema with related tables. In the HR sample schema, there are tables to store
information about employees and departments. The tables contain common columns
that allow data from one table to be related to another. For each employee in the
employees table, the department name in the departments table can be retrieved
based on the department ID column that is in both tables. See "Sample HR Account"
on page 1-5.

SQL
Structured Query Language (SQL) is a nonprocedural programming language that
enables you to access a relational database. Using SQL statements, you can query
tables to display data, create objects, modify objects, and perform administrative tasks.
All you need to do is describe in SQL what you want done, and the SQL language
compiler automatically generates a procedure to navigate the database and perform
the desired task.

For information about using SQL, see Chapter 3, "Using SQL".

See Also:

■ Oracle Database Express Edition Getting Started Guide for a short
tutorial to get you quickly up and running using Oracle Database
XE

■ Oracle Database Express Edition 2 Day DBA for information about
getting started with Oracle Database XE

■ Oracle Database XE home page on Oracle Technology Network:

http://www.oracle.com/technology/xe

■ Oracle Database XE Documentation Library:

http://www.oracle.com/technology/xe/documentation

■ Oracle Database XE Discussion forum:

http://www.oracle.com/technology/products/database/xe/
forum.html

See Also:

■ Oracle Database Sample Schemas for a description of the HR sample
schema

■ Oracle Database Concepts for an introduction to Oracle databases

See Also: Oracle Database SQL Reference for information about SQL

Overview of Developing Applications With Oracle Database XE

Overview of Development 1-3

PL/SQL
PL/SQL is an Oracle procedural extension to SQL, the standard database access
language. It is an advanced programming language, which like SQL, has a built-in
treatment of the relational database domain. Applications written in any of the Oracle
programmatic interfaces can call stored procedures and functions written in PL/SQL.

In PL/SQL, you can manipulate data with SQL statements and control program flow
with procedural constructs such as loops. You can also do the following:

■ Declare constants and variables

■ Define procedures and functions

■ Use collections and object types

■ Trap runtime errors

■ Create functions, packages, procedures, and triggers

For information about using PL/SQL, see Chapter 4, "Using PL/SQL".

Database Objects
You need to create database objects before you start developing your application.
These database objects are primarily used to store and organize the data that your
application manipulates. These databases objects include tables, indexes, views,
sequences and synonyms.

When creating some database objects, you need to specify a datatype for the data that
is used by the object. When you create a table, you must specify a datatype for each of
its columns. A datatype associates a fixed set of properties with the values that can be
used in a column, or in an argument of a procedure or function. Each column value
and constant in a SQL statement has a datatype, which is associated with a specific
storage format, constraints, and a valid range of values. The most common datatypes
are character, numeric, and date.

For information about managing database objects, see Chapter 2, "Managing Database
Objects".

Basic Application Development Concepts
This section discusses the basic concepts in application development with Oracle
Database Express Edition.

■ User interface

The interface that your application displays to end users depends on the
technology behind the application as well as the needs of the users themselves.

See Also:

■ Oracle Database PL/SQL User's Guide and Reference for information
about PL/SQL

■ Oracle Database PL/SQL Packages and Types Reference for
information about PL/SQL packages that are supplied with
Oracle Database XE

■ http://www.oracle.com/technology/tech/pl_
sql/index.html for additional PL/SQL information and code
samples for on the Oracle Technology Network (OTN)

Overview of Developing Applications With Oracle Database XE

1-4 Oracle Database Express Edition 2 Day Developer Guide

The Oracle Database XE browser-based user interface is an example of an
application interface. See "Development Tools" on page 1-4.

■ Client/server model

In a traditional client/server program, your application code runs on a different
machine than where the database (server) is located. Database calls are transmitted
from this client machine to a database, such as Oracle Database XE. Data is
transmitted from the client to the server for insert and update operations and
returned from the server to the client for query operations where the data is
processed on the client machine.

■ Server-side coding

You can develop application logic that resides entirely inside the database by
using PL/SQL triggers that execute automatically when changes occur in the
database or stored PL/SQL procedures or functions that are called explicitly.
Off-loading the work from your application lets you reuse code that performs
verification and cleanup and control database operations from a variety of clients.

Development Tools
There are various tools that you can use to develop with SQL and PL/SQL, and to
manage database objects.

Oracle Database XE has a browser-based user interface for administering database
objects, running SQL statements, PL/SQL code, building Web-based applications, and
more. The starting point for this interface is the Database Home Page. See "Logging in
to the Database Home Page" on page 1-4.

You can also use SQL Command Line (SQL*Plus) to enter SQL statements and
PL/SQL code. To use SQL Command Line, see Appendix A, "Using SQL Command
Line".

Logging in to the Database Home Page
To log in to the Database Home Page:

1. Access the Database Home Page.

The page can be accessed from your graphical desktop or pointing your Web
browser to a specific URL. See "Accessing the Database Home Page" in Oracle
Database Express Edition 2 Day DBA.

To view the database objects or run the examples discussed in this guide, log in to
the Database Home Page as the user HR. In the Username field enter HR and in the
Password field enter your password for the HR user account, then click the Login
button. See "Sample HR Account" on page 1-5.

2. On the Database Home Page, click the icon for the specific tool that you want to
use. There are icons for Administration, Application Builder, Object Browser,
SQL, and Utilities when you log in as the HR user.

Note: If the HR user account is locked, you need to log in as a user
with administrator privileges and unlock the account. When
unlocking the account, ensure the HR user has both CONNECT and
RESOURCE roles enabled. See "Locking and Unlocking User Accounts"
in Oracle Database Express Edition 2 Day DBA.

Overview of Developing Applications With Oracle Database XE

Overview of Development 1-5

The Database Home Page includes links to the License Agreement, Getting
Started, Learn More, Documentation, Forum Registration, Discussion Forum,
and Product Page. The Usage Monitor on the page provides information about the
storage and memory use, number of sessions and users, and log archiving status.

Sample HR Account
Oracle Database XE provides the HR sample user account for use with the examples in
this guide. This HR user account is also referred to as the HR schema. A schema is a
logical container for the database objects that the user creates.

The HR sample account is set up to be a simple Human Resources division for
tracking information about the employees and the facilities. In the HR schema, each
employee has an identification number, e-mail address, job identification code, salary,
and manager. Some employees earn commissions in addition to their salary. Each job
has an identification code that associates it with a job title, a minimum salary, and a
maximum salary for the job.

Each employee is assigned to a department, and each department is identified either
by a unique department number or a short name. Each department is associated with
one location, and each location has a full address that includes the street name, postal
code, city, state or province, and the country code.

For information about viewing the database objects in the HR schema, including the
structure of the HR tables, see "Managing Database Objects With Object Browser" on
page 2-2.

See Also:

■ Oracle Database Express Edition Getting Started Guide for a short
tutorial to get you quickly up and running using Oracle Database
XE

■ Oracle Database Express Edition 2 Day DBA for information about
getting started with Oracle Database Express Edition

■ Oracle Database Express Edition Application Express User’s Guide for
a description of the icons on Database Home Page.

Other Development Environments

1-6 Oracle Database Express Edition 2 Day Developer Guide

Other Development Environments
This section lists other development languages that can be used with Oracle Database
Express Edition. These environments are discussed in other guides.

This section contains the following topics:

■ Oracle Call Interface and Oracle C++ Call Interface on page 1-6

■ Open Database Connectivity on page 1-6

■ Oracle Provider for OLE DB on page 1-7

■ Oracle Data Provider for .NET on page 1-7

■ Oracle Database Extensions for .NET on page 1-7

■ Oracle Developer Tools for Visual Studio .NET on page 1-8

■ Oracle Application Express on page 1-8

■ Oracle Java Database Connectivity (JDBC) on page 1-8

■ PHP on page 1-9

Oracle Call Interface and Oracle C++ Call Interface
The Oracle Call Interface (OCI) and Oracle C++ Call Interface (OCCI) are native C and
C++ APIs for accessing Oracle Database Express Edition from C and C++ applications.

Open Database Connectivity
Open Database Connectivity (ODBC) is a database access API that enables you to
connect to a database and then prepare and run SQL statements against Oracle
Database XE. In conjunction with an ODBC driver, an application can access any data
source including data stored in spreadsheets, such as an Excel spreadsheet.

An Oracle ODBC driver is provided for both Windows and Linux (32 bit). The Oracle
ODBC Driver conforms to ODBC 3.51 specifications. It supports all core APIs and a set
of Level 1 and Level 2 functions. For Windows, the Driver Manager component is
supplied by Microsoft. For Unix platforms, the Oracle Database XE driver has been
tested using the latest Driver Manager available from http://www.unixODBC.org.

See Also: Oracle Database Sample Schemas for information about the
HR sample schema

See Also:

■ Oracle Call Interface Programmer's Guide for more information
about OCI

■ Oracle C++ Call Interface Programmer's Guide for more information
about OCCI

See Also:

■ Oracle Services for Microsoft Transaction Server Developer's Guide for
information about how to use the Oracle ODBC driver on
Windows

■ Oracle Database Administrator's Reference 10g Release 2 (10.2) for
UNIX-Based Operating Systems for information about how to use
the Oracle ODBC driver on Linux

Other Development Environments

Overview of Development 1-7

Oracle Provider for OLE DB
OLE DB is an open standard data access methodology that uses a set of Component
Object Model (COM) interfaces to access and manipulate different types of data. These
interfaces are available from various database providers.

Oracle Provider for OLE DB (OraOLEDB) is an OLE DB data provider that offers high
performance and efficient access to Oracle data by OLE DB consumers.

With the advent of the .NET framework, support is provided for using the
OLEDB.NET Data Provider with OraOLEDB. With the correct connection attribute
setting, an OLEDB.NET Data Provider can utilize OraOLEDB to access Oracle
Database.

Oracle Data Provider for .NET
Oracle Data Provider for .NET (ODP.NET) provides data access for client applications
from within Oracle Database XE. Oracle Data Provider for .NET is an implementation
of a .NET data provider for Oracle Database, using and inheriting from classes and
interfaces available in the Microsoft .NET Framework Class Library.

Following the .NET Framework, ODP.NET uses the ADO.NET model, which enables
native providers to expose provider-specific features and datatypes. This is similar to
Oracle Provider for OLE DB, where ActiveX Data Objects (ADO) provides an
automation layer that exposes a programming model. ADO.NET provides a similar
programming model, but without the automation layer for better performance.
ODP.NET uses Oracle native APIs to access Oracle data and features from any .NET
application.

Oracle Database Extensions for .NET
Oracle Database Extensions for .NET provides the following:

■ A Common Language Runtime (CLR) host for Oracle Database XE

■ Data access through Oracle Data Provider for .NET classes

■ Oracle Deployment Wizard for Visual Studio .NET

Oracle Database XE hosts Microsoft Common Language Runtime (CLR) in an external
process, outside of the Oracle database process, but on the same computer. The
integration of Oracle Database XE with the Microsoft Common Language Runtime
(CLR) enables applications to run .NET stored procedures or functions on Oracle
Database XE, Microsoft Windows 2003, Windows 2000, and Windows XP.

Stored procedures and functions can be written using any .NET compliant language,
such as C# and VB.NET. These .NET stored procedures can be used in the same
manner as other PL/SQL or Java stored procedures, and can be called from PL/SQL
packages, procedures, functions, and triggers.

.NET procedures or functions are built into a .NET assembly, typically using Microsoft
Visual Studio .NET. Oracle Data Provider for .NET is used in .NET stored procedures
and functions to access data. After building .NET procedures and functions into a

See Also: Oracle Provider for OLE DB Developer's Guide for
information about developing applications to access Oracle Database
XE using Oracle Provider for OLE DB

See Also: Oracle Database Express Edition 2 Day Plus .NET Developer
Guide for information about application development with Oracle
Database XE in Microsoft .NET

Other Development Environments

1-8 Oracle Database Express Edition 2 Day Developer Guide

.NET assembly, they can be deployed in Oracle Database XE, using the Oracle
Deployment Wizard for .NET, a component of the Oracle Developer Tools for Visual
Studio .NET.

Oracle Developer Tools for Visual Studio .NET
Oracle Developer Tools is an add-on to Visual Studio .NET that provides graphical
user interface (GUI) access to Oracle functionality.

Oracle Developer Tools include Oracle Explorer to browse your Oracle schema,
designers and wizards to create and alter schema objects, and the ability to drag and
drop schema objects onto your .NET form to automatically generate code. There is also
a PL/SQL editor with integrated context-sensitive online Help. With Oracle Data
Window, you can perform routine database tasks, such as inserting and updating
Oracle data or testing stored procedures in the Visual Studio environment. For
maximum flexibility, there is also a SQL Query Window for executing any SQL
statement or SQL script.

Oracle Application Express
Oracle Application Express is a Web-based application development and deployment
tool integrated with Oracle Database Express Edition. Oracle Application Express
enables users with only a Web browser and limited programming experience to
quickly create secure and scalable Web applications that can be instantly deployed to
tens, hundreds, or thousands of users. The Application Builder tool assembles an
HTML interface (or application) on top of database objects such as tables and
procedures. Each application is a collection of pages linked together using tabs,
buttons, or hypertext links.

Oracle Java Database Connectivity (JDBC)
Oracle Java Database Connectivity (JDBC) is an API that enables Java to send SQL
statements to an object-relational database such as Oracle Database XE. For more
information about the JDBC API see:

http://java.sun.com/products/jdbc

Oracle Database JDBC brings provides features, such as complete support for JDBC 3.0
standard, complete support for JDBC RowSet (JSR-114), Advanced Connection

See Also: Oracle Database Express Edition 2 Day Plus .NET Developer
Guide for information about application development with Oracle
Database XE in Microsoft .NET

See Also: Oracle Database Express Edition 2 Day Plus .NET Developer
Guide for information about application development with Oracle
Database XE in Microsoft .NET

See Also:

■ Oracle Database Express Edition 2 Day Plus Application Express
Developer Guide for tutorials with step-by-step instructions that
explain how to create a variety of application components and
complete applications using Oracle Application Express

■ Oracle Database Express Edition Application Express User’s Guide for
information about building database-centric Web applications
using the Oracle Application Express

Other Development Environments

Overview of Development 1-9

Caching (non-XA and XA connections), exposing SQL and PL/SQL data types to Java,
and faster SQL data access. For information about the new JDBC features, see:

http://www.oracle.com/technology/tech/java/sqlj_jdbc/pdf/twp_
appdev_java_whats_new_4_java_jdbc_web_services.pdf

For more information about the Oracle JDBC Drivers, see:

http://www.oracle.com/technology/tech/java/sqlj_jdbc/index.html

For an example of the use of PL/SQL with JDBC, see Appendix D, "Using a PL/SQL
Procedure With JDBC".

PHP
PHP is a recursive acronym for PHP Hypertext Preprocessor. It is a widely-used,
open-source, interpretive, HTML-centric, server-side scripting language. PHP is
especially suited for Web development and can be embedded into HTML pages. PHP
is comparable to languages such as Java Server Pages (JSP) and Oracle PL/SQL Server
Pages (PSP). Zend Core for Oracle, developed in partnership with Zend Technologies,
enables application development using PHP with Oracle Database XE.

For an example of the use of PL/SQL with PHP, see Appendix C, "Using a PL/SQL
Procedure With PHP".

See Also: Oracle Database Express Edition 2 Day Plus Java Developer
Guide for information about using Java to access and modify data in
Oracle Database XE

See Also:

■ Oracle Database Express Edition 2 Day Plus PHP Developer Guide for
information about application development using Zend Core for
Oracle and Oracle Database XE

■ PHP Development Center at

http://www.oracle.com/technology/tech/php/index.html

Other Development Environments

1-10 Oracle Database Express Edition 2 Day Developer Guide

Managing Database Objects 2-1

2
Managing Database Objects

This section discusses creating and managing database objects in your schema, plus
design considerations when developing applications with the Oracle Database Express
Edition.

This section contains the following topics:

■ Overview of Managing Objects on page 2-1

■ Using Datatypes on page 2-7

■ Managing Tables on page 2-12

■ Managing Indexes on page 2-26

■ Managing Views on page 2-31

■ Managing Sequences on page 2-34

■ Managing Synonyms on page 2-35

Overview of Managing Objects
You need to create tables, indexes, and possibly other database objects in a schema
before you start developing your application. A schema is a collection of database
objects. A schema is owned by a database user and has the same name as that user,
such as the HR schema. Schema objects are logical structures created by users. Objects
can define areas of the database to hold data, such as tables, or can consist of just a
definition, such as views.

Tables are the basic database objects and contain all the user data. When creating a
table, it is important that you define that data that you want to store in the table. You
need to specify the datatype of the data and any restrictions on the range of values. See
"Using Datatypes" on page 2-7 and "Ensuring Data Integrity in Tables With
Constraints" on page 2-13.

This chapter discusses tables, indexes, views, sequences, and synonyms. Other
database (schema) objects include functions, packages, procedures, and triggers.
Functions, packages, and procedures are discussed in Chapter 5, "Using Procedures,
Functions, and Packages". Triggers are discussed in Chapter 6, "Using Triggers".

You can create, view, and manipulate database objects in your schema with Object
Browser or SQL. With Object Browser, the underlying SQL is generated for you. In this
chapter, the examples use Object Browser.

This section contains the following topics:

See Also: Oracle Database SQL Reference for information about
schema objects, object names, and data types

Overview of Managing Objects

2-2 Oracle Database Express Edition 2 Day Developer Guide

■ Database Objects for Your Application on page 2-2

■ Managing Database Objects With Object Browser on page 2-2

■ Viewing Data in Tables With Object Browser on page 2-5

■ Viewing Information With Object Reports on page 2-6

Database Objects for Your Application
Some object types have many more management options than others, but most have a
number of similarities. Every object in the database belongs to just one schema and has
a unique name within that schema. Therefore, when you create an object, you must
ensure it is in the schema where you intend to store it. Generally, you place all of the
objects that belong to a single application in the same schema.

A database object name must abide by certain rules. For example, object names cannot
be longer than 30 bytes and must begin with a letter. If you attempt to create an object
with a name that violates any of these rules, then Oracle Database XE raises an error.

The following sections describe how to view, create, and manage the various types of
objects in your database schemas.

Managing Database Objects With Object Browser
You can use the Object Browser page to create, modify, or view all your database
objects. For example, with Object Browser you can create a table and then modify it by
adding and deleting columns or adding constraints. You can also view all the objects
that are currently used in a schema, such as those associated with the HR user.

To access the Object Browse page:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4. To view the database objects or run the examples discussed in this
guide, enter HR in the Username field and your password for the HR user account
in the Password field. See "Sample HR Account" on page 1-5.

2. On the Database Home Page, click the Object Browser icon.

The Object Browser page displays with two sections:

■ The Object Selection pane displays on the left side of the Object Browser page
and lists database objects of a selected type within the current schema. For
example, for the HR user the Tables object list includes countries,
departments, employees, jobs, job_history, locations, and
regions.

■ The Detail pane displays to the right of the page and displays detailed
information about the selected object in the object list. You can click the tabs at
the top of the Detail pane to view additional details about the current object.

3. On the Object Browser page, you can create, alter, and view database objects. Click
the HR EMPLOYEES table in the Tables object list to display information about the
structure of that table.

See Also:

■ Oracle Database Express Edition Application Express User’s Guide for
a detailed description of the use of Object Browser to manage
database objects

■ Oracle Database Express Edition 2 Day DBA for information about
getting started with Oracle Database Express Edition

Overview of Managing Objects

Managing Database Objects 2-3

The information for the employees table includes the following about the
columns and their datatypes:

Column Name Data Type Nullable
------------------------ ---------------- ---------
EMPLOYEE_ID NUMBER(6,0) No
FIRST_NAME VARCHAR2(20) Yes
LAST_NAME VARCHAR2(25) No
EMAIL VARCHAR2(25) No
PHONE_NUMBER VARCHAR2(20) Yes
HIRE_DATE DATE No
JOB_ID VARCHAR2(10) No
SALARY NUMBER(8,2) Yes
COMMISSION_PCT NUMBER(2,2) Yes
MANAGER_ID NUMBER(6,0) Yes
DEPARTMENT_ID NUMBER(4,0) Yes

Note the employees table uses numeric (NUMBER), character (VARCHAR2), and
date (DATE) datatypes. See "Using Datatypes" on page 2-7.

4. In the Tables object list for the HR user, click the DEPARTMENTS table to view
information about the structure of that table.

The information for the departments table includes the following:

Column Name Data Type Nullable
------------------------ ---------------- ---------
DEPARTMENT_ID NUMBER(4,0) No
DEPARTMENT_NAME VARCHAR2(30) No
MANAGER_ID NUMBER(6,0) Yes
LOCATION_ID NUMBER(4,0) Yes

5. In the Tables object list for the HR user, click the JOBS table to view information
about the structure of that table.

Overview of Managing Objects

2-4 Oracle Database Express Edition 2 Day Developer Guide

The information for the jobs table includes the following:

Column Name Data Type Nullable
------------------------ ---------------- ---------
JOB_ID VARCHAR2(10) No
JOB_TITLE VARCHAR2(35) No
MIN_SALARY NUMBER(6,0) Yes
MAX_SALARY NUMBER(6,0) Yes

6. In the Tables object list for the HR user, click the JOB_HISTORY table to view
information about the structure of that table.

The information for the job_history table includes the following:

Column Name Data Type Nullable
------------------------ ---------------- ---------
EMPLOYEE_ID NUMBER(6,0) No
START_DATE DATE No
END_DATE DATE No
JOB_ID VARCHAR2(10) No
DEPARTMENT_ID NUMBER(4,0) Yes

7. In the Tables object list for the HR user, click the LOCATIONS table to view
information about the structure of that table.

The information for the locations table includes the following:

Column Name Data Type Nullable
------------------------ ---------------- ---------
LOCATION_ID NUMBER(4,0) No
STREET_ADDRESS VARCHAR2(40) Yes
POSTAL_CODE VARCHAR2(12) Yes
CITY VARCHAR2(30) No
STATE_PROVINCE VARCHAR2(25) Yes
COUNTRY_ID CHAR(2) Yes

Note the use of the CHAR datatype for a fixed-length character field. See "What Are
the Character Datatypes?" on page 2-8.

8. In the Tables object list for the HR user, click the COUNTRIES table to view
information about the structure of that table.

The information for the countries table includes the following:

Column Name Data Type Nullable
------------------------ ---------------- ---------
COUNTRY_ID CHAR(2) No
COUNTRY_NAME VARCHAR2(40) Yes
REGION_ID NUMBER Yes

9. In the Tables object list for the HR user, click the REGIONS table to view
information about the structure of that table.

The information for the regions table includes the following:

Column Name Data Type Nullable
------------------------ ---------------- ---------
REGION_ID NUMBER No
REGION_NAME VARCHAR2(25) Yes

Overview of Managing Objects

Managing Database Objects 2-5

10. In the object list, select Views, then click the emp_details_view view to display
information about the structure of that view. That is contains columns from the
employees, departments, jobs, locations, countries, and regions
tables.

The information for the emp_details_view view includes the following:

Column Name Data Type Nullable
------------------------ ---------------- ---------
EMPLOYEE_ID NUMBER(6,0) No
JOB_ID VARCHAR2(10) No
MANAGER_ID NUMBER(6,0) Yes
DEPARTMENT_ID NUMBER(4,0) Yes
LOCATION_ID NUMBER(4,0) Yes
COUNTRY_ID CHAR(2) Yes
FIRST_NAME VARCHAR2(20) Yes
LAST_NAME VARCHAR2(25) No
SALARY NUMBER(8,2) Yes
COMMISSION_PCT NUMBER(2,2) Yes
DEPARTMENT_NAME VARCHAR2(30) No
JOB_TITLE VARCHAR2(35) No
CITY VARCHAR2(30) No
STATE_PROVINCE VARCHAR2(25) Yes
COUNTRY_NAME VARCHAR2(40) Yes
REGION_NAME VARCHAR2(25) Yes

11. In the Object list, select other object types to display any existing objects of that
type in the HR schema.

Viewing Data in Tables With Object Browser
In addition to viewing table names and table definitions, you can view the data stored
in the table as well as the SQL statement used to display the data. You can also change
the SQL statement to alter the result set.

To view table data:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Object list, select Tables then click the employees table.

4. Click Data to display the rows of data in the tables.

Overview of Managing Objects

2-6 Oracle Database Express Edition 2 Day Developer Guide

You can also write your own SQL query using a SELECT statement to see the contents
of a table. See "Running SQL Statements" on page 3-2.

Viewing Information With Object Reports
You can run reports on database objects with the Reports feature of the Utilities tool.
For example, you might want to run a report on all tables in the database, on all the
columns in a specific table, or all database objects that are currently invalid.

To run a report on all invalid database objects:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Utilities icon.

The Utilities home page appears.

3. On the Utilities page, click Object Reports.

4. On the Object Reports page, click the All Objects icon.

5. On the All Objects page, click the Invalid Objects icon.

6. On the Invalid Objects page, select -All- from Type list.

7. Click the Go button to display a report on all invalid objects in the database.

Using Datatypes

Managing Database Objects 2-7

Using Datatypes
A datatype associates a fixed set of properties with values that are used in a column of
a table or in an argument of a procedure or function. The properties of datatypes cause
Oracle Database XE to treat values of one datatype differently from values of another
datatype. For example, Oracle Database XE can use the addition operator on values of
numeric datatypes, but not with values of some other datatypes.

The datatypes supported by Oracle Database Express Edition include:

■ Character datatypes

■ Numeric datatypes

■ Date and time (date-time) datatypes

■ Large Object (LOB) datatypes

When you create a table, you must specify a datatype for each of its columns to define
the nature of the data to be stored in the column. For example, a column defined as a
DATE datatype cannot accept the value February 29 (except for a leap year) or the
values 2 or SHOE. When specifying a datatype, you can also indicate the longest value
that can be placed in the column. In most cases, you only need columns of NUMBER,
VARCHAR2, and DATE datatypes to create a definition of a table.

To view the datatypes specified for the columns in a database table, such as the
employees table, you can use the Object Browser page. See "Managing Database
Objects With Object Browser" on page 2-2. You can use also use the DESCRIBE
command entered at SQL Command Line (SQL*Plus). For information about the SQL
Command Line DESCRIBE command, see "SQL Command Line DESCRIBE
Command" on page A-3.

This section contains the following topics:

■ Storing Character Data on page 2-7

■ Storing Numeric Data on page 2-9

■ Storing Date and Time Data on page 2-10

■ Storing Large Objects on page 2-12

Storing Character Data
This section contains the following topics:

■ What Are the Character Datatypes? on page 2-8

■ Choosing Between the Character Datatypes on page 2-8

See Also: Oracle Database Express Edition Application Express User’s
Guide for detailed information about using Object Reports

See Also:

■ Oracle Database SQL Reference for complete reference information
about the SQL datatypes

■ Oracle Database SQL Reference for a complete list of built-in
datatypes in an Oracle database

■ Oracle Database Concepts to learn about Oracle built-in datatypes

Using Datatypes

2-8 Oracle Database Express Edition 2 Day Developer Guide

What Are the Character Datatypes?
You can use the following SQL datatypes to store character (alphanumeric) data:

■ The VARCHAR2 datatype stores variable-length character literals.

When creating a VARCHAR2 column in a table, you must specify a string length
between 1 and 4000 bytes for the VARCHAR2 column. Set the size to the maximum
number of characters to be stored in the column. For example, a column to hold
the last name of employees can be restricted to 25 bytes by defining it as
VARCHAR2(25).

For each row, Oracle Database XE stores each value in the column as a
variable-length field unless a value exceeds the column's maximum length, in
which case Oracle returns an error. Using VARCHAR2 saves on space used by the
table. For most cases where you need to store character data, you would use the
VARCHAR2 datatype.

■ The CHAR datatype stores fixed-length character literals.

When creating a CHAR column in a table, you must specify a string length between
1 and 2000 bytes for the CHAR column. For each row, Oracle Database XE stores
each value in the column as a fixed-length field. If the value of the character data is
less than specified length of the column, then the value is blank-padded to the
fixed length. If a value is too large, Oracle Database XE returns an error.

■ NCHAR and NVARCHAR2 datatypes store only Unicode character data.

The NVARCHAR2 datatype stores variable-length Unicode character literals. The
NCHAR datatype stores fixed-length Unicode character literals. See Chapter 7,
"Working in a Global Environment" for information about using Unicode data and
globalization support.

Choosing Between the Character Datatypes
When deciding which datatype to use for a column that will store character data in a
table, consider the following:

■ Space usage

To store data more efficiently, use the VARCHAR2 datatype. The CHAR datatype
adds blanks to maintain a fixed column length for all column values, whereas the
VARCHAR2 datatype does not add extra blanks.

■ Comparison semantics

Use the CHAR datatype when trailing blanks are not important in string
comparisons. Use the VARCHAR2 datatype when trailing blanks are important in
string comparisons.

■ Future compatibility

The CHAR and VARCHAR2 datatypes are fully supported.

See Also:

■ Oracle Database SQL Reference for information about character
datatypes

■ Oracle Database Globalization Support Guide for information about
globalization support

See Also: Oracle Database SQL Reference for more information about
comparison semantics for these datatypes

Using Datatypes

Managing Database Objects 2-9

Storing Numeric Data
This section contains the following topics:

■ What Are the Numeric Datatypes? on page 2-9

■ Using the NUMBER Datatype on page 2-9

■ Using Floating-Point Number Formats on page 2-10

What Are the Numeric Datatypes?
The following SQL datatypes store numeric data:

■ NUMBER

■ BINARY_FLOAT

■ BINARY_DOUBLE

Use the NUMBER datatype to store integers and real numbers in a fixed-point or
floating-point format. Numbers using this datatype are guaranteed to be portable
among different Oracle database platforms. For nearly all cases where you need to
store numeric data, you would use the NUMBER datatype. When defining numeric
data, you can use the precision option to set the maximum number of digits in the
number, and the scale option to define how many of the digits are to the right of the
decimal point. For example, a field to hold the salary of an employee can be defined as
NUMBER(8,2), providing 6 digits for the primary unit of currency (dollars, pounds,
marks, and so on) and two digits for the secondary unit (cents, pennies, pfennigs, and
so on).

Oracle Database XE provides the numeric BINARY_FLOAT and BINARY_DOUBLE
datatypes exclusively for floating-point numbers. They support all of the basic
functionality provided by the NUMBER datatype. However, while the NUMBER datatype
uses decimal precision, BINARY_FLOAT and BINARY_DOUBLE datatypes use binary
precision. This enables faster arithmetic calculations and usually reduces storage
requirements.

Using the NUMBER Datatype
The NUMBER datatype stores zero as well as positive and negative fixed numbers with
absolute values from 1.0 x 10-130 to (but not including) 1.0 x 10126. If you specify an
arithmetic expression whose value has an absolute value greater than or equal to 1.0 x
10126, then Oracle Database XE returns an error.

The NUMBER datatype can be specified with a precision (p) and a scale (s) designator.
Precision is the total number of significant decimal digits, where the most significant
digit is the left-most, nonzero digit, and the least significant digit is the right-most,
known digit. Scale is the number of digits from the decimal point to the least
significant digit. The scale can range from -84 to 127. For examples, see Table 2–1 on
page 2-10.

You can specify a NUMBER datatype as follows:

See Also:

■ Oracle Database Concepts for information about the internal format
for the NUMBER datatype

■ Oracle Database SQL Reference for more information about the
NUMBER, BINARY_FLOAT, and BINARY_DOUBLE datatypes
formats

Using Datatypes

2-10 Oracle Database Express Edition 2 Day Developer Guide

■ NUMBER(p) for an integer

This represents a fixed-point number with precision p and scale 0, and is
equivalent to NUMBER(p,0).

■ NUMBER(p, s) for a fixed-point number

This explicitly specifies the precision (p) and scale (s). It is good practice to specify
the scale and precision of a fixed-point number column for extra integrity checking
on input. Specifying scale and precision does not force all values to a fixed length.
If a value exceeds the precision, then Oracle Database XE returns an error. If a
value exceeds the scale, then Oracle Database XE rounds it.

■ NUMBER for a floating-point number

The absence of precision and scale designators specifies the maximum range and
precision for an Oracle number.

Table 2–1 show how Oracle Database XE stores data using different values for
precision and scale. Note that the values are rounded to the specified scale.

Using Floating-Point Number Formats
The BINARY_FLOAT and BINARY_DOUBLE datatypes store floating-point data in the
32-bit IEEE 754 format and the double precision 64-bit IEEE 754 format respectively.
Compared to the Oracle NUMBER datatype, arithmetic operations on floating-point
data are usually faster for BINARY_FLOAT and BINARY_DOUBLE. High-precision
values require less space when stored as BINARY_FLOAT and BINARY_DOUBLE
datatypes.

The BINARY_FLOAT datatype has a maximum positive value equal to 3.40282E+38F
and the minimum positive value equal to 1.17549E-38F.

The BINARY_DOUBLE datatype has a maximum positive value equal to
1.79769313486231E+308 and the minimum positive value equal to
2.22507485850720E-308.

Storing Date and Time Data
Oracle Database XE stores dates in its own internal format that corresponds to century,
year, month, day, hour, minute, and second. For input and output of dates, the
standard Oracle Database XE default date format is DD-MON-RR. The RR date-time
format element enables you store 20th century dates in the 21st century by specifying
only the last two digits of the year. Time is stored in a 24-hour format as HH24:MI:SS.

Oracle Database Express Edition provides various SQL functions to calculate and
convert date-time data. For examples, see "Using Date Functions" on page 3-15 and

Table 2–1 Storage of Scale and Precision

Actual Data Specified As Stored As

123.8915 NUMBER 123.8915

123.8915 NUMBER(3) 124

123.8915 NUMBER(4,1) 123.9

123.8915 NUMBER(5,2) 123.89

123.8915 NUMBER(6,3) 123.892

123.8915 NUMBER(7,4) 123.8915

1.238915e2 NUMBER(7,4) 123.8915

Using Datatypes

Managing Database Objects 2-11

"Using Conversion Functions" on page 3-16. For more information about manipulating
date formats on a global level, see Chapter 7, "Working in a Global Environment".

This section contains the following topic:

■ Using DATE and TIMESTAMP Datatypes on page 2-11

Using DATE and TIMESTAMP Datatypes
Oracle Database supports the following date and time (date-time) datatypes:

■ DATE

■ TIMESTAMP

■ TIMESTAMP WITH TIME ZONE

■ TIMESTAMP WITH LOCAL TIME ZONE

Table 2–2 shows examples of DATE and TIMESTAMP datatypes.

Using the DATE Datatype Use the DATE datatype to store point-in-time values (dates and
times) in a table. For example, a column to hold the date that an employee is hired can
by defined as a DATE datatype. An application that specifies the time for a job might
also use the DATE datatype. For most cases where you need to store date data, you
would use the DATE datatype.

DATE columns are automatically formatted by Oracle Database XE to include a date
and time component. The DATE datatype stores the century, year, month, day, hours,
minutes, and seconds. The valid date range is from January 1, 4712 BC to December 31,
9999 AD. Although both the date and time are stored in a date column, by default, the
date portion is automatically displayed for you, when retrieving date data. However,
Oracle Database Express Edition enables you great flexibility in how you can display
your dates and times. See "Using Date Functions" on page 3-15.

Using the TIMESTAMP Datatype Use the TIMESTAMP datatype to store values that are
precise to fractional seconds. An application that must decide which of two events
occurred first might use TIMESTAMP.

See Also:

■ Oracle Database SQL Reference for more information about date and
time formats

■ Oracle Database Concepts for information about Julian dates

Table 2–2 DATE and TIMESTAMP Examples

Datatype Example

DATE 09-DEC-05

TIMESTAMP 09-DEC-05 02.05.49.000000 PM

TIMESTAMP WITH TIME ZONE 09-DEC-05 02.05.49.000000 PM -08:00

TIMESTAMP WITH LOCAL TIME ZONE 09-DEC-05 02.05.49.000000 PM

See Also: Oracle Database SQL Reference for information about DATE,
TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH
LOCAL TIME ZONE datatypes

Managing Tables

2-12 Oracle Database Express Edition 2 Day Developer Guide

Using the TIMESTAMP WITH TIME ZONE Datatype Because the TIMESTAMP WITH TIME
ZONE datatype can also store time zone information, it is particularly suited for
recording date information that must be gathered or coordinated across geographic
regions.

Using the TIMESTAMP WITH LOCAL TIME ZONE Datatype Use the TIMESTAMP WITH LOCAL
TIME ZONE datatype when the time zone is not significant. For example, you might
use it in an application that schedules teleconferences, where participants each see the
start and end times for their own time zone.

The TIMESTAMP WITH LOCAL TIME ZONE datatype is appropriate for two-tier
applications in which you want to display dates and times that use the time zone of
the client system. It is generally inappropriate in three-tier applications because data
displayed in a Web browser is formatted according to the time zone of the Web server,
not the time zone of the browser. The Web server is the database client, so its local time
is used.

Storing Large Objects
Large Objects (LOBs) are a set of datatypes that are designed to hold large amounts of
data. A LOB can hold up to a maximum size ranging from 8 terabytes to 128 terabytes
depending on how your database is configured. Storing data in LOBs enables you to
access and manipulate the data efficiently in your application.

The BLOB, CLOB, and NCLOB datatypes are internal LOB datatypes and are stored in
the database. The BFILE datatype is the only external LOB datatype and is stored in
an operating system file, outside the database.

Managing Tables
Tables are the basic unit of data storage in an Oracle database. They hold all
user-accessible data. A table is a two-dimensional object made up of columns and
rows. For example, the employees table includes (vertical) columns called
employee_id, first_name, and last_name. Each (horizontal) row in the table
contains a value for employee name and ID number. The most common type of table
in an Oracle database is a relational table.

This section contains the following topics:

■ Ensuring Data Integrity in Tables With Constraints on page 2-13

■ Creating a Table on page 2-16

■ Adding a Column To a Table on page 2-18

■ Modifying a Column In a Table on page 2-18

■ Dropping a Column From a Table on page 2-19

■ Adding a Check Constraint on page 2-19

■ Adding a Unique Constraint on page 2-20

■ Adding a Primary Key Constraint on page 2-21

■ Adding a Foreign Key Constraint on page 2-22

■ Viewing Existing Constraints on page 2-23

See Also: Oracle Database Application Developer's Guide - Large Objects
for more information about Large Object datatypes

Managing Tables

Managing Database Objects 2-13

■ Disabling and Enabling a Constraint on page 2-23

■ Dropping a Constraint on page 2-24

■ Adding Data to a Table on page 2-5

■ Modifying Data in a Table on page 2-25

■ Removing a Row in a Table on page 2-26

■ Dropping a Table on page 2-26

Ensuring Data Integrity in Tables With Constraints
With Oracle Database XE, you can define integrity constraints to enforce business rules
on data in your tables to preserve the integrity of the data. Business rules specify
conditions and relationships that must always be true, or must always be false. For
example, in a table containing employee data, the employee e-mail column must be
unique. Similarly, in this table you cannot have two employees with the same
employee ID.

When an integrity constraint applies to a table, all data in the table must conform to
the corresponding rule. When you issue a SQL statement that inserts or modifies data
in the table, Oracle Database XE ensures that the new data satisfies the integrity
constraint, without the need to do any checking within your program. Any attempt to
insert, update, or remove a row that violates a constraint results in an error, and the
statement is rolled back. Likewise, any attempt to apply a new constraint to a
populated table also results in an error if any existing row violates the new constraint.

Constraints can be created and, in most cases, modified with a number of different
status values. The options include enabled or disabled, which determine if the
constraint is checked when rows are added, modified, or removed; and deferred or
immediate, which cause constraint validation to occur at the end of a transaction or at
the end of a statement, respectively.

You can enforce rules by defining integrity constraints more reliably than by adding
logic to your application. Oracle Database XE can check that all the data in a table
obeys an integrity constraint faster than an application can.

Constraints can be defined at the column level or at the table level:

■ Column-level constraints are syntactically defined where the column to which the
constraint applies is defined. These constraints determine what values are valid in
the column. When creating a table with Object Browser, the only constraint
defined at the column level is the NOT NULL constraint, which requires that a value
is included in this column for every row in the table.

See Also:

■ Oracle Database Administrator's Guide for information about
managing tables

■ Oracle Database Concepts for conceptual information about tables
types

■ Oracle Database SQL Reference for the syntax required to create and
alter tables

■ Oracle Database Express Edition Application Express User’s Guide for
information about managing tables

Managing Tables

2-14 Oracle Database Express Edition 2 Day Developer Guide

■ Table-level constraints are syntactically defined at the end of the table definition
and apply to the entire table. With Object Browser, you can create primary key,
foreign key, unique, and check constraints.

This section contains the following topics:

■ Column Default Value on page 2-14

■ NOT NULL Constraint on page 2-14

■ Check Constraint on page 2-14

■ Unique Constraint on page 2-15

■ Primary Key Constraint on page 2-15

■ Foreign Key Constraint on page 2-16

Column Default Value
You can define default values that are values that are automatically stored in the
column whenever a new row is inserted without a value being provided for the
column. When you define a column with a default value, any new rows inserted into
the table store the default value unless the row contains an alternate value for the
column. Assign default values to columns that contain a typical value. For example, in
the employees table, if most employees work in the sales department, then the
default value for the department_id column can be set to the ID of the sales
department.

Depending on your business rules, you might use default values to represent zero or
FALSE, or leave the default values as NULL to signify an unknown value. Default
values can be defined using any literal, or almost any expression including SYSDATE,
which is a SQL function that returns the current date. For an example of the use of the
DEFAULT column value, see Example 3–34 on page 3-23.

NOT NULL Constraint
The NOT NULL constraint is a column-level constraint that requires that the column
must contain a value whenever a row is inserted or updated. The NOT NULL
constraint must be defined as part of the column definition.

Use a NOT NULL constraint when the data is required for the integrity of the database.
For example, if all employees must belong to a specific department, then the column
that contains the department identifier should be defined with a NOT NULL constraint.
On the other hand, do not define a column as NOT NULL if the data might be
unknown or might not exist when rows are added or changed, for example, the
second, optional line in a mailing address.

A primary key constraint automatically adds a NOT NULL constraint to the columns
included in the primary key, in addition to enforcing uniqueness among the values.

For an example of the use of the NOT NULL constraint, see "Creating a Table" on
page 2-16.

Check Constraint
A check constraint requires that a column (or combination of columns) satisfies a
condition for every row in the table. A check constraint must be a Boolean expression
that is evaluated using the column value about to be inserted or updated to the row.

See Also: Oracle Database Concepts for more information about
constraints

Managing Tables

Managing Database Objects 2-15

Use check constraints when you need to enforce integrity rules based on logical
expressions, such as comparisons. Never use CHECK constraints when any of the
other types of integrity constraints can provide the necessary checking.

Examples of check constraints include the following:

■ A check constraint on employee salaries so that no salary value is less than 0.

■ A check constraint on department locations so that only the locations Boston,
New York, and Dallas are allowed.

■ A check constraint on the salary and commissions columns to prevent the
commission from being larger than the salary.

For an example of the use of the check constraint, see "Adding a Check Constraint" on
page 2-19.

Unique Constraint
A unique constraint requires that every value in a column be unique. That is, no two
rows can have duplicate values in a specified column or combination of columns.

Choose columns for unique constraints carefully. The purpose of these constraints is
different from that of primary keys. Unique key constraints are appropriate for any
column where duplicate values are not allowed. Primary keys identify each row of the
table uniquely, and typically contain values that have no significance other than being
unique. In the employees table, the email column has a unique key constraint
because it is important that the e-mail address for each employee is unique. Note that
the email column has a NOT NULL constraint.

Some examples of good unique keys include:

■ An employee social security number, where the primary key might be the
employee number

■ A truck license plate number, where the primary key might be the truck number

■ A customer phone number, consisting of the two columns area_code and
local_phone, where the primary key might be the customer number

■ A department name and location, where the primary key might be the department
number

For an example of the use of the unique constraint, see "Adding a Unique Constraint"
on page 2-20.

Primary Key Constraint
A primary key requires that a column (or combination of columns) be the unique
identifier of the row and ensures that no duplicate rows exist. A primary key column
cannot contain NULL values. Each table can have only one primary key.

Use the following guidelines when selecting a primary key:

■ Whenever practical, create a sequence number generator to generate unique
numeric values for your primary key values. See "Managing Sequences" on
page 2-34.

■ Choose a column whose data values are unique, because the purpose of a primary
key is to uniquely identify each row of the table.

■ Choose a column whose data values are never changed. A primary key value is
only used to identify a row in the table, and its data should never be used for any
other purpose. Therefore, primary key values should rarely or never be changed.

Managing Tables

2-16 Oracle Database Express Edition 2 Day Developer Guide

■ Choose a column that does not contain any null values. A PRIMARY KEY
constraint, by definition, does not allow any row to contain a null value in any
column that is part of the primary key.

■ Choose a column that is short and numeric. Short primary keys are easy to type.

■ Minimize your use of composite primary keys. A composite primary key
constraint applies to more than one column. Although composite primary keys are
allowed, they do not satisfy all of the other recommendations. For example,
composite primary key values are long and cannot be assigned by sequence
numbers.

For an example of the use of the primary key constraint, see "Adding a Primary Key
Constraint" on page 2-21.

Foreign Key Constraint
Whenever two tables contain one or more common columns, you can enforce the
relationship between the tables through a referential integrity constraint with a foreign
key. A foreign key requires that all column values in the child table exist in the parent
table. The table that includes the foreign key is called the dependent or child table. The
table that is referenced is called the parent table.

An example of a foreign key constraint is when the department column of the
employees table (child) must contain a department ID that exists in the
departments table (parent).

Foreign keys can be made up of multiple columns. Such a composite foreign key must
reference a composite primary or unique key of the exact same structure, with the
same number of columns and the same datatypes. Because composite primary and
unique keys are limited to 32 columns, a composite foreign key is also limited to 32
columns. You must use the same datatype for corresponding columns in the parent
and child tables. The column names do not need to match.

For performance purposes, you might want to add an index to the columns you define
in a child table when adding a foreign key constraint. Oracle Database XE does not do
this for you automatically. See "Indexes for Use with Constraints" on page 2-28 and
"Creating an Index" on page 2-29.

When you create a foreign key constraint on a table, you can specify the action to take
when rows are deleted in the referenced (parent) table. These actions include:

■ Disallow Delete - Blocks the delete of rows from the referenced table when there
are dependent rows in the table.

■ Cascade Delete - Deletes the dependent rows from the table when the
corresponding parent table row is deleted from the referenced table.

■ Null on Delete - Sets the foreign key column values in the table to null values
when the corresponding table row is deleted from the referenced table.

For an example of the use of the foreign key constraint, see "Adding a Foreign Key
Constraint" on page 2-22.

Creating a Table
You can use the Object Browser page to create a table. The procedure in this section
creates a table that contains personal information for employees in the employees
sample table.

To create a table:

Managing Tables

Managing Database Objects 2-17

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the object list under Create, select Table.

4. In the Table Name field, enter the name of the table (personal_info).

5. Enter the following column names and datatypes and enable the NOT NULL
constraint where designated. The NOT NULL constraint specifies that a value must
be entered in the column.

employee_id NUMBER(6,0) NOT NULL
birth_date DATE NOT NULL
social_security_id VARCHAR2(12) NOT NULL
marital status VARCHAR2(10)
dependents_claimed NUMBER(2,0)
contact_name VARCHAR2(45) NOT NULL
contact_phone VARCHAR2(20) NOT NULL
contact_address VARCHAR2(80) NOT NULL

For information about datatypes, see "Using Datatypes" on page 2-7. For
information about the NOT NULL constraint, see "NOT NULL Constraint" on
page 2-14.

Ensure that Preserve Case has been left unchecked so that names are stored in the
default manner (uppercase), which avoids any extra overhead.

6. After you have enter the column information, click Next.

7. On the Primary Key page, do not create a key at this time. Click the Next button.
See "Adding a Primary Key Constraint" on page 2-21.

8. On the Foreign Key page, do not create a key at this time. Click the Next button.
See "Adding a Foreign Key Constraint" on page 2-22.

Managing Tables

2-18 Oracle Database Express Edition 2 Day Developer Guide

9. On the Constraints page, do not create a constraint at this time. Click the Finish
button. See "Adding a Unique Constraint" on page 2-20 and "Adding a Check
Constraint" on page 2-19.

10. On the Create Table page, click the SQL button to view the SQL statements that
produce the table. This option shows the statement even if it is incomplete. You
need to complete your input to see the complete SQL statement when using this
option.

11. Click the Create button to create the table.

Adding a Column To a Table
You can use Object Browser to add columns to a table.

To add a column to a table:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Object list, select Tables and then click the personal_info table that you
previously created.

4. Click Add Column.

5. Enter the data to add a column named contact_email. The column can be
NULL. The datatype is VARCHAR2 with a length of 30.

6. Click the Next button.

7. Click the Finish button to complete the action.

Modifying a Column In a Table
You can use Object Browser to modify a column in a table.

To modify a column in a table:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Object list, select Tables and then click the personal_info table that you
previously created.

4. Click Modify Column.

Managing Tables

Managing Database Objects 2-19

5. Select the contact_email column. Change the datatype to VARCHAR2 with a
length of 40. Change the column to be NOT NULL.

6. Click the Next button.

7. Click the Finish button to complete the action.

Dropping a Column From a Table
You can use Object Browser to delete columns in a table. Before you do delete a
column, make sure the data in that column is not going to be needed later.

To delete a column:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Object list, select Tables then click the personal_info table that you
previously created.

4. Click Drop Column.

5. Select the contact_address column and click the Next button.

6. Click the Finish button to complete the action.

Adding a Check Constraint
You can use Object Browser to add a constraint to a table after it has been created. In
the personal_info table, you might want to check that the number of dependents
claimed is always greater than 0. For information about the check constraint, see
"Check Constraint" on page 2-14.

To add a check constraint:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Object list, select Tables then click the personal_info table that you
previously created.

4. Click the Constraints tab.

5. Click the Create button.

Managing Tables

2-20 Oracle Database Express Edition 2 Day Developer Guide

6. On the Add Constraint page, use the following information to complete the page.

Constraint Name: PERSONAL_INFO_CHECK_CON
Constraint Type: Check
Constraint on Column: DEPENDENTS_CLAIMED(NUMBER)
Constraint Expression: > 0

7. Click the Next button.

8. Click the Finish button to complete the action.

Adding a Unique Constraint
You can use Object Browser to add a constraint to a table after it has been created. In
the personal_info table, you might want to enforce the rules so that each social
security ID is unique. For information about the unique constraint, see "Unique
Constraint" on page 2-15.

To add a unique constraint:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Object list, select Tables then click the personal_info table that you
previously created.

4. Click the Constraints tab.

5. Click the Create button.

6. On the Add Constraint page, use the following information to complete the page.

Constraint Name: PERSONAL_INFO_UNIQUE_CON
Constraint Type: Unique
Unique Column 1: SOCIAL_SECURITY_ID(VARCHAR2)

Managing Tables

Managing Database Objects 2-21

7. Click the Next button.

8. Click the Finish button to complete the action.

Adding a Primary Key Constraint
You can use Object Browser to add a primary key constraint on a column in a table.
The primary key uniquely identifies each record (row) that is inserted in the table and
ensures that no duplicate rows exist. For information about the primary key constraint,
see "Primary Key Constraint" on page 2-15.

To add a primary key constraint:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Object list, select Tables then click the personal_info table that you
previously created.

4. Click the Constraints tab.

5. Click the Create button.

6. On the Add Constraint page, use following information to complete the page:

Constraint Name: PERSONAL_INFO_PKEY
Constraint Type: Primary Key
Primary Key Column 1: EMPLOYEE_ID(NUMBER)

Managing Tables

2-22 Oracle Database Express Edition 2 Day Developer Guide

7. Click the Next button.

8. Click the Finish button to complete the action.

Adding a Foreign Key Constraint
You can use Object Browser to add a foreign key constraint on a column in one table to
a column in a reference table. This ensures that a value inserted in a column matches a
valid value in the reference table. For information about the foreign key constraint, see
"Foreign Key Constraint" on page 2-16.

To add a foreign key constraint:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Object list, select Tables then click the personal_info table that you
previously created.

4. Click the Constraints tab.

5. Click the Create button.

6. On the Add Constraint page, select Foreign Key for the Constraint Type. Use
following information to complete the page:

Constraint Name: PERSONAL_INFO_FKEY
Foreign Key Column: EMPLOYEE_ID
Reference Table Name: EMPLOYEES
Reference Table Column List: EMPLOYEE_ID

Do not check the Preserve Case box. Check the On Delete Cascade box.

7. Click the Next button.

8. Click the Finish button to complete the action.

Managing Tables

Managing Database Objects 2-23

Viewing Existing Constraints
You can use Object Browser to view existing constraints on a table.

To view constraints:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Object list, select Tables then click the personal_info table that you
previously created.

4. Click the Constraints tab to view a list of the constraints on the personal_info
table and information about the constraints.

Disabling and Enabling a Constraint
You can use Object Browser to disable or enable a constraint.

To disable and enable a constraint:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Object list, select Tables then click the personal_info table that you
previously created.

4. Click the Constraints tab.

5. Click the Disable button.

6. On the Disable Constraint page, select the check constraint that you created on the
dependents_claimed column (PERSONAL_INFO_CHECK_CON). See "Viewing
Existing Constraints" on page 2-23 to determine the name of the constraint.

7. Click the Next button.

8. Click the Enable button on the Constraints tab.

Managing Tables

2-24 Oracle Database Express Edition 2 Day Developer Guide

9. On the Enable Constraint page, select the check constraint that you created on the
dependents_claimed column (PERSONAL_INFO_CHECK_CON). See "Viewing
Existing Constraints" on page 2-23 to determine the name of the constraint.

10. Click the Next button.

11. Click the Finish button to complete the action.

Dropping a Constraint
You can use Object Browser to drop constraints from a table. Although you do not
have to disable a constraint before dropping it, you can determine whether the
constraint can be dropped by attempting to disable it first. If a constraint in a parent
table enforces a foreign key constraint in a child table, and if the child table contains
dependent rows, then the constraint cannot always be disabled or dropped.

Continuing with the current example, you drop the check constraint that you created
earlier in the section, "Adding a Check Constraint" on page 2-19.

To drop a constraint:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Object list, select Tables then click the personal_info table that you
previously created.

4. Click the Constraints tab.

5. Click the Drop button.

6. On the Drop Constraint page, select the check constraint that was created on the
contact_email column that specifies a NOT NULL constraint. See "Viewing
Existing Constraints" on page 2-23 to determine the name of the constraint, such as
SYS_C004180.

7. Click the Next button.

8. Click the Finish button to complete the action.

Adding Data to a Table
You can add (or insert) a row of data to a table with Object Browser.

To add data to a table:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Object list, select Tables then click the personal_info table that you
previously created.

4. Click Data.

5. Click the Insert Row button.

6. On the Create Row page, enter the following values:

employee_id: 142
birth_date: 01-SEP-65
social_security_id: 555-11-4444

Managing Tables

Managing Database Objects 2-25

marital_status: Married
dependents_claimed: 4
contact_name: Marilyn Davies
contact_phone: 15552229999
contact_email: marilyn.davies@mycompany.com

Note that when you add the data to the personal_info table, the values must
conform to any constraints on the table. For example, the contact_email value
must be 40 characters or less and the employee_id value must match a value in
the employee_id column of the employees table. If data is entered that violates
any constraint, then an error displays when you attempt to create a row.

7. Click the Create and Create Another button to insert the row of data and create
another row in the table.

8. In the Create Row page, enter the following values:

employee_id: 143
birth_date: 01-MAR-72
social_security_id: 555-77-4444
marital_status: Single
dependents_claimed: 1
contact_name: Carolyn Matos
contact_phone: 15553338888
contact_email: carolyn.matos@myinternet.com

9. Click the Create button to insert the row of data.

Modifying Data in a Table
You can use the Object Browser page to modify data in a table.

To modify data:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Object list, select Tables then click the personal_info table that you
previously created.

Managing Indexes

2-26 Oracle Database Express Edition 2 Day Developer Guide

4. Click Data.

5. Click Edit next to employee_id equal to 142.

6. Change the value of phone_number to 15551118888.

7. Click the Apply Changes button.

Removing a Row in a Table
You can use Object Browser to remove a row from a table.

To remove a row:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Object list, select Tables then click the personal_info table that you
previously created.

4. Click Data.

5. Click Edit next to employee_id equal to 143.

6. Click the Delete button to remove this row from the table.

7. Click OK to confirm the delete action.

Dropping a Table
If you no longer need a table or its contents, then you can drop the table using Object
Browser. Be certain that you do not need the data in the table before you drop it. It
may be difficult and time-consuming to retrieve the records, if they can be retrieved,
after you execute the drop operation.

To test this procedure, follow the procedure in "Creating a Table" on page 2-16 to create
a table.

To drop a table:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Object list, select Tables then click the personal_info table that you
previously created.

4. Click Drop.

5. Click the Finish button to complete the action.

Managing Indexes
Indexes are optional structures associated with tables. You can create them to improve
query performance. Just as the index in this book helps you to quickly locate specific
information, an Oracle Database XE index provides a quick access path to table data.
Before you add additional indexes, examine the performance of your database. You
can then compare performance after the new indexes are added.

You can create indexes on one or more columns of a table. After an index is created, it
is automatically maintained and used by Oracle Database XE. Changes to the structure

Managing Indexes

Managing Database Objects 2-27

of a table or data in a table, such as adding new rows, updating rows, or deleting rows,
are automatically incorporated into all relevant indexes.

This section contains the following topics:

■ Index Types on page 2-27

■ Indexes for Use with Constraints on page 2-28

■ Guidelines for Creating Indexes on page 2-28

■ Creating an Index on page 2-29

■ Displaying an Index for a Table on page 2-30

■ Dropping an Index on page 2-31

Index Types
Indexes can be categorized in a number of ways. The primary ways are:

■ Normal Index

A standard, B-tree index contains an entry for each value in the index key along
with an address to the row where the value is stored. A B-tree index is the default
and most common type of index in an Oracle database.

■ Text Index

An index is used by Oracle Text for text searching, such as full-text retrieval over
documents and Web pages.

■ Single-Column and Concatenated Indexes

You can create an index on one column, which is called a single-column index, or
on multiple columns, which is called a concatenated index. Concatenated indexes
are useful when all of the columns are likely to be included in the WHERE clause of
frequently executed SQL statements.

For concatenated indexes, define the columns used in the index carefully so that
the column with the fewest duplicate values is named first, the column with the
next fewest duplicate values is second, and so on. Columns with many duplicate
values or many rows with null values should not be included or should be the last
named columns in the index definition.

■ Ascending and Descending Indexes

The default search through an index is from the lowest to highest value where
character data is sorted by ASCII values, numeric data is sorted from smallest to
largest number, and date data is sorted from the earliest to the latest value. This
default behavior is performed by indexes created as ascending indexes. You can
reverse the search order of an index by creating the related index with the
descending option.

■ Column and Function-Based Indexes

Typically, an index entry is based on the values found in the columns of the table.
This is a column index. Alternatively, you can create a function-based index in
which the indexed value is derived from the table data. For example, to find
character data that can be in mixed case, you could use a function-based index to
search for the values as if they were all in uppercase characters.

See Also: Oracle Database Express Edition Application Express User’s
Guide for information about managing indexes

Managing Indexes

2-28 Oracle Database Express Edition 2 Day Developer Guide

Indexes for Use with Constraints
All enabled unique and primary keys require corresponding indexes. Oracle Database
XE automatically creates the indexes necessary to support data integrity defined with
constraints when you add or enable those constraints. For example, a column with the
constraint that its values be unique causes Oracle Database XE to create a unique key
index.

Note the following:

■ Constraints use existing indexes where possible, rather than creating new ones.

■ Unique and primary keys can use non unique and unique indexes. In addition,
they can use just the first few columns of non unique indexes.

■ At most, one unique or primary key can use each non unique index.

■ The column orders in the index and the constraint do not need to match.

■ For performance purposes, you might want to add an index to the columns you
define in a child table when adding a foreign key constraint. Oracle Database XE
does not do this for you automatically.

See "Ensuring Data Integrity in Tables With Constraints" on page 2-13.

Guidelines for Creating Indexes
You can create indexes on columns to speed up queries. Indexes provide faster access
to data for operations that return a small portion of the rows of in a table.

You can create an index on any column; however, if the column is not used in any of
these situations, creating an index on the column does not increase performance, and
the index takes up resources unnecessarily.

This section contains the following topics:

■ Index the Correct Tables and Columns on page 2-28

■ Limit the Number of Indexes for Each Table on page 2-29

■ Drop Indexes That Are No Longer Required on page 2-29

Index the Correct Tables and Columns
Use the following guidelines to determine when to create an index on a table or
column:

■ Create an index on the columns that are used for joins to improve join
performance.

■ You might want to create an index on a foreign key. See "Foreign Key Constraint"
on page 2-16 for more information.

■ Small tables do not require indexes. However, if a query is taking too long, then
the table might have grown.

Columns with one or more of the following characteristics are good candidates for
indexing:

■ Values in the column are unique, or there are few duplicate values.

■ There is a wide range of values.

■ The column contains many nulls, but queries often select all rows that have a
value.

Managing Indexes

Managing Database Objects 2-29

Columns that contain many null values are less suitable for indexing if you do not
search on the non-null values.

Limit the Number of Indexes for Each Table
The more indexes, the more overhead is incurred as the table is altered. When rows are
inserted or deleted, all indexes on the table must be updated. When a column is
updated, all indexes on the column must be updated.

You must weigh the performance benefit of indexes for queries against the
performance overhead of updates. For example, if a table is primarily read-only, you
might use more indexes; but, if a table is heavily updated, you might use fewer
indexes.

Drop Indexes That Are No Longer Required
You might drop an index if:

■ It does not speed up queries. The table might be very small, or there might be
many rows in the table but very few index entries.

■ The queries in your applications do not use the index.

You cannot drop an index that was created through a constraint. You must drop the
constraint and then the index is dropped also.

If you drop a table, then all associated indexes are dropped. To drop an index, the
index must be contained in your schema or you must have the DROP ANY INDEX
system privilege.

Creating an Index
You can create an index with the Object Browser page. To create an index, you specify
one or more columns to be indexed and the type of index you want to create.

In the following example, an index is created on the hire_date column of the
employees table. When the hire_date column is used as a condition for retrieving
data, an index on that column increases the speed of those queries.

To create an index:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Detail pane, select Index from the Create menu.

4. In the Table Name field, enter employees.

5. Set the Type of Index to Normal, then click the Next button. See "Index Types" on
page 2-27.

6. In the Index Name field, enter EMPLOYEES_HIREDATE_IDX.

7. Do not check the Preserve Case box.

8. Ensure that Uniqueness is set to Non Unique. The hire_date column can have
duplicate values.

9. In the Index Column 1 list, select HIRE_DATE, then click the Next button.

Managing Indexes

2-30 Oracle Database Express Edition 2 Day Developer Guide

10. Click the SQL button to view the SQL statement that creates the index.

11. Click the Finish button to complete the action.

Displaying an Index for a Table
You can use Object Browser to display information about an index on a specific table.

To display information for an index:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Object list, select Tables, then click the employees tables.

4. Click Indexes to display the indexes for the table.

5. In the Index list, click the EMP_NAME_IX index to display details for that index.
After viewing the object details for the index, click the SQL tab to display the SQL
statement used to create the index.

Managing Views

Managing Database Objects 2-31

6. Click other indexes in the Object list to display information about those indexes.

Dropping an Index
If you no longer need an index, you can use the Object Browser page to drop the
index. See "Drop Indexes That Are No Longer Required" on page 2-29.

To test this procedure, follow the procedure in "Creating an Index" on page 2-29 to
create an index.

To drop an index:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Object list, select Indexes, then click the EMPLOYEES_HIREDATE_IDX that
you previously created.

4. Click the Drop button to drop the selected index.

5. Click the Finish button to complete the action.

Managing Views
Views are customized presentations of data in one or more tables or other views. You
can think of them as stored queries. Views do not actually contain data, but instead
derive their data from the tables upon which they are based. These tables are referred
to as the base tables of the view.

Note: You cannot drop an index that is currently used to enforce a
constraint. You must disable or drop the constraint and then, if the
index is not dropped as a result of that action, drop the index.

Managing Views

2-32 Oracle Database Express Edition 2 Day Developer Guide

As with tables, views can be queried, updated, inserted into, and deleted from, with
some restrictions. All operations performed on a view affect the base tables of the
view. Views provide an additional level of security by restricting access to a
predetermined set of rows and columns of a table. They also hide data complexity and
store complex queries.

This section contains the following topics:

■ Creating a View on page 2-32

■ Displaying a View on page 2-33

■ Dropping a View on page 2-33

Creating a View
You can use Object Browser to create a view. The following example creates a view
derived from the departments and employees tables to display department
information along with the corresponding name of the manager.

This view combines the department_id, department_name, and manager_id
columns from the departments table with the employee_id, first_name, and
last_name columns of the employees table.

The tables are joined from the manager_id of the departments table to the
employee_id of the employees table. This ensures that the corresponding first and
last name of a manager is displayed in the view.

To create a view:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Detail pane, select Views from the Create menu.

4. In the View Name field, enter the name of the view (my_emp_view).

5. Click Query Builder to build the query for the view.

6. Click the departments table, and select the department_id and department_
name columns.

7. Click the employees table, and select the employee_id, first_name, and
last_name columns.

8. Click the blank box to the right of manager_id in the departments table to
choose this column for a join with the employees table.

9. Click the blank box to the right of the employee_id in the employees table to
choose this as the corresponding column for the join with manager_id of the
departments table. Note the line that is added to the diagram connecting the
two tables.

See Also: Oracle Database Express Edition Application Express User’s
Guide for information about managing views

Managing Views

Managing Database Objects 2-33

10. Click the Run button to see the results of querying this view.

11. Click the Return button to return to Object Browser.

12. Click the Next button.

13. Click the SQL button to view the SQL statement that creates the view.

14. Click the Create button to create the view.

Displaying a View
You can use Object Browser to display information about a view.

To display information about a view:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Object list, select Views then click the EMP_DETAILS_VIEW view.

4. Click the SQL button to view the SQL statement that created the view.

5. Click the Data button to view the data displayed in the view.

Dropping a View
If you no longer need a view, then you can use the Object Browser page to drop the
view. To test this procedure, follow the procedure in "Creating a View" on page 2-32 to
create a view.

To drop a view:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Object list, select Views then click the my_emp_view view that you
previously created.

4. Click the Drop button.

5. Click the Finish button to complete the action.

Managing Sequences

2-34 Oracle Database Express Edition 2 Day Developer Guide

Managing Sequences
A sequence is a database object that generates unique sequential values. These values
are often used for primary and unique keys. Using a sequence generator to provide the
value for a primary key in a table guarantees that the key value is unique.

You can refer to sequence values in SQL statements with these pseudocolumns:

■ CURRVAL: Returns the current value of a sequence

■ NEXTVAL: Increments the sequence and returns the next value

You must qualify CURRVAL and NEXTVAL with the name of the sequence, such as
employees_seq.CURRVAL or employees_seq.NEXTVAL.

When you create a sequence, you can define its initial value and the increment
between its values. The first reference to NEXTVAL returns the initial value of the
sequence. Subsequent references to NEXTVAL increment the sequence value by the
defined increment and return the new value. Any reference to CURRVAL returns the
current value of the sequence, which is the value returned by the last reference to
NEXTVAL.

Before you use CURRVAL for a sequence in your session, you must first initialize the
sequence with NEXTVAL.

This section contains the following topics:

■ Creating a Sequence on page 2-34

■ Displaying a Sequence on page 2-35

■ Dropping a Sequence on page 2-35

For examples of managing sequences using SQL statements, see "Creating and
Dropping a Sequence With SQL" on page 3-26.

Creating a Sequence
You can use the Object Browser page to create a sequence.

To create a sequence:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Detail pane, select Sequence from the Create menu.

4. In the Sequence Name field, enter the name of the new sequence (my_sequence).

5. In the Start With field, enter 1000. This starts the sequence with a value of 1000.

6. For the other fields on the page, use the default values. Click the Next button.

7. Click the SQL button to view the SQL statement that creates this sequence.

8. Click the Finish button to create the sequence.

After creating and initializing a sequence, you can access and use the current value of
the sequence. For an example of the use of a sequence in a SQL statement to insert data
into a table, see Example 3–42 on page 3-26.

See Also: Oracle Database Express Edition Application Express User’s
Guide for information about managing sequences

Managing Synonyms

Managing Database Objects 2-35

Displaying a Sequence
You can use the Object Browser page to display information about a sequence.

To display information about a sequence:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Object list, select Sequences then click the EMPLOYEES_SEQ sequence that
was created for use with the employees table.

4. Click other sequences in the Object list to display information about those
sequences.

Dropping a Sequence
You can use the Object Browser page to drop a sequence. To test this procedure, follow
the procedure in "Creating a Sequence" on page 2-34 to create a sequence.

To drop a sequence:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Object list, select Sequences then click the my_sequence that you
previously created.

4. Click the Drop button to drop the selected sequence.

5. Click the Finish button to complete the action.

Managing Synonyms
A synonym is an alias for any schema object such as a table or view. Synonyms
provide an alternative name for a database object and can be used to simplify SQL
statements for database users. For example, you can create a synonym named emps as
an alias for the employees table in the HR schema.

If a table in an application has changed, such as the personnel table has replaced the
employees table, you can use the employees synonym to refer to the personnel
table so that the change is transparent to the application code and the database users.

Managing Synonyms

2-36 Oracle Database Express Edition 2 Day Developer Guide

Because a synonym is simply an alias, it does not require any storage in the database
other than its definition.

You can create both public and private synonyms. A public synonym can be accessed
by every user in a database. A private synonym is in the schema of a specific user who
has control over its availability to others.

This section contains the following topics:

■ Creating a Synonym on page 2-36

■ Displaying a Synonym on page 2-36

■ Dropping a Synonym on page 2-36

For examples of managing synonyms using SQL statements, see "Creating and
Dropping a Synonym With SQL" on page 3-27.

Creating a Synonym
You can use the Object Browser page to create a synonym.

To create a synonym:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Detail pane, select Synonym from the Create menu.

4. In the Synonym Name field, enter the name of the synonym (emps).

5. In the Object field, enter employees.

6. For the other fields on the page, use the default values. Click the Next button.

7. Click the SQL button to see the SQL statement that creates this sequence.

8. Click the Finish button to create the synonym.

Displaying a Synonym
You can use the Object Browser page to display information about a synonym.

To display information about a synonym:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Object list, select Synonyms then click the emps synonym that you
previously created to display object details for that synonym.

Dropping a Synonym
You can use the Object Browser page to drop a synonym. To test this procedure for
dropping a synonym, follow the procedure in "Creating a Synonym" on page 2-36 to
create a synonym.

To drop a synonym:

See Also: Oracle Database Express Edition Application Express User’s
Guide for information about managing synonyms

Managing Synonyms

Managing Database Objects 2-37

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Object list, Select Synonyms then click the emps synonym that you
previously created.

4. Click the Drop button to drop the selected synonym.

5. Click the Finish button to complete the action.

Managing Synonyms

2-38 Oracle Database Express Edition 2 Day Developer Guide

Using SQL 3-1

3
Using SQL

This section discusses how to use Structured Query Language (SQL) with Oracle
Database Express Edition, including how to retrieve and manipulate data, use SQL
functions, and create database objects.

This section contains the following topics:

■ Overview of SQL on page 3-1

■ Running SQL Statements on page 3-2

■ Retrieving Data With Queries on page 3-5

■ Using Pseudocolumns, Sequences, and SQL Functions on page 3-12

■ Manipulating Data With SQL Statements on page 3-20

■ Using Transaction Control Statements on page 3-21

■ Using Data Definition Language Statements to Manage Database Objects on
page 3-22

Overview of SQL
SQL is nonprocedural language for accessing a database. You run SQL statements
commands to perform various tasks, such as retrieving data from tables in Oracle
Database XE. The SQL language automatically handles how to navigate the database
and perform the desired task. All database operations are performed using SQL
statements.

With SQL statements you can perform the following:

■ Query, insert, and update data in tables

■ Format, perform calculations on, store, and print from query results

■ Examine table and object definitions

See Also:

■ Oracle Database SQL Reference for detailed information about SQL
statements and other parts of SQL, such as operators, functions,
and format models

■ Oracle Database Concepts for conceptual information about SQL

■ SQL*Plus User's Guide and Reference for information about
SQL*Plus, Oracle's version of SQL

■ Oracle Database Sample Schemas for information about the HR
sample schema that is used for examples in this chapter

Running SQL Statements

3-2 Oracle Database Express Edition 2 Day Developer Guide

Oracle SQL statements are divided into several categories:

■ Data Manipulation Language (DML) statements

These statements query, insert, update, and delete data in tables.

■ Transaction Control statements

These statements commit or roll back the processing of transactions. A group of
changes that you make is referred to as a transaction.

■ Data Definition Language (DDL) statements

These statements create, alter, and drop database objects.

A statement consists partially of SQL reserved words, which have special meaning in
SQL and cannot be used for any other purpose. For example, SELECT and UPDATE are
reserved words and cannot be used as table names. For a list of SQL reserved, see
Appendix B, "Reserved Words".

A SQL statement is an instruction. The statement must be the equivalent of a complete
SQL sentence, for example:

SELECT last_name, department_id FROM employees;

Running SQL Statements
You can enter and run SQL statements with the SQL Commands page, Script Editor
page, or SQL Command Line (SQL*Plus).

Using the SQL Commands and Script Editor pages are described in this section. The
SQL Commands page is a simpler interface and easier to use.

Both SQL Commands and Script Editor pages enable you to save your SQL statements
as a script file in a database repository for future use. You can run multiple SQL
statements in the Script Editor page. Script Editor also enables you to download the
script to the local file system, which can be run as a SQL script with SQL Command
Line. For information about running SQL statements or SQL scripts with SQL
Command Line, see Appendix A, "Using SQL Command Line".

This section contains the following topics:

■ Running SQL Statements on the SQL Commands Page on page 3-2

■ Running SQL Statements in the Script Editor Page on page 3-3

Running SQL Statements on the SQL Commands Page
To enter and run SQL statements in the SQL Commands page:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4. To run the examples in this guide, log in as user HR with your
password for the HR account.

2. On the Database Home Page, click the SQL icon to display the SQL page.

3. Click the SQL Commands icon to display the SQL Commands page.

4. On the SQL Commands page, enter the SQL statements in Example 3–1 on
page 3-5. Note that SQL statements are terminated with a semi colon (;) in the
examples. The semi colon is required when running the SQL statements in a SQL

See Also: Oracle Database SQL Reference for more information about
the types of SQL statements

Running SQL Statements

Using SQL 3-3

script or at the SQL Command Line prompt, but it is optional on the SQL
Commands page.

5. Select (highlight) the SQL statement that you want to run, then click Run to run
the statement and display the results.

6. If you want to save the SQL statements for future use, click the Save button.

7. In the Name field, enter a name for the saved SQL statements. You can also enter
an optional description. Click the Save button to save the SQL statement.

8. To access saved SQL statements, click the Saved SQL tab and select the name of
the saved SQL statement that you want to access.

Running SQL Statements in the Script Editor Page
You can enter SQL statements on the Script Editor page and create a SQL script that
can be saved in the database. The script can be downloaded to the local file system,
and can be run from SQL Command Line (SQL*Plus). For information about running
SQL scripts from SQL Command Line, see "Running Scripts From SQL Command
Line" on page A-4.

To access and run SQL statements on the SQL Script Editor page:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4. To run the examples in this guide, log in as user HR with your
password for the HR account.

2. On the home page, click the SQL icon to display the SQL page.

3. Click the SQL Scripts icon to display the Script Editor page.

4. Click the Create button to create a SQL script.

See Also: Oracle Database Express Edition Application Express User’s
Guide for detailed information about using SQL Commands

Running SQL Statements

3-4 Oracle Database Express Edition 2 Day Developer Guide

5. In the Script Name field, enter a name (my_sql_script) for the script.

6. In the Script Editor entry area, enter the SQL statements and comments in
Example 3–2 on page 3-6.

7. Click the Run button on the Script Editor page to begin the processing of the
statements in the script.

The Run Script page displays information about the script, including any errors or
SQL Command Line (SQL*Plus) commands that will be ignored when the script is
run.

8. Click the Run button on the Run Script page to confirm your request, and start
running the script.

9. Click the View Results icon for the script (my_sql_script) on the Manage
Scripts page to display the results of the script.

10. Select the Detail view and enable all the Show options on the Results page to
display details about the script results.

11. Click the Edit Script button to continue working on the SQL script.

12. When you are finished updating the script, click the Save button to save the script
file in the database repository for future use.

Retrieving Data With Queries

Using SQL 3-5

13. To save the SQL script on the local file system, click the Download button, and
choose the location for the script file. Note that the .sql extension is appended to
the SQL script name.

Retrieving Data With Queries
You can retrieve data from rows stored in one or more database tables or views with a
query using the SQL SELECT statement. The SELECT statement retrieves all of or part
of the column data from rows depending on the conditions that you specify in the
WHERE clauses. The group of columns that are selected from a table is referred to as the
SELECT list.

This section contains the following topics:

■ Displaying Data Using the SELECT Statement on page 3-5

■ Using a Column Alias to Change Headings When Selecting Data on page 3-6

■ Restricting Data Using the WHERE Clause on page 3-6

■ Using Regular Expressions When Selecting Data on page 3-8

■ Sorting Data Using the ORDER BY Clause on page 3-9

■ Displaying Data From Multiple Tables on page 3-10

■ Using Bind Variables With the SQL Commands Page on page 3-12

Displaying Data Using the SELECT Statement
With the SQL SELECT statement, you can query and display data in tables or views in
a database.

Example 3–1 shows how to use SELECT to retrieve data from the employees and
departments tables. In this example, the data for all columns in a row (record) of the
tables are retrieved using the wildcard (*) notation. Note the use of comments to
document the SQL statements. The comments (or remarks) in this example begin with
two hyphens (--), but you can also use rem or REM.

Example 3–1 Using the SQL SELECT Statement to Query All Data From a Table

-- the following uses the wildcard * to retrieve all the columns of data in
-- all rows of the employees table
SELECT * FROM employees;

-- the following uses the wildcard * to retrieve all the columns of data in
-- all rows of the departments table
SELECT * FROM departments;

Example 3–2 shows how to use SELECT to retrieve data for specific columns of the
employees and departments tables. In this example, you explicitly enter the
column names in the SELECT statement. For information about the columns in the
employees and departments table, see "Managing Database Objects With Object
Browser" on page 2-2.

See Also: Oracle Database Express Edition Application Express User’s
Guide for detailed information about using SQL Scripts

See Also: Oracle Database SQL Reference for detailed information
about the SQL SELECT statement

Retrieving Data With Queries

3-6 Oracle Database Express Edition 2 Day Developer Guide

Example 3–2 Using the SQL SELECT Statement to Query Data From Specific Columns

-- the following retrieves data in the employee_id, last_name, first_name columns
SELECT employee_id, last_name, first_name FROM employees;

-- the following retrieves data in the department_id and department_name columns
SELECT department_id, department_name FROM departments;

Example 3–3 shows how to use SELECT to retrieve data from the emp_details_
view view.

Example 3–3 Using the SQL SELECT Statement to Query Data in a View

-- the following retrieves all columns of data in all rows of the emp_details_view
SELECT * FROM emp_details_view;

-- the following retrieves data from specified columns in the view
SELECT employee_id, last_name, job_title, department_name, country_name,
 region_name FROM emp_details_view;

Using a Column Alias to Change Headings When Selecting Data
When displaying the result of a query, SQL normally uses the name of the selected
column as the column heading. You can change a column heading by using a column
alias to make the heading more descriptive and easier to understand.

You can specify the alias after the column name in the SELECT list using a space as a
separator. If the alias contains spaces or special characters, such as number sign # or
dollar sign $, or if it is case-sensitive, enclose the alias in quotation marks " ".

Example 3–4 shows the use of a column alias to provide a descriptive heading for each
of the columns selected in a query.

Example 3–4 Using a Column Alias for a Descriptive Heading in a SQL Query

-- the following retrieves the data in employee_id, last_name, first_name columns
-- and provides column aliases for more descriptive headings of the columns
SELECT employee_id "Employee ID number", last_name "Employee last name",
 first_name "Employee first name" FROM employees;

Restricting Data Using the WHERE Clause
The WHERE clause uses comparison operators to identify specific rows in a table. When
used with the SELECT statement, you can selectively retrieve rows from a table, rather
than retrieving all rows of a table.

 Comparison operators include those listed in Table 3–1.

Table 3–1 Comparison Operators

Operator Definition

=, !=, <> Test for equal to, not equal to, not equal to

>, >=, <, <= Test for greater than, greater than or equal to, less than, less than
or equal to

BETWEEN ... AND ... Checks for a range between and including two values

LIKE Searches for a match in a string, using the wildcard symbols %
(zero or multiple characters) or _ (one character)

IN (), NOT IN () Tests for a match, or not match, in a specified list of values

Retrieving Data With Queries

Using SQL 3-7

Example 3–5 shows how to use SELECT with a WHERE clause and several comparison
operators to retrieve specific rows of data from the employees table.

Example 3–5 Selecting Data With the SQL WHERE Clause to Restrict Data

-- the following retrieves data where the manager_id equals 122
SELECT * FROM employees WHERE manager_id = 122;

-- this retrieves data where the manager_id equals 122 and job_id is ST_CLERK
SELECT * FROM employees WHERE manager_id = 122 AND job_id = 'ST_CLERK';

-- this retrieves employees with managers with IDs between 122 and 125 inclusive
SELECT * FROM employees WHERE manager_id BETWEEN 122 AND 125;

-- this uses LIKE with the wildcard % to retrieve employee data
-- where the last name contains mar somewhere in the name string
SELECT employee_id, last_name FROM employees WHERE last_name LIKE '%mar%';

-- this uses LIKE with the wildcard % to retrieve employee data
-- from the employees table where the last name starts with Mar
SELECT employee_id, last_name FROM employees WHERE last_name LIKE 'Mar%';

-- this retrieves employee data where the commission percentage is not null
SELECT employee_id, last_name FROM employees WHERE commission_pct IS NOT NULL;

-- the following retrieves data where the employee_id equals 125, 130, or 135
SELECT employee_id, last_name, first_name FROM employees
 WHERE employee_id IN (125, 130, 135);

Using Character Literals in SQL Statements
Many SQL statements contain conditions, expressions, and functions that require you
to specify character literal values. By default, you must use single quotation marks
with character literals, such as 'ST_CLERK' or 'Mar%'. This technique can sometimes
be inconvenient if the text itself contains single quotation marks. In such cases, you can
also use the quote-delimiter mechanism, which enables you to specify q or Q followed
by a single quotation mark and then another character to be used as the quotation
mark delimiter.

The quote-delimiter can be any single-byte or multi-byte character except for a space,
tab, or return. If the opening quote-delimiter is a left bracket [, left brace {, left angle
bracket <, or left parenthesis (character, then the closing quote delimiter must be the
corresponding right bracket], right brace }, right angle bracket >, or right parenthesis
) character. In all other cases, the opening and closing delimiter must be identical.

The following character literals use the alternative quoting mechanism:

q'(name LIKE '%DBMS_%%')'
q'#it's the "final" deadline#'
q'<'Data,' he said, 'Make it so.'>'

IS NULL, IS NOT NULL Checks whether a value is null, is not null

See Also: Oracle Database SQL Reference for detailed information
about using the WHERE clause

Table 3–1 (Cont.) Comparison Operators

Operator Definition

Retrieving Data With Queries

3-8 Oracle Database Express Edition 2 Day Developer Guide

q'"name like '['"'

You can specify national character literals for unicode strings with the N'text' or
n'text' notation, where N or n specifies the literal using the national character set.
For example, N'résumé' is a national character literal. For information about unicode
literals, see "Unicode String Literals" on page 7-21.

Using Regular Expressions When Selecting Data
Regular expressions enable you to search for patterns in string data by using
standardized syntax conventions. A regular expression can specify complex patterns
of character sequences.

You specify a regular expression with metacharacters and literals. Metacharacters are
operators that specify search algorithms. Literals are the characters for which you are
searching.

The regular expression functions and conditions include REGEXP_INSTR, REGEXP_
LIKE, REGEXP_REPLACE, and REGEXP_SUBSTR. Example 3–6 shows some examples
of the use of the regular expression functions and conditions.

Example 3–6 Using Regular Expressions With the SQL SELECT Statement

-- in the following example, the REGEXP_LIKE is used to select rows where
-- the value of job_id starts with ac, fi, mk, or st,
-- then follows with _m, and ends with an or gr
-- the metacharacter | specifies OR
-- the 'i' option specifies case-insensitive matching
SELECT employee_id, job_id FROM employees
 WHERE REGEXP_LIKE (job_id, '[ac|fi|mk|st]_m[an|gr]', 'i');

-- in the following example, REGEXP_REPLACE is used to replace
-- phone numbers of the format "nnn.nnn.nnnn" with
-- parentheses, spaces, and dashes to produce this format "(nnn) nnn-nnnn"
-- digits (0-9) are denoted with the metacharacter [:digit:]
-- the metacharacter {n} specifies a fixed number of occurrences
-- the \ is used an escape character so that the subsequent metacharacter
-- in the expression is treated as a literal, such as \.; otherwise, the
-- metacharacter . denotes any character in the expression
SELECT phone_number, REGEXP_REPLACE(phone_number,
 '([[:digit:]]{3})\.([[:digit:]]{3})\.([[:digit:]]{4})', '(\1) \2-\3')
 "Phone Number" FROM employees;

-- in the following example, REGEXP_REPLACE is used to replace
-- phone numbers of the format "nnn.nnn.nnnn.nnnnnn"
-- with the format "+nnn-nn-nnnn-nnnnnn"
SELECT phone_number, REGEXP_REPLACE(phone_number,
 '([[:digit:]]{3})\.([[:digit:]]{2})\.([[:digit:]]{4})\.([[:digit:]]{6})',
 '+\1-\2-\3-\4') "Phone Number" FROM employees;

-- in the following example, REGEXP_SUBSTR returns the first substring
-- composed of one or more occurrences of digits and dashes

See Also:

■ Oracle Database Globalization Support Guide for information about
national character sets

■ Oracle Database SQL Reference for information about character
literals

Retrieving Data With Queries

Using SQL 3-9

-- the metacharacter + specifies multiple occurrences in [[:digit:]-]+
SELECT street_address, REGEXP_SUBSTR(street_address, '[[:digit:]-]+', 1, 1)
 "Street numbers" FROM locations;

-- in the following example, REGEXP_INSTR starts searching at the first character
-- in the string and returns the starting position (default) of the second
-- occurrence of one or more non-blank characters
-- REGEXP_INSTR returns 0 if not found
-- the metacharacter ^ denotes NOT, as in NOT space [^]
SELECT street_address, REGEXP_INSTR(street_address, '[^]+', 1, 1)
 "Position of 2nd block" FROM locations;

Sorting Data Using the ORDER BY Clause
You can use SELECT with the ORDER BY clause to retrieve and display rows from a
table ordered (sorted) by a specified column in the table. The specified column in the
ORDER BY clause does not have to be in the SELECT list of columns that you want to
display.

You can specify the sort order as ASC for ascending or DESC for descending. The
default sort order is ascending, which means:

■ Numeric values are displayed with the lowest values first, such as 1 to 999.

■ Character values are displayed in alphabetical order, such as A first and Z last.

■ Date values are displayed with the earliest value first, such as 01-JUN-93 before
01-JUN-95.

Null (empty) values are displayed last for ascending sequences and first for
descending sequences.

Example 3–7 shows how to use SELECT with the ORDER BY clause to retrieve and
display rows from the employees table ordered (sorted) by specified columns.

Example 3–7 Selecting Data With the SQL ORDER BY Clause to Sort the Data

-- the following retrieves rows with manager_id = 122 ordered by employee_id
-- the order is the default ascending order, lowest employee_id displays first
SELECT * FROM employees WHERE manager_id = 122 ORDER BY employee_id;

-- the following retrieves rows ordered by manager_id
-- the order is specified as descending, highest manager_id displays first
SELECT employee_id, last_name, first_name, manager_id FROM employees
 ORDER BY manager_id DESC;

See Example 3–23 on page 3-17 for the use of ORDER BY with the GROUP BY clause.

See Also:

■ Oracle Database Application Developer's Guide - Fundamentals for
information about using regular expressions

■ Oracle Database SQL Reference for information about regular
expression metacharacters

■ REGEXP_INSTR, REGEXP_LIKE, REGEXP_REPLACE, and
REGEXP_SUBSTR in Oracle Database SQL Reference

See Also: Oracle Database SQL Reference for detailed information
about using ORDER BY with SELECT

Retrieving Data With Queries

3-10 Oracle Database Express Edition 2 Day Developer Guide

Displaying Data From Multiple Tables
You can use SELECT to display data from multiple tables. This process is referred to as
joining tables. In a join, rows from multiple tables are usually linked by similar
columns.

Joining tables is useful when you need to view data that is stored in multiple tables.
For example, the employees table contains employee information with a column of
department IDs, but not the department names. The departments table contains
columns for department IDs and names. By joining the tables on the department ID,
you can view an employee's information with the corresponding department name.

There are several types of joins, including self, inner, and outer. A self-join joins a table
to itself. Example 3–11 on page 3-11 is an example of a self- join. An inner join
(sometimes called a simple join) is a join of two or more tables that returns only those
rows that satisfy the join condition. Any unmatched rows are not displayed in the
output. Example 3–8 on page 3-10 and Example 3–9 on page 3-10 are examples of inner
joins. An outer join extends the result of a simple join. An outer join returns all rows
that satisfy the join condition and also returns some or all of those rows from one table
for which no rows from the other satisfy the join condition. There are three types of
outer joins: LEFT OUTER, RIGHT OUTER, and FULL OUTER. Example 3–12 on page 3-11
shows examples of a outer joins.

When you retrieve data from multiple tables, you can explicitly identify to which table
a column belongs. This is important when tables contain columns with the same name.
You can use the complete table name to explicitly identify a column, such as
employees.employee_id, or a table alias. Note the use of the table aliases (d, e, and
l) to explicitly identify the columns by table in the SQL statement in Example 3–9 and
Example 3–10. The alias is defined in the FROM clause of the SQL statement. A table
alias is used, rather than the table name, to simplify and reduce the size of the SQL
code.

You can join two tables automatically on all the columns that have matching names
and datatypes using the NATURAL JOIN syntax as shown in Example 3–8. This join
select rows from the two tables that have equal values in the matched columns. If the
columns with the same name have different datatypes, an error results.

Example 3–8 Selecting Data From Two Tables With the SQL NATURAL JOIN Syntax

-- the following SELECT statement retrieves data from two tables
-- that have a corresponding column(s) with equal values
-- for employees and departments, matching columns are department_id, manager_id
SELECT employee_id, last_name, first_name, department_id,
 department_name, manager_id FROM employees
 NATURAL JOIN departments;

Example 3–9 is an example of querying data from joined tables using the JOIN ...
USING syntax. The first SELECT joins two tables, and the second SELECT joins three
tables. With the JOIN ... USING syntax, you explicitly specify the join columns. The
columns in the tables that are used for the join must have the same name. Note that the
table alias is not used on the referenced columns.

Example 3–9 Selecting Data From Multiple Tables WIth the SQL JOIN USING Syntax

-- the following SELECT statement retrieves data from two tables
-- that have a corresponding column (department_id)
-- note that the employees table has been aliased to e and departments to d
SELECT e.employee_id, e.last_name, e.first_name, e.manager_id, department_id,
 d.department_name, d.manager_id FROM employees e
 JOIN departments d USING (department_id);

Retrieving Data With Queries

Using SQL 3-11

-- the following SELECT retrieves data from three tables
-- two tables have the corresponding column (department_id) and
-- two tables have the corresponding column (location_id)
SELECT e.employee_id, e.last_name, e.first_name, e.manager_id, department_id,
 d.department_name, d.manager_id, location_id, l.country_id FROM employees e
 JOIN departments d USING (department_id)
 JOIN locations l USING (location_id);

Example 3–10 is an example of querying data from joined tables using JOIN ... ON
syntax. The first SELECT joins two tables, and the second SELECT joins three tables.
Using the ON clause enables you to specify a join condition outside a WHERE clause and
a join condition with columns that have different name, but equal values.

Example 3–10 Selecting Data From Multiple Tables With the SQL JOIN ON Syntax

-- the following SELECT statement retrieves data from two tables
-- that have a corresponding column department_id
-- note that the employees table has been aliased to e and departments to d
SELECT e.employee_id, e.last_name, e.first_name, e.department_id,
 d.department_name, d.manager_id FROM employees e
 JOIN departments d ON e.department_id = d.department_id
 WHERE e.manager_id = 122;

-- the following SELECT retrieves data from three tables
-- two tables have the corresponding column department_id and
-- two tables have the corresponding column location_id
SELECT e.employee_id, e.last_name, e.first_name, e.department_id,
 d.department_name, d.manager_id, d.location_id, l.country_id FROM employees e
 JOIN departments d ON e.department_id = d.department_id
 JOIN locations l ON d.location_id = l.location_id
 WHERE l.location_id = 1700;

You can join a table to itself, a process called a self-join. For example, if you want to
view an employee ID and employee last name with the manager ID and manager
name of that employee, you would use a self-join on the employees table as shown in
Example 3–11. The employees table is joined to itself using the manager ID of the
employee and employee ID of the manager. Note that the columns used for the join
have different names. Column aliases, such as emp_id and emp_lastname, were
used to clearly identify the column values in the output.

Example 3–11 Self Joining a Table With the SQL JOIN ON Syntax

-- the following SELECT statement retrieves data from the employees table
-- to display employee_id and last_name, along with manager_id and last_name
-- of the employee in a self-join
-- note that the employees table has been aliased to e and m
SELECT e.employee_id emp_id, e.last_name emp_lastname, m.employee_id mgr_id,
 m.last_name mgr_lastname
 FROM employees e
 JOIN employees m ON e.manager_id = m.employee_id;

Example 3–12 shows how to use outer joins.

Example 3–12 Using SQL Outer Joins

-- the following uses a LEFT OUTER JOIN
-- all rows are retrieved from the left table (employees) even if
-- there is no match in the right table (departments)
SELECT e.employee_id, e.last_name, e.department_id, d.department_name

Using Pseudocolumns, Sequences, and SQL Functions

3-12 Oracle Database Express Edition 2 Day Developer Guide

 FROM employees e LEFT OUTER JOIN departments d
 ON (e.department_id = d.department_id);

-- the following uses a RIGHT OUTER JOIN
-- all rows are retrieved from the right table (departments) even if
-- there is no match in the left table (employees)
SELECT e.employee_id, e.last_name, d.department_id, d.department_name
 FROM employees e RIGHT OUTER JOIN departments d
 ON (e.department_id = d.department_id);

-- the following uses a FULL OUTER JOIN
-- all rows are retrieved from the employees table even if there is no match in
-- the departments table, and all rows are retrieved from the departments table
-- even if there is no match in the left table
SELECT e.employee_id, e.last_name, d.department_id, d.department_name
 FROM employees e FULL OUTER JOIN departments d
 ON (e.department_id = d.department_id);

Using Bind Variables With the SQL Commands Page
You can use bind variables with the SQL Commands page to prompt for values when
running a SQL statement, rather than supplying the value when the statement is
created. Bind variables are prefixed with a colon. You can choose any name for the
bind variable name, such as :b, :bind_variable, or :employee_id. For example,
you could enter and run the following statement in the SQL Commands page:

SELECT * FROM employees WHERE employee_id = :employee_id

When you run a statement with a bind variable in the SQL Commands page, a
window opens prompting you for a value for the bind variable. After entering a value,
click the Submit button. Note that you might need to configure your Web browser to
allow the popup window to display.

For information about using bind variables with PL/SQL, see "Using Bind Variables
With PL/SQL" on page 4-27.

Using Pseudocolumns, Sequences, and SQL Functions
With SQL built-in functions, you can manipulate character, numeric, and date data in
SQL statements to change how the data is displayed or to convert the data for
insertion in a column of a table. You can also perform operations on a collection of
data with aggregate functions.

Pseudocolumns are built-in values that provide specific information with a query and
are similar to functions without arguments. However, functions without arguments
typically return the same value for every row in the result set, whereas
pseudocolumns typically return a different value for each row.

This section contains the following topics:

■ Using ROWNUM, SYSDATE, and USER Pseudocolumns With SQL on page 3-13

■ Using Arithmetic Operators on page 3-13

See Also: Oracle Database SQL Reference for information about using
SELECT with multiple tables

See Also: "Using Bind Variables" in Oracle Database Express Edition
Application Express User’s Guide

Using Pseudocolumns, Sequences, and SQL Functions

Using SQL 3-13

■ Using Numeric Functions on page 3-14

■ Using Character Functions on page 3-14

■ Using Date Functions on page 3-15

■ Using Conversion Functions on page 3-16

■ Using Aggregate Functions on page 3-17

■ Using NULL Value Functions on page 3-18

■ Using Conditional Functions on page 3-19

Using ROWNUM, SYSDATE, and USER Pseudocolumns With SQL
A pseudocolumn is similar to a table column, but is not stored in a table. A
pseudocolumn returns a value, so it is similar to a function without argument. Oracle
Database XE provides several pseudocolumns, such as the ROWNUM, SYSDATE, and
USER. The ROWNUM pseudocolumn returns a number indicating the order in which
Oracle Database XE selects the row in a query. SYSDATE returns the current date and
time set for the operating system on which the database resides. USER returns the
name of the user name that is currently logged in.

Example 3–13 shows the use of the SYSDATE pseudocolumn. Note the use of the DUAL
table, which is automatically created by Oracle Database XE for use as a dummy table
in SQL statements. See Example 3–19 on page 3-15 for another example of the use of
SYSDATE.

Example 3–13 Using the SQL SYSDATE Pseudocolumn

-- the following statement displays the SYSDATE, which is the current system date
-- NOW is a column alias for display purposes
-- DUAL is a dummy table with one row simply used to complete the SELECT statement
SELECT SYSDATE "NOW" FROM DUAL;

Example 3–14 shows the use of the USER pseudocolumn.

Example 3–14 Using the SQL USER Pseudocolumn

-- display the name of the current user, the user name should be HR
SELECT USER FROM DUAL;

Example 3–15 shows the use of the ROWNUM pseudocolumn.

Example 3–15 Using the SQL ROWNUM Pseudocolumn

-- using ROWNUM < 10 limits the number of rows returned to less than 10
SELECT employee_id, hire_date, SYSDATE FROM employees WHERE ROWNUM < 10;

Using Arithmetic Operators
You can use arithmetic operators to create expressions for calculations on data in
tables. The arithmetic operators include:

■ Plus sign + for addition

■ Minus sign - for subtraction

■ Asterisk * for multiplication

See Also: Oracle Database SQL Reference for detailed information
about SQL functions

Using Pseudocolumns, Sequences, and SQL Functions

3-14 Oracle Database Express Edition 2 Day Developer Guide

■ Slash / for division

In an arithmetic expression, multiplication and division are evaluated first, then
addition and subtraction. When operators have equal precedence, the expression is
evaluated left to right. It is best to include parentheses to explicitly determine the order
of operators and provide clarity in the expression.

Example 3–16 shows the use of arithmetic operators in expressions with the data in the
employees table. Note the use of a column alias to provide a more descriptive
heading for the displayed output.

Example 3–16 Using SQL Arithmetic Operators

-- in the following query the commission is displayed as a percentate instead
-- of the decimal that is stored in the database
SELECT employee_id, (commission_pct * 100) "Commission %" FROM employees;

-- in the following query, the proposed new annual salary is calculated
-- for employees who report to the manager with ID 145
SELECT employee_id, ((salary + 100) * 12) "Proposed new annual salary"
 FROM employees WHERE manager_id = 145;

Using Numeric Functions
Oracle Database XE provides a set of numeric functions that you can use in your SQL
statements to manipulate numeric values. With numeric functions, you can round to a
specified decimal, truncate to a specified decimal, and return the remainder of a
division on numeric data.

Example 3–17 shows the use of numeric functions on numeric data.

Example 3–17 Using SQL Numeric Functions

-- you can use the ROUND function to round off numeric data, in this case to
-- two decimal places
SELECT employee_id, ROUND(salary/30, 2) "Salary per day" FROM employees;

-- you can use the TRUNC function to truncate numeric data, in this case to
-- 0 decimal places; 0 is the default so TRUNC(salary/30) would be same
SELECT employee_id, TRUNC(salary/30, 0) "Salary per day" FROM employees;

-- use the MOD function to return the remainder of a division
-- MOD is often used to determine is a number is odd or even
-- the following determines whether employee_id is odd (1) or even (0)
SELECT employee_id, MOD(employee_id, 2) FROM employees;

Using Character Functions
Oracle Database XE provides a set of character functions that you can use in your SQL
statements to customize the character values. With character functions, you can
perform operations that change the case, remove blanks, extract substrings from,
replace substrings in, and concatenate character data.

Example 3–18 shows the use of some character functions on character data.

Example 3–18 Using SQL Character Functions

-- you can use the UPPER function to display uppercase data, LOWER for lowercase
SELECT employee_id, UPPER(last_name), LOWER(first_name) FROM employees;

-- you can use the INITCAP function to display uppercase only the first letter

Using Pseudocolumns, Sequences, and SQL Functions

Using SQL 3-15

SELECT employee_id, INITCAP(first_name), INITCAP(last_name) FROM employees;

-- you can use RTRIM and LTRIM to remove spaces from the beginning or end of
-- character data. Note the use of concatenation operator || to add a space
SELECT employee_id, RTRIM(first_name) || ' ' || LTRIM(last_name) FROM employees;

-- you can use TRIM to remove spaces from both the beginning and end
SELECT employee_id, TRIM(last_name) || ', ' || TRIM(first_name) FROM employees;

-- you can use RPAD to add spaces on the right to line up columns
-- in this case, spaces are added to pad the last_name output to 30 characters
SELECT employee_id, RPAD(last_name, 30, ' '), first_name FROM employees;

-- use SUBSTR to select a substring of the data, in the following only
-- the characters from 1 to 15 are selected from the last_name
SELECT employee_id, SUBSTR(last_name, 1, 10) FROM employees;

-- use LENGTH to return the number of characters in a string or expression
SELECT LENGTH(last_name) FROM employees;

-- use REPLACE to replace characters in a string or expression
SELECT employee_id, REPLACE(job_id, 'SH', 'SHIPPING') FROM employees
 WHERE SUBSTR(job_id, 1, 2) = 'SH';

Using Date Functions
Oracle Database Express Edition provides a set of date functions to manipulate and
calculate date and time data. For example, with date functions you can add months to,
extract a specific field from, truncate, and round a date value. You can also calculate
the number of months between two dates.

Example 3–19 shows the use of some date functions on date data.

Example 3–19 Using SQL Date Functions

-- in the following statement you can use MONTHS_BETWEEN to compute months
-- employed for employees and then truncate the results to the whole month
-- note the use of the label (alias) "Months Employed" for the computed column
SELECT employee_id, TRUNC(MONTHS_BETWEEN(SYSDATE, HIRE_DATE)) "Months Employed"
 FROM employees;

-- the following extracts displays the year hired for each employee ID
SELECT employee_id, EXTRACT(YEAR FROM hire_date) "Year Hired" FROM employees;

-- the following extracts and concatenates the year, month, and day from SYSDATE
SELECT EXTRACT(YEAR FROM SYSDATE) || EXTRACT(MONTH FROM SYSDATE) ||
 EXTRACT(DAY FROM SYSDATE) "Current Date" FROM DUAL;

-- the following adds 3 months to the hire_date of an employee
SELECT employee_id, hire_date, ADD_MONTHS(hire_date, 3) FROM employees;

-- LAST_DAY finds the last day of the month for a specific date, such as hire_date
SELECT employee_id, hire_date, LAST_DAY(hire_date) "Last day of month"
 FROM employees;

-- the following returns the system date, including fractional seconds
-- and time zone, of the system on which the database resides
SELECT SYSTIMESTAMP FROM DUAL;

Using Pseudocolumns, Sequences, and SQL Functions

3-16 Oracle Database Express Edition 2 Day Developer Guide

Using Conversion Functions
Oracle Database XE provides a set of conversion functions that for use in SQL
statements to convert a value from one datatype to another datatype. For example,
you can convert a character value to a numeric or date datatype or you can convert a
numeric or date value to a character datatype. Conversion functions are useful when
inserting values into a column of a table and when displaying data.

When converting a value, you can also specify a format model. A format model is a
character literal that specifies the format of data. A format model does not change the
internal representation of the value in the database.

Example 3–20 shows how to use the character conversion function with format
models.

Example 3–20 Using the SQL Character Conversion Function

-- you can convert the system date (SYSDATE) to a character string and format
-- with various format models and then display the date as follows
SELECT TO_CHAR(SYSDATE, 'DD-MON-YYYY AD') "Today" FROM DUAL;
-- FM removes all leading or trailing blanks from Month
SELECT TO_CHAR(SYSDATE, 'FMMonth DD YYYY') "Today" FROM DUAL;
-- the following displays the system date and time with a format model
SELECT TO_CHAR(SYSDATE, 'MM-DD-YYYY HH24:MI:SS') "Now" FROM DUAL;

-- you can convert and format a date column using format models
-- for Short or Long Date format
SELECT hire_date, TO_CHAR(hire_date,'DS') "Short Date" FROM employees;
SELECT hire_date, TO_CHAR(hire_date,'DL') "Long Date" FROM employees;

-- the following extracts the year, month, and date from SYSDATE, then converts
-- and formats the result with leading zeros and removes any leading blanks (FM)
SELECT TO_CHAR(EXTRACT(YEAR FROM SYSDATE)) ||
 TO_CHAR(EXTRACT(MONTH FROM SYSDATE),'FM09') ||
 TO_CHAR(EXTRACT(DAY FROM SYSDATE),'FM09') "Current Date" FROM DUAL;

-- the following returns the current date in the session time zone,
-- in a value in the Gregorian calendar of datatype DATE,
-- the returned value is converted to character and displayed with a format model
SELECT TO_CHAR(CURRENT_DATE, 'DD-MON-YYYY HH24:MI:SS') "Current Date" FROM DUAL;

-- you can convert and format numeric currency data as a character string
-- with a format model to add a $, commas, and deciaml point
SELECT TO_CHAR(salary,'$99,999.99') salary FROM employees;

Example 3–21 shows how to use the number conversion function.

Example 3–21 Using the SQL Number Conversion Function

-- you can convert a character string to a number
SELECT TO_NUMBER('1234.99') + 500 FROM DUAL;

-- the format model must match the format of the string you want to convert
SELECT TO_NUMBER('11,200.34', '99G999D99') + 1000 FROM DUAL;

Example 3–22 shows how to use some date conversion functions.

Example 3–22 Using SQL Date Conversion Functions

-- the following converts the character string to a date with
-- the specified format model

Using Pseudocolumns, Sequences, and SQL Functions

Using SQL 3-17

SELECT TO_DATE('27-OCT-98', 'DD-MON-RR') FROM DUAL;

-- the following converts the character string to a date with
-- the specified format model
SELECT TO_DATE('28-Nov-05 14:10:10', 'DD-Mon-YY HH24:MI:SS') FROM DUAL;

-- the following converts the character string to a date with
-- the specified format model
SELECT TO_DATE('January 15, 2006, 12:00 A.M.', 'Month dd, YYYY, HH:MI A.M.')
 FROM DUAL;

-- the following converts a character stirng to a timestamp with
-- the specified datetime format model
SELECT TO_TIMESTAMP('10-Sep-05 14:10:10.123000', 'DD-Mon-RR HH24:MI:SS.FF')
 FROM DUAL;

Be careful when using a date format such as DD-MON-YY. The YY indicates the year in
the current century. For example, 31-DEC-92 is December 31, 2092, not 1992 as
you might expect. If you want to indicate years in any century other than the current
one, use a format model such as the default RR.

Using Aggregate Functions
Aggregate or group functions operate on sets of rows to give one result for each group.
These sets can be the entire table or the table split into groups.

Example 3–23 shows how to use aggregate functions on collections of data in the
database. Aggregate functions include AVG, COUNT, DENSE_RANK, MAX, MIN,
PERCENT_RANK, RANK, STDDEV, and SUM. The GROUP BY clause is used to select
groups of rows by a specified expression, and returns one row of summary
information for each group. The HAVING clause is used to specify which groups to
include, or exclude, from the output based on a group condition. The DISTINCT
clause causes an aggregate function to consider only distinct values of the argument
expression. The ALL clause, which is the default behavior, causes an aggregate
function to consider duplicate values.

Example 3–23 Using SQL Aggregate Functions

-- you can use COUNT to count the employees with manager 122
-- note the use of a column alias Employee Count
SELECT COUNT(*) "Employee Count" FROM employees WHERE manager_id = 122;

-- count the employees grouped by manager, also sort the groups
SELECT COUNT(*) "Employee Count", manager_id FROM employees
 GROUP BY manager_id
 ORDER BY manager_id;

-- count the number of employees that receive a commission
-- this returns the count where the commission_pct is not NULL
SELECT COUNT(commission_pct) FROM employees;

-- count the number of distinct department IDs assigned to the employees
-- this returns a number that does not include duplicates
SELECT COUNT(DISTINCT department_id) FROM employees;

-- you can use MIN, MAX, and AVG to find the minimum, maximum, and average

See Also: Oracle Database SQL Reference for detailed information
about format models

Using Pseudocolumns, Sequences, and SQL Functions

3-18 Oracle Database Express Edition 2 Day Developer Guide

-- salaries for employees with manager 122
SELECT MIN(salary), MAX(salary), AVG(salary) FROM employees
 WHERE manager_id = 122;

-- this computes the minimum, maximum, and average salary by job ID groups
-- the job ID groups are sorted in alphabetical order
SELECT MIN(salary), MAX(salary), AVG(salary), job_id FROM employees
 GROUP BY job_id
 ORDER BY job_id;

-- the following returns the minimum and maximum salaries for employees grouped
-- by department for those groups having a minimum salary less than $7,000
SELECT department_id, MIN(salary), MAX (salary) FROM employees
 GROUP BY department_id
 HAVING MIN(salary) < 7000
 ORDER BY MIN(salary);

-- the following uses the PERCENT_RANK function to return the percent ranking
-- for a $11,000 salary among the employees who are managers
-- in this example, a percent ranking of 0 corresponds to the highest salary
SELECT PERCENT_RANK(11000) WITHIN GROUP
 (ORDER BY salary DESC) "Rank of $11,000 among managers"
 FROM employees WHERE job_id LIKE '%MAN' OR job_id LIKE '%MGR';

-- the following uses the RANK function to return the ranking for a $2,600 salary
-- among the employees who are clerks,
-- in this example a ranking of 1 corresponds to the highest salary in the group
SELECT RANK(2600) WITHIN GROUP
 (ORDER BY salary DESC) "Rank of $2,600 among clerks"
 FROM employees WHERE job_id LIKE '%CLERK';

-- the following uses RANK to show the ranking of SH_CLERK employees by salary
-- identical salary values receive the same rank and cause nonconsecutive ranks
SELECT job_id, employee_id, last_name, salary, RANK() OVER
 (PARTITION BY job_id ORDER BY salary DESC) "Salary Rank"
 FROM employees WHERE job_id = 'SH_CLERK';

-- the following uses DENSE_RANK to show the ranking of SH_CLERK employees
-- by salary, identical salary values receive the same rank and
-- rank numbers are consecutive (no gaps in the ranking)
SELECT job_id, employee_id, last_name, salary, DENSE_RANK() OVER
 (PARTITION BY job_id ORDER BY salary DESC) "Salary Rank (Dense)"
 FROM employees WHERE job_id = 'SH_CLERK';

-- the following computes the cumulative standard deviation of the salaries
-- for ST CLERKs ordered by hire_date
SELECT employee_id, salary, hire_date, STDDEV(salary)
 OVER (ORDER BY hire_date) "Std Deviation of Salary"
 FROM employees WHERE job_id = 'ST_CLERK';

Using NULL Value Functions
Oracle Database XE provides functions that you can use in your SQL statements to
work with NULL values. For example, you can substitute a different value if value in a
column of a table is NULL.

Example 3–24 shows the use of the SQL NVL function. This function substitutes the
specified value when a NULL value is encountered.

Using Pseudocolumns, Sequences, and SQL Functions

Using SQL 3-19

Example 3–24 Using the SQL NVL Function

-- use the NVL function to substitute 0 for a NULL value in commission_pct
SELECT commission_pct, NVL(commission_pct, 0) FROM employees;

-- use the NVL function to substitute MISSING for a NULL value in phone_number
SELECT phone_number, NVL(phone_number, 'MISSING') FROM employees;

Example 3–25 shows the use of the SQL NVL2 function. This function returns the
second specified expression when the first expression is not NULL. If the first
expression is NULL, the third expression is returned.

Example 3–25 Using the SQL NVL2 Function

-- use the NVL2 function to return salary + (salary * commission_pct)
-- if commission_pct is not NULL; otherwise, if commission_pct is NULL,
-- then return salary
SELECT employee_id , last_name, salary,
 NVL2(commission_pct, salary + (salary * commission_pct), salary) income
 FROM employees;

Using Conditional Functions
Oracle Database XE provides conditional functions that you can use in your SQL
statements to return a value based on multiple search conditions values.

Example 3–26 shows the use of the SQL CASE functions.

Example 3–26 Using the SQL CASE Function

-- CASE can compare a column or expression or search conditions, returning
-- a result when there is a match. CASE is similar to IF_THEN-ELSE logic.
-- In the following, the value of the hire_date column is compared against various
-- dates. When there is a match, the corresponding calculated result is returned,
-- otherwise the default calculated salary is returned.
SELECT employee_id, hire_date , salary,
 CASE WHEN hire_date < TO_DATE('01-JAN-90') THEN salary*1.20
 WHEN hire_date < TO_DATE('01-JAN-92') THEN salary*1.15
 WHEN hire_date < TO_DATE('01-JAN-94') THEN salary*1.10
 ELSE salary*1.05 END "Revised Salary"
 FROM employees;

Example 3–27 shows the use of the SQL DECODE functions.

Example 3–27 Using the SQL DECODE Function

-- DECODE compares a column or expression to search values, returning a result
-- when there is a match. DECODE is similar to IF_THEN-ELSE logic.
-- In the following, the value of the job_id column is compared against PU_CLERK,
-- SH_CLERK, and ST_CLERK.
-- When there is a match, the corresponding calculated result is returned,
-- otherwise the original salary is returned unchanged.
SELECT employee_id, job_id , salary,
 DECODE(job_id, 'PU_CLERK', salary*1.05,
 'SH_CLERK', salary*1.10,
 'ST_CLERK', salary*1.15,
 salary) "Revised Salary"
 FROM employees;

Manipulating Data With SQL Statements

3-20 Oracle Database Express Edition 2 Day Developer Guide

Manipulating Data With SQL Statements
Data manipulation language (DML) statements query or manipulate data in existing
schema objects. They enable you to:

■ Add new rows of data into a table or view (INSERT)

■ Change column values in existing rows of a table or view (UPDATE)

■ Remove rows from tables or views (DELETE)

DML statements are the most frequently used SQL statements.

This section contains the following topics:

■ Adding Data With the INSERT Statement on page 3-20

■ Updating Data With the UPDATE Statement on page 3-20

■ Deleting Data With the DELETE Statement on page 3-21

Adding Data With the INSERT Statement
You can use the SQL INSERT statement to add a row of data to a table. The data
inserted must be valid for the datatype and size of each column of the table. See
"Managing Database Objects With Object Browser" on page 2-2.

Example 3–28 shows how to use INSERT to add a row to the employees table. In the
first INSERT statement, values are inserted into all columns in a row of the table. In
the second INSERT statement, values are inserted only into the specified columns of
the table and the remaining columns are set to NULL. If the those remaining columns
had been specified with a NOT NULL constraint for the table, an error would occur. For
information about constraints, see "Managing Tables" on page 2-12 and "NOT NULL
Constraint" on page 2-14.

Example 3–28 Using the SQL INSERT Statement to Add Rows to a Table

-- the following inserts data for all the columns in a row
INSERT INTO employees VALUES
 (10, 'Enrique', 'Borges', 'enrique.borges', '555.111.2222',
 '01-AUG-05', 'AC_MGR', 9000, .1, 101, 110);

-- the following inserts data into the columns specified by name
-- NULLs are inserted in those columns not explicitly named
INSERT INTO employees (employee_id, last_name, email, hire_date, job_id, salary)
 VALUES (11, 'Doe', 'jane.doe', '31-AUG-05', 'SH_CLERK', 2400);

-- the following shows the rows that were inserted
SELECT employee_id, last_name FROM employees
 WHERE employee_id = 10 or employee_id = 11;

Updating Data With the UPDATE Statement
You can use the SQL UPDATE statement to update data in a row of a table. The
updated data must be valid for the datatype and size of each column of the table.

See Also: Oracle Database SQL Reference for information about the
INSERT statement

Using Transaction Control Statements

Using SQL 3-21

Example 3–29 shows how to use UPDATE to update data in the employees table. Note
the use of the multiplication operator * to calculate a new salary. For information
about arithmetic operators, See "Using Arithmetic Operators" on page 3-13.

Example 3–29 Using the SQL UPDATE Statement to Update Data in a Table

SELECT salary FROM employees WHERE employee_id = 11;

-- update the salary for employee 11, multiply the salary by 105%
UPDATE employees SET salary = salary * 1.05 WHERE employee_id = 11;

-- the following should show a change in salary
SELECT salary FROM employees WHERE employee_id = 11;

Deleting Data With the DELETE Statement
With the SQL DELETE statement, you can delete all or specific rows in a table.

When you delete all the rows in a table, the empty table still exists. If you want to
remove the entire table from the database, use the SQL DROP statement. See "Dropping
a Table With SQL" on page 3-25.

Example 3–30 shows how to use DELETE to delete selected rows in the employees
table. Note the use of the WHERE clause. Without that clause, all the rows would be
deleted.

Example 3–30 Using the SQL DELETE Statement to Remove Rows From a Table

DELETE FROM employees WHERE employee_id = 10 OR employee_id = 11;

-- the following query should not find any records
SELECT * FROM employees WHERE employee_id = 10 OR employee_id = 11;

If you accidentally delete rows, you can restore the rows with the ROLLBACK
statement. See "Rolling Back a Transaction" on page 3-22.

Using Transaction Control Statements
Transaction control statements manage the changes made by DML statements and
group DML statements into transactions. They enable you to:

■ Make a changes in transactions permanent (COMMIT)

■ Undo the changes in a transaction, either since the transaction started or since a
savepoint (ROLLBACK)

This section contains the following topics:

■ Committing Transaction Changes on page 3-22

■ Rolling Back a Transaction on page 3-22

See Also: Oracle Database SQL Reference for information about the
UPDATE statement

See Also: Oracle Database SQL Reference for information about the
DELETE statement

Using Data Definition Language Statements to Manage Database Objects

3-22 Oracle Database Express Edition 2 Day Developer Guide

Committing Transaction Changes
The SQL COMMIT statement saves any changes made to the database. When a COMMIT
has been issued, all the changes since the last COMMIT, or since you logged on as the
current user, are saved.

Example 3–31 shows how to use COMMIT to commit (save) changes to the employees
table in the database.

Example 3–31 Using the SQL COMMIT Statement to Save Changes

-- add a row and then update the data
INSERT INTO employees (employee_id, last_name, email, hire_date, job_id, salary)
 VALUES (12, 'Doe', 'john.doe', '31-AUG-05', 'SH_CLERK', 2400);

UPDATE employees SET salary = salary*1.10 WHERE employee_id = 12;

-- commit (save) the INSERT and UPDATE changes in the database
COMMIT;

Rolling Back a Transaction
You can use the SQL ROLLBACK statement to rollback (undo) any changes you made to
the database before a COMMIT was issued.

Example 3–32 shows how to use ROLLBACK to rollback the deletions made to the
employees table. Note that the ROLLBACK was issued before a COMMIT was issued.

Example 3–32 Using the SQL ROLLBACK Statement to Undo Changes

-- delete a row (record)
DELETE FROM employees WHERE last_name = 'Doe';

-- rollback the delete statement because the previous DELETE was incorrect
ROLLBACK;

-- the following is valid
SELECT * FROM employees WHERE last_name = 'Doe';

Using Data Definition Language Statements to Manage Database Objects
Data definition language (DDL) statements include CREATE, ALTER, and DROP to
manage database objects. When managing database objects, the Object Browser page

Note: If you are using SQL Commands, the Autocommit feature can
be set to automatically commit changes after issuing SQL statements.

See Also: Oracle Database SQL Reference for information about the
COMMIT statement

Note: If you are using SQL Commands, disable the Autocommit
feature when trying this example.

See Also: Oracle Database SQL Reference for information about the
ROLLBACK statement

Using Data Definition Language Statements to Manage Database Objects

Using SQL 3-23

provides a Web-based user interface that can be used instead of SQL DDL statements.
See "Managing Database Objects With Object Browser" on page 2-2.

In this guide, some basic SQL DDL statements are used in the code examples and a
brief description of some DDL statements are discussed in this section.

This section contains the following topics:

■ Creating a Table With SQL on page 3-23

■ Adding, Altering, and Dropping a Table Column With SQL on page 3-24

■ Creating and Altering a Constraint With SQL on page 3-24

■ Renaming a Table With SQL on page 3-25

■ Dropping a Table With SQL on page 3-25

■ Creating, Altering, and Dropping an Index With SQL on page 3-25

■ Creating and Dropping a View With SQL on page 3-26

■ Creating and Dropping a Sequence With SQL on page 3-26

■ Creating and Dropping a Synonym With SQL on page 3-27

Creating a Table With SQL
To create a database object, such as a table, use the SQL CREATE statement as shown in
Example 3–33. When you create a table, you need to provide datatypes for each
column. For more information about tables, see "Managing Tables" on page 2-12.

Example 3–33 Creating a Simple Table Using SQL

-- create a simple table for keeping track of birthdays
CREATE TABLE my_birthdays
 (first_name VARCHAR2(20),
 last_name VARCHAR2(25),
 bday_date DATE
);

Optionally, you can provide NOT NULL constraints, as shown in Example 3–34. The
NOT NULL constraint is discussed in "NOT NULL Constraint" on page 2-14.

Example 3–34 Creating a Table With NOT NULL Constraints Using SQL

-- create a table with NOT NULL constraints in the HR schema
CREATE TABLE personal_info (
 employee_id NUMBER(6,0) NOT NULL,
 birth_date DATE NOT NULL,
 social_security_id VARCHAR2(12) NOT NULL,
 marital_status VARCHAR2(10),
 dependents_claimed NUMBER(2,0) DEFAULT 1,
 contact_name VARCHAR2(45) NOT NULL,
 contact_phone VARCHAR2(20) NOT NULL,
 contact_address VARCHAR2(80) NOT NULL
);

For information about creating a table with the Object Browser page, see "Creating a
Table" on page 2-16.

Using Data Definition Language Statements to Manage Database Objects

3-24 Oracle Database Express Edition 2 Day Developer Guide

Adding, Altering, and Dropping a Table Column With SQL
To alter a database object, such as a table, use the SQL ALTER statement, as shown in
Example 3–35.

Example 3–35 Adding, Altering, and Dropping a Table Column Using SQL

-- add a new column
ALTER TABLE personal_info ADD
(contact_email VARCHAR2(30) NULL);

-- modify a column
ALTER TABLE personal_info MODIFY
(contact_email VARCHAR2(40) NOT NULL);

-- drop a column
ALTER TABLE personal_info DROP COLUMN
contact_address;

For information about adding, modifying, and dropping a table column with the
Object Browser page, see "Adding a Column To a Table" on page 2-18, "Modifying a
Column In a Table" on page 2-18, and "Dropping a Column From a Table" on
page 2-19.

Creating and Altering a Constraint With SQL
To add, alter, or drop a constraint on a table, use the SQL ALTER statement, as shown
in Example 3–36. For information about primary key, foreign key, unique, and check
constraints, see "Ensuring Data Integrity in Tables With Constraints" on page 2-13.

Example 3–36 Creating, Altering, and Dropping Constraints Using SQL

-- add a primary key constraint
ALTER TABLE personal_info
 ADD CONSTRAINT personal_info_pkey
 PRIMARY KEY (employee_id);

-- add a foreign key constraint
ALTER TABLE personal_info
 ADD CONSTRAINT personal_info_fkey
 FOREIGN KEY (employee_id) REFERENCES employees (employee_id)
 ON DELETE CASCADE;

-- add a unique constraint
ALTER TABLE personal_info
 ADD CONSTRAINT personal_info_unique_con
 UNIQUE (social_security_id);

-- add a check constraint
ALTER TABLE personal_info
 ADD CONSTRAINT personal_info_check_con
 CHECK (dependents_claimed > 0);

-- disable a constraint
ALTER TABLE personal_info
 DISABLE CONSTRAINT personal_info_check_con;

-- enable a constraint
ALTER TABLE personal_info
 ENABLE CONSTRAINT personal_info_check_con;

Using Data Definition Language Statements to Manage Database Objects

Using SQL 3-25

-- drop a constraint
ALTER TABLE personal_info
 DROP CONSTRAINT personal_info_check_con;

For information about adding a constraint with the Object Browser page, see "Adding
a Primary Key Constraint" on page 2-21, "Adding a Foreign Key Constraint" on
page 2-22, "Adding a Unique Constraint" on page 2-20, and "Adding a Check
Constraint" on page 2-19.

Renaming a Table With SQL
To rename a database object, such as a table, use the SQL ALTER statement, as shown
in Example 3–37.

Example 3–37 Renaming a Table Using SQL

-- rename the my_birthdays table
ALTER TABLE my_birthdays RENAME to birthdays;

Dropping a Table With SQL
To drop (remove completely) a table from the database, use the SQL DROP statement,
as shown in Example 3–38. Be careful when using the DROP statement to remove
database objects.

If you want to delete the rows in the table and keep the table, use the DELETE
statement. See "Deleting Data With the DELETE Statement" on page 3-21.

Example 3–38 Dropping a Table Using SQL

-- drop tables from the database
-- use caution when use the DROP statement!
DROP TABLE birthdays;
DROP TABLE personal_info;

Creating, Altering, and Dropping an Index With SQL
To create, modify, or drop an index, use the SQL CREATE, ALTER, or DROP INDEX
statement, as shown in Example 3–39. For more information about indexes, see
"Managing Indexes" on page 2-26.

Example 3–39 Creating, Modifying, and Dropping an Index Using SQL

-- create an index on a single column to make queries faster on that column
CREATE INDEX emp_hiredate_idx ON employees (hire_date);

-- rename the index
ALTER INDEX emp_hiredate_idx
 RENAME TO emp_hire_date_idx;

-- drop the index
DROP INDEX emp_hire_date_idx;

-- create an index on two columns to make queries faster on the first column
-- or both columns
CREATE INDEX emp_mgr_id_ix ON employees (employee_id, manager_id);
DROP INDEX emp_mgr_id_ix;

Using Data Definition Language Statements to Manage Database Objects

3-26 Oracle Database Express Edition 2 Day Developer Guide

-- a function-based index precalculates the result and speeds up queries that
-- use the function for searching or sorting, in this case UPPER(last_name)
CREATE INDEX emp_upper_last_name_ix ON employees (UPPER(last_name));
DROP INDEX emp_upper_last_name_ix;

For information about creating an index with the Object Browser page, see "Creating
an Index" on page 2-29.

Creating and Dropping a View With SQL
To create a database object, such as a view, use the SQL CREATE statement as shown in
Example 3–40. For more information about views, see "Managing Views" on page 2-31.

Example 3–40 Creating a View Using SQL

-- create a view to display data from departments and employees
CREATE OR REPLACE VIEW my_emp_view AS
SELECT d.department_id, d.department_name,
 e.employee_id, e.first_name, e.last_name
 FROM employees e
 JOIN departments d ON d.manager_id = e.employee_id;

Example 3–41 shows how to drop the view that you previously created.

Example 3–41 Dropping a View Using SQL

-- drop the view with the DROP VIEW statement
DROP VIEW my_emp_view;

For information about creating and dropping a view with the Object Browser page, see
"Creating a View" on page 2-32 and "Dropping a View" on page 2-33. For an additional
example of creating a view, see Example 6–3 on page 6-12.

Creating and Dropping a Sequence With SQL
A sequence is a database object that generates unique sequential values, often used for
primary and unique keys. You can refer to sequence values in SQL statements with the
CURRVAL and NEXTVAL pseudocolumns.

To generate a sequence number, you call the sequence using the CURRVAL or NEXTVAL
keywords. You must qualify CURRVAL and NEXTVAL with the name of the sequence,
such as employees_seq.CURRVAL or employees_seq.NEXTVAL. Before you use
CURRVAL for a sequence in your session, you must first initialize the sequence with
NEXTVAL.

Example 3–42 shows how to create a sequence that can be used with the employees
table. The sequence can also be used with other tables. For more information about
sequences, see "Managing Sequences" on page 2-34.

Example 3–42 Creating a Sequence Using SQL

-- create a new sequence to use with the employees table
-- this sequence starts at 1000 and increments by 1
CREATE SEQUENCE new_employees_seq START WITH 1000 INCREMENT BY 1;

-- to use the sequence, first initialize the sequence with NEXTVAL
SELECT new_employees_seq.NEXTVAL FROM DUAL;

-- after initializing the sequence, use CURRVAL as the next value in the sequence
INSERT INTO employees VALUES

Using Data Definition Language Statements to Manage Database Objects

Using SQL 3-27

 (new_employees_seq.CURRVAL, 'Pilar', 'Valdivia', 'pilar.valdivia',
 '555.111.3333', '01-SEP-05', 'AC_MGR', 9100, .1, 101, 110);

-- query the employees table to check the current value of the sequence
-- which was inserted used as employee_id in the previous INSERT statement
SELECT employee_id, last_name FROM employees WHERE last_name = 'Valdivia';

Example 3–43 shows how to drop the sequence that you previously created.

Example 3–43 Dropping a Sequence Using SQL

-- drop the sequence
DROP SEQUENCE new_employees_seq;

For information about creating and dropping a sequence with the Object Browser
page, see "Creating a Sequence" on page 2-34 and "Dropping a Sequence" on page 2-35.

Creating and Dropping a Synonym With SQL
Example 3–44 shows how to create a synonym that is an alias for the employees
table. For more information about synonyms, see "Managing Synonyms" on page 2-35.

Example 3–44 Creating a Synonym Using SQL

-- create a synonym for the employees table
CREATE SYNONYM emps for HR.employees;

-- query the employees table using the emps synonym
SELECT employee_id, last_name FROM emps WHERE employee_id < 105;

Example 3–45 show how to drop a synonym.

Example 3–45 Dropping a Synonym Using SQL

-- drop the synonym
DROP SYNONYM emps;

For information about creating and dropping a synonym with the Object Browser
page, see "Creating a Synonym" on page 2-36 and "Dropping a Synonym" on
page 2-36.

Using Data Definition Language Statements to Manage Database Objects

3-28 Oracle Database Express Edition 2 Day Developer Guide

Using PL/SQL 4-1

4
Using PL/SQL

This section discusses the PL/SQL language, which can be use to develop applications
for Oracle Database Express Edition.

This section contains the following topics:

■ Overview of PL/SQL on page 4-1

■ Entering and Running PL/SQL Code on page 4-2

■ Using the Main Features of PL/SQL on page 4-3

■ Handling PL/SQL Errors on page 4-28

Overview of PL/SQL
PL/SQL is an Oracle's procedural language extension to SQL. It is a server-side, stored
procedural language that is easy-to-use, seamless with SQL, portable, and secure.

PL/SQL enables you to mix SQL statements with procedural constructs. With
PL/SQL, you can create and run PL/SQL program units such as procedures,
functions, and packages. PL/SQL program units generally are categorized as
anonymous blocks, stored functions, stored procedures, and packages.

The following can be constructed with the PL/SQL language:

■ Anonymous block

An anonymous block is a PL/SQL block that appears in your application and is
not named or stored in the database. In many applications, PL/SQL blocks can
appear wherever SQL statements can appear. A PL/SQL block groups related
declarations and statements. Because these blocks are not stored in the database,
they are generally for one-time use.

■ Stored or standalone procedure and function

See Also:

■ Oracle Database PL/SQL User's Guide and Reference for detailed
information about PL/SQL

■ Oracle Database PL/SQL Packages and Types Reference for
information about packages supplied by Oracle

■ Oracle Database Application Developer's Guide - Fundamentals for
information about dynamic SQL

■ Oracle Database Application Developer's Guide - Fundamentals for
information about using PL/SQL to develop Web applications

Entering and Running PL/SQL Code

4-2 Oracle Database Express Edition 2 Day Developer Guide

A stored procedure or function is a PL/SQL block that Oracle Database XE stores
in the database and can be called by name from an application. Functions are
different than procedures in that functions return a value when executed. When
you create a stored procedure or function, Oracle Database XE parses the
procedure or function, and stores its parsed representation in the database. See
Chapter 5, "Using Procedures, Functions, and Packages".

■ Package

A package is a group of procedures, functions, and variable definitions that Oracle
Database XE stores in the database. Procedures, functions, and variables in
packages can be called from other packages, procedures, or functions. See
Chapter 5, "Using Procedures, Functions, and Packages".

■ Trigger

A database trigger is a stored procedure associated with a database table, view, or
event. The trigger can be called after the event, to record it, or take some follow-up
action. The trigger can be called before the event, to prevent erroneous operations
or fix new data so that it conforms to business rules. See Chapter 6, "Using
Triggers".

Entering and Running PL/SQL Code
You can enter and run PL/SQL code from the SQL Commands page, Script Editor
page, or SQL Command Line (SQL*Plus).

Using the SQL Commands page is described in this section. The SQL Commands page
is a simpler interface and easier to use.

Both SQL Commands and Script Editor pages enable you to save your SQL statements
as a script file in a database repository for future use. You can run multiple SQL
statements in the Script Editor page. Script Editor also enables you to download the
script to the local file system. For information about using the Script Editor page, see
"Running SQL Statements in the Script Editor Page" on page 3-3.

You can create a text file of the PL/SQL code with the Script Editor page or a text
editor to run as a SQL script from SQL Command Line. Using a script makes
correcting mistakes easier because you only need to make the necessary updates to
correct the problem, rather than entering again all the PL/SQL code at the SQL
Command Line prompt. For information about using SQL Command Line and
running SQL scripts from SQL Command Line, see Appendix A, "Using SQL
Command Line".

This section contains the following topic:

■ Running PL/SQL Code in the SQL Commands Page on page 4-2

Running PL/SQL Code in the SQL Commands Page
To enter and run PL/SQL code in the SQL Commands page:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the home page, click the SQL icon to display the SQL page.

3. Click the SQL Commands icon to display the SQL Commands page.

4. On the SQL Commands page, enter the PL/SQL code in Example 4–1 on page 4-4.
Note that some of the lines of code are terminated with a semi colon (;) and the

Using the Main Features of PL/SQL

Using PL/SQL 4-3

entire code unit is terminated with a slash (/). The slash is required when running
the PL/SQL in a SQL script or at the SQL Command Line prompt, but it is
optional on the SQL Commands page.

5. Click the Run button to run the PL/SQL code. If necessary, select (highlight) only
the PL/SQL code block before clicking the Run button. Any comments outside the
PL/SQL code block are not legal in the SQL Commands page.

6. If you want to save the PL/SQL code for future use, click the Save button.

7. In the Name field, enter a name for the saved PL/SQL code. You can also enter an
optional description. Click the Save button to save the SQL.

8. To access saved PL/SQL code, click the Saved SQL tab, and select the name of the
saved PL/SQL code that you want to access.

Using the Main Features of PL/SQL
PL/SQL combines the data-manipulating power of SQL with the processing power of
procedural languages. You can control program flow with statements, such as IF and
LOOP. As with other procedural programming languages, you can declare variables,
define procedures and functions, and trap run time errors.

PL/SQL lets you break complex problems down into understandable procedural code,
and reuse this code across multiple applications. When a problem can be solved
through plain SQL, you can issue SQL statements directly inside your PL/SQL
programs, without learning new APIs. PL/SQL datatypes correspond with SQL
column types, enabling you to interchange PL/SQL variables with data inside a table.

This section contains the following topics:

See Also: Oracle Database Express Edition Application Express User’s
Guide for detailed information about using SQL Commands

Using the Main Features of PL/SQL

4-4 Oracle Database Express Edition 2 Day Developer Guide

■ Using the PL/SQL Block Structure on page 4-4

■ Inputting and Outputting Data with PL/SQL on page 4-5

■ Using Comments on page 4-6

■ Declaring Variables and Constants on page 4-6

■ Using Identifiers in PL/SQL on page 4-7

■ Assigning Values to a Variable With the Assignment Operator on page 4-8

■ Using Literals on page 4-8

■ Declaring Variables With the DEFAULT Keyword or NOT NULL Constraint on
page 4-11

■ Assigning Values to a Variable With the PL/SQL SELECT INTO Statement on
page 4-11

■ Using %TYPE and %ROWTYPE Attributes to Declare Identical Datatypes on
page 4-12

■ Using PL/SQL Control Structures on page 4-13

■ Using Local PL/SQL Procedures and Functions in PL/SQL Blocks on page 4-17

■ Using Cursors and Cursor Variables To Retrieve Data on page 4-19

■ Working With PL/SQL Data Structures on page 4-24

■ Using Bind Variables With PL/SQL on page 4-27

■ Using Dynamic SQL in PL/SQL on page 4-27

Using the PL/SQL Block Structure
As Example 4–1 shows, a PL/SQL block has three basic parts: a declarative part
(DECLARE), an executable part (BEGIN ... END), and an exception-handling
(EXCEPTION) part that handles error conditions. For a discussion about exception
handling, see "Handling PL/SQL Errors" on page 4-28.

Only the executable part is required. The optional declarative part is written first,
where you define types, variables, and similar items. These items are manipulated in
the executable part. Errors that occur during execution can be dealt with in the
exception-handling part.

Note the comments that are added to the PL/SQL code. See "Using Comments" on
page 4-6. Also, note the use of DBMS_OUTPUT.PUT_LINE to display output. See
"Inputting and Outputting Data with PL/SQL" on page 4-5.

Example 4–1 Using a Simple PL/SQL Block

-- the following is an optional declarative part
DECLARE
 monthly_salary NUMBER(6);
 number_of_days_worked NUMBER(2);
 pay_per_day NUMBER(6,2);

-- the following is the executable part, from BEGIN to END
BEGIN
 monthly_salary := 2290;
 number_of_days_worked := 21;
 pay_per_day := monthly_salary/number_of_days_worked;

Using the Main Features of PL/SQL

Using PL/SQL 4-5

-- the following displays output from the PL/SQL block
 DBMS_OUTPUT.PUT_LINE('The pay per day is ' || TO_CHAR(pay_per_day));

-- the following is an optional exception part that handles errors
EXCEPTION
 WHEN ZERO_DIVIDE THEN
 pay_per_day := 0;

END;
/

For another example of a PL/SQL block structure, see Example 4–13 on page 4-11.

Inputting and Outputting Data with PL/SQL
Most PL/SQL input and output is through SQL statements, to store data in database
tables or to query those tables. All other PL/SQL I/O is done through APIs that
interact with other programs. For example, the DBMS_OUTPUT package has procedures
such as PUT_LINE. To see the result outside of PL/SQL requires another program,
such as the SQL Commands page or SQL Command Line (SQL*Plus), to read and
display the data passed to DBMS_OUTPUT.

The SQL Commands page is configured to display output with DBMS_OUTPUT. SQL
Command Line does not display DBMS_OUTPUT data unless you first issue the
SQL*Plus command SET SERVEROUTPUT ON. For information about SQL Command
Line SET command, see "SQL Command Line SET Commands" on page A-4.

Example 4–2 show the use of DBMS_OUTPUT.PUTLINE. Note the use of SET
SERVEROUTPUT ON to enable output.

Example 4–2 Using DBMS_OUTPUT.PUT_LINE to Display PL/SQL Output

-- enable SERVEROUTPUT in SQL Command Line (SQL*Plus) to display output with
-- DBMS_OUTPUT.PUT_LINE, this enables SERVEROUTPUT for this SQL*Plus session only
SET SERVEROUTPUT ON

DECLARE
 answer VARCHAR2(20); -- declare a variable
BEGIN
-- assign a value to a variable
 answer := 'Maybe';
-- use PUT_LINE to display data from the PL/SQL block
 DBMS_OUTPUT.PUT_LINE('The answer is: ' || answer);
END;
/

The DBMS_OUTPUT package is a predefined Oracle package. For information about
Oracle supplied packages, see "Oracle Provided Packages" on page 5-23.

See Also: Oracle Database PL/SQL User's Guide and Reference for
information about PL/SQL language elements

See Also:

■ SQL*Plus User's Guide and Reference for information SQL*Plus
commands

■ Oracle Database PL/SQL Packages and Types Reference for
information about Oracle supplied packages

Using the Main Features of PL/SQL

4-6 Oracle Database Express Edition 2 Day Developer Guide

Using Comments
The PL/SQL compiler ignores comments, but you should not. Adding comments to
your program improves readability and helps others understand your code. Generally,
you use comments to describe the purpose and use of each code segment. PL/SQL
supports single-line and multiple-line comment styles.

Single-line comments begin with a double hyphen (--) anywhere on a line and extend
to the end of the line. Multiple-line comments begin with a slash and an asterisk (/*),
end with an asterisk and a slash (*/), and can span multiple lines. See Example 4–3.

Example 4–3 Using Comments in PL/SQL

DECLARE -- Declare variables here.
 monthly_salary NUMBER(6); -- This is the monthly salary.
 number_of_days_worked NUMBER(2); -- This is the days in one month.
 pay_per_day NUMBER(6,2); -- Calculate this value.
BEGIN
-- First assign values to the variables.
 monthly_salary := 2290;
 number_of_days_worked := 21;

-- Now calculate the value on the following line.
 pay_per_day := monthly_salary/number_of_days_worked;

-- the following displays output from the PL/SQL block
 DBMS_OUTPUT.PUT_LINE('The pay per day is ' || TO_CHAR(pay_per_day));

EXCEPTION
/* This is a simple example of an exeception handler to trap division by zero.
 In actual practice, it would be best to check whether a variable is
 zero before using it as a divisor. */
 WHEN ZERO_DIVIDE THEN
 pay_per_day := 0; -- set to 0 if divisor equals 0
END;
/

While testing or debugging a program, you might want to disable a line of code. The
following example shows how you can disable a single line by making it a comment:

-- pay_per_day := monthly_salary/number_of_days_worked;

You can use multiple-line comment delimiters to comment out large sections of code.

Declaring Variables and Constants
Variables can have any SQL datatype, such as VARCHAR2, DATE, or NUMBER, or a
PL/SQL-only datatype, such as a BOOLEAN or PLS_INTEGER. You can also declare
nested tables, variable-size arrays (varrays for short), and records using the TABLE,
VARRAY, and RECORD composite datatypes. See "Working With PL/SQL Data
Structures" on page 4-24.

Declaring a constant is similar to declaring a variable except that you must add the
CONSTANT keyword and immediately assign a value to the constant. No further
assignments to the constant are allowed. For an example, see the avg_days_worked_
month constant in Example 4–4.

For example, assume that you want to declare variables for employee data, such as
employee_id to hold 6-digit numbers and active_employee to hold the Boolean
value TRUE or FALSE. You declare these and related employee variables and constants,
as shown in Example 4–4.

Using the Main Features of PL/SQL

Using PL/SQL 4-7

Note that there is a semi colon (;) at the end of each line in the declaration section.
Also, note the use of the NULL statement that enables you to run and test the PL/SQL
block.

You can choose any naming convention for variables that is appropriate for your
application, but the names must be valid PL/SQL identifiers. See "Using Identifiers in
PL/SQL" on page 4-7.

Example 4–4 Declaring Variables in PL/SQL

DECLARE -- declare the variables in this section
 last_name VARCHAR2(30);
 first_name VARCHAR2(25);
 employee_id NUMBER(6);
 active_employee BOOLEAN;
 monthly_salary NUMBER(6);
 number_of_days_worked NUMBER(2);
 pay_per_day NUMBER(6,2);
 avg_days_worked_month CONSTANT NUMBER(2) := 21; -- a constant variable
BEGIN
 NULL; -- NULL statement does nothing, allows this block to executed and tested
END;
/

Using Identifiers in PL/SQL
You use identifiers to name PL/SQL program items and units, such as constants,
variables, exceptions, and subprograms. An identifier consists of a letter optionally
followed by more letters, numerals, dollar signs, underscores, and number signs.
Characters such as ampersands (&), hyphens (-), slashes (/), and spaces () are not
allowed.

You can use uppercase, lowercase, or mixed case to write identifiers. PL/SQL is not
case-sensitive except within string and character literals. Every character, including
dollar signs, underscores, and number signs, is significant. If the only difference
between identifiers is the case of corresponding letters, PL/SQL considers the
identifiers the same.

The declaration section in Example 4–5 show some PL/SQL identifiers. You can see
additional examples of identifiers for variable names in Example 4–3 on page 4-6 and
Example 4–4 on page 4-7.

Example 4–5 Using Identifiers for Variables in PL/SQL

DECLARE
 lastname VARCHAR2(30); -- valid identifier
 last_name VARCHAR2(30); -- valid identifier, _ allowed
 last$name VARCHAR2(30); -- valid identifier, $ allowed
 last#name VARCHAR2(30); -- valid identifier, # allowed
-- last-name is invalid, hypen not allowed
-- last/name is invalid, slash not allowed
-- last name is invalid, space not allowed
-- LASTNAME is invalid, same as lastname and LastName
-- LastName is invalid, same as lastname and LASTNAME
BEGIN

See Also: Oracle Database PL/SQL User's Guide and Reference for
information about datatypes used with PL/SQL, including the
PL/SQL BOOLEAN and PLS_INTEGER datatypes

Using the Main Features of PL/SQL

4-8 Oracle Database Express Edition 2 Day Developer Guide

 NULL; -- NULL statement does nothing, allows this block to executed and tested
END;
/

The size of an identifier cannot exceed 30 characters. Identifiers should be descriptive.
When possible, avoid obscure names such as cpm. Instead, use meaningful names such
as cost_per_million. You can use prefixes for more clarification. For example, you
could begin each variable name with the var_ and each constant name with con_.

Some identifiers, called reserved words or keywords, have a special syntactic meaning
to PL/SQL. For example, the words BEGIN and END are reserved. Often, reserved
words and keywords are written in upper case for readability. Neither reserved words
or keywords should be used as identifiers and the use can cause compilation errors.
For a list of PL/SQL reserved words and keywords, see Appendix B, "Reserved
Words".

Assigning Values to a Variable With the Assignment Operator
You can assign values to a variable in several ways. One way uses the assignment
operator (:=), a colon followed by an equal sign, as shown in Example 4–6. You place
the variable to the left of the operator and an expression, including function calls, to
the right. Note that you can assign a value to a variable when it is declared.

Example 4–6 Assigning Values to Variables With the PL/SQL Assignment Operator

DECLARE -- declare and assiging variables
 wages NUMBER(6,2);
 hours_worked NUMBER := 40;
 hourly_salary NUMBER := 22.50;
 bonus NUMBER := 150;
 country VARCHAR2(128);
 counter NUMBER := 0;
 done BOOLEAN := FALSE;
 valid_id BOOLEAN;
BEGIN
 wages := (hours_worked * hourly_salary) + bonus; -- compute wages
 country := 'France'; -- assign a string literal
 country := UPPER('Canada'); -- assign an uppercase string literal
 done := (counter > 100); -- assign a BOOLEAN, in this case FALSE
 valid_id := TRUE; -- assign a BOOLEAN
END;
/

Using Literals
A literal is an explicit numeric, character, string, or Boolean value not represented by
an identifier. For example, 147 is a numeric literal, and FALSE is a Boolean literal.

Numeric Literals
Two kinds of numeric literals can be used in arithmetic expressions: integer and real.
An integer literal is an optionally signed whole number without a decimal point, such
as +6. A real literal is an optionally signed whole or fractional number with a decimal
point, such as -3.14159. PL/SQL considers a number such as 25. to be real, even
though it has an integral value.

Numeric literals cannot contain dollar signs or commas, but can be written using
scientific notation. Add an E (or e) after the base number, followed by an optionally

Using the Main Features of PL/SQL

Using PL/SQL 4-9

signed integer, for example -9.5e-3. The E (or e) represents the base number ten and
the following integer represents the exponent.

Example 4–7 shows some examples of numeric literals.

Example 4–7 Using Numeric Literals in PL/SQL

DECLARE -- declare and assign variables
 number1 PLS_INTEGER := 32000; -- numeric literal
 number2 NUMBER(8,3);
BEGIN
 number2 := 3.125346e3; -- numeric literal
 number2 := -8300.00; -- numeric literal
 number2 := -14; -- numeric literal
END;
/

Character Literals
A character literal is an individual character enclosed by single quotation marks
(apostrophes), such as '(' or '7'. Character literals include all the printable
characters in the PL/SQL character set: letters, numbers, spaces, and special symbols.

PL/SQL is case-sensitive within character literals. For example, PL/SQL considers the
character literals 'Z' and 'z' to be different. The character literals '0'...'9' are not
equivalent to integer literals, but can be used in arithmetic expressions because they
are implicitly convertible to integers.

Example 4–8 shows some examples of character literals.

Example 4–8 Using Character Literals in PL/SQL

DECLARE -- declare and assign variables
 char1 VARCHAR2(1) := 'x'; -- character literal
 char2 VARCHAR2(1);
BEGIN
 char2 := '5'; -- character literal
END;
/

String Literals
A character value can be represented by an identifier or explicitly written as a string
literal, which is a sequence of zero or more characters enclosed by single quotation
marks, such as 'Hello, world!' and '$1,000,000'.

PL/SQL is case-sensitive within string literals. For example, PL/SQL considers the
string literals 'baker' and 'Baker' to be different:

To represent an apostrophe within a string, you can use two single quotation marks
(''), which is not the same as a quotation mark ("). You can also use the
quote-delimiter mechanism, which enables you to specify q or Q followed by a single
quotation mark and then another character to be used as the quotation mark delimiter.
See "Using Character Literals in SQL Statements" on page 3-7.

Example 4–9 shows some examples of string literals.

Example 4–9 Using String Literals in PL/SQL

DECLARE -- declare and assign variables
 string1 VARCHAR2(1000);

Using the Main Features of PL/SQL

4-10 Oracle Database Express Edition 2 Day Developer Guide

 string2 VARCHAR2(32767);
BEGIN
 string1 := '555-111-2323';
 -- the following needs two single quotation marks to represent one in the string
 string2 := 'Here''s an example of two single quotation marks used in a string.';
END;
/

BOOLEAN Literals
BOOLEAN literals are the predefined values: TRUE, FALSE, and NULL. NULL is a
missing, unknown, or inapplicable value. BOOLEAN literals are values, not strings.

Example 4–10 shows some examples of BOOLEAN literals.

Example 4–10 Using BOOLEAN Literals in PL/SQL

DECLARE -- declare and assign variables
 finished BOOLEAN := TRUE; -- BOOLEAN literal
 complete BOOLEAN; -- BOOLEAN literal
 true_or_false BOOLEAN;
BEGIN
 finished := FALSE; -- BOOLEAN literal set to FALSE
 complete := NULL; -- BOOLEAN literal with unknown value
 true_or_false := (3 = 4); -- BOOLEAN literal set to FALSE
 true_or_false := (3 < 4); -- BOOLEAN literal set to TRUE
END;
/

Date-time Literals
Date-time literals have various formats depending on the date-time datatype used,
such as '14-SEP-05' or '14-SEP-05 09:24:04 AM'.

Example 4–11 shows some examples of date-time literals.

Example 4–11 Using Date-time Literals in PL/SQL

DECLARE -- declare and assign variables
 date1 DATE := '11-AUG-2005'; -- DATE literal
 time1 TIMESTAMP;
 time2 TIMESTAMP WITH TIME ZONE;
BEGIN
 time1 := '11-AUG-2005 11:01:01 PM'; -- TIMESTAMP literal
 time2 := '11-AUG-2005 09:26:56.66 PM +02:00'; -- TIMESTAMP WITH TIME ZONE
END;
/

See Also:

■ Oracle Database SQL Reference for information about the syntax for
literals and the date and time types

■ Oracle Database Application Developer's Guide - Fundamentals for
examples of performing date and time arithmetic

■ Oracle Database PL/SQL User's Guide and Reference for information
about using literals with PL/SQL

Using the Main Features of PL/SQL

Using PL/SQL 4-11

Declaring Variables With the DEFAULT Keyword or NOT NULL Constraint
You can use the DEFAULT keyword instead of the assignment operator to initialize
variables when they are declared. Use DEFAULT for variables that have a typical value.
Use the assignment operator for variables (such as counters and accumulators) that
have no typical value. You can also use DEFAULT to initialize subprogram parameters,
cursor parameters, and fields in a user-defined record.

In addition to assigning an initial value, declarations can impose the NOT NULL
constraint so that assigning a NULL causes an error. The NOT NULL constraint must be
followed by an initialization clause.

In Example 4–12 the declaration for the avg_days_worked_month variable uses the
DEFAULT to assign a value of 21 and the declarations for the active_employee and
monthly_salary variables use the NOT NULL constraint.

Example 4–12 Using DEFAULT and NOT NULL in PL/SQL

DECLARE -- declare and assign variables
 last_name VARCHAR2(30);
 first_name VARCHAR2(25);
 employee_id NUMBER(6);
 active_employee BOOLEAN NOT NULL := TRUE; -- value cannot be NULL
 monthly_salary NUMBER(6) NOT NULL := 2000; -- value cannot be NULL
 number_of_days_worked NUMBER(2);
 pay_per_day NUMBER(6,2);
 employee_count NUMBER(6) := 0;
 avg_days_worked_month NUMBER(2) DEFAULT 21; -- assign a default value
BEGIN
 NULL; -- NULL statement does nothing, allows this block to executed and tested
END;
/

Assigning Values to a Variable With the PL/SQL SELECT INTO Statement
Another way to assign values to a variable is by selecting (or fetching) database values
into it. With the PL/SQL SELECT INTO statement, you can retrieve data from one row
in a table. In Example 4–13, 10 percent of the salary of an employee is selected into the
bonus variable. Now, you can use the bonus variable in another computation, or
insert its value into a database table.

In the example, the DBMS_OUTPUT.PUT_LINE procedure is used to display output
from the PL/SQL program. For more information, see "Inputting and Outputting Data
with PL/SQL" on page 4-5.

Example 4–13 Assigning Values to Variables Using PL/SQL SELECT INTO

DECLARE -- declare and assign values
 bonus_rate CONSTANT NUMBER(2,3) := 0.05;
 bonus NUMBER(8,2);
 emp_id NUMBER(6) := 120; -- assign a test value for employee ID
BEGIN
-- retreive a salary from the employees table, then calculate the bonus and
-- assign the value to the bonus variable
 SELECT salary * bonus_rate INTO bonus FROM employees
 WHERE employee_id = emp_id;
-- display the employee_id, bonus amount, and bonus rate
 DBMS_OUTPUT.PUT_LINE ('Employee: ' || TO_CHAR(emp_id)
 || ' Bonus: ' || TO_CHAR(bonus) || ' Bonus Rate: ' || TO_CHAR(bonus_rate));
END;

Using the Main Features of PL/SQL

4-12 Oracle Database Express Edition 2 Day Developer Guide

/

Using %TYPE and %ROWTYPE Attributes to Declare Identical Datatypes
As part of the declaration for each PL/SQL variable, you declare its datatype. Usually,
this datatype is one of the types shared between PL/SQL and SQL, such as NUMBER or
VARCHAR2. For easier code maintenance that interacts with the database, you can also
use the special qualifiers %TYPE and %ROWTYPE to declare variables that hold table
columns or table rows.

This section contains the following topics:

■ Using the %TYPE Attribute to Declare Variables on page 4-12

■ Using the %ROWTYPE Attribute to Declare Variables on page 4-12

Using the %TYPE Attribute to Declare Variables
The %TYPE attribute provides the datatype of a variable or table column. This is
particularly useful when declaring variables that will hold values of a table column.
For example, suppose you want to declare variables as the same datatype as the
employee_id and last_name columns in employees table. To declare variables
named empid and emplname that have the same datatype as the table columns, use
dot notation and the %TYPE attribute. See Example 4–14.

Example 4–14 Using %TYPE With Table Columns in PL/SQL

DECLARE -- declare variables using %TYPE attribute
 empid employees.employee_id%TYPE; -- employee_id datatype is NUMBER(6)
 emplname employees.last_name%TYPE; -- last_name datatype is VARCHAR2(25)
BEGIN
 empid := 100301; -- this is OK because it fits in NUMBER(6)
-- empid := 3018907; -- this is too large and will cause an overflow
 emplname := 'Patel'; -- this is OK because it fits in VARCHAR2(25)
 DBMS_OUTPUT.PUT_LINE('Employee ID: ' || empid); -- display data
 DBMS_OUTPUT.PUT_LINE('Employee name: ' || emplname); -- display data
END;
/

Declaring variables with the %TYPE attribute has two advantages. First, you do not
need to know the exact datatype of the table columns. Second, if you change the
database definition of columns, such as employee_id or last_name, the datatypes
of empid and emplname in Example 4–14 change accordingly at run time.

Using the %ROWTYPE Attribute to Declare Variables
For easier maintenance of code that interacts with the database, you can use the
%ROWTYPE attribute to declare a variable that represents a row in a table. A PL/SQL
record is the datatype that stores the same information as a row in a table.

In PL/SQL, records are used to group data. A record consists of a number of related
fields in which data values can be stored. The record can store an entire row of data

See Also: Oracle Database PL/SQL User's Guide and Reference for
information about SELECT INTO syntax

See Also: Oracle Database PL/SQL User's Guide and Reference for
information about the %TYPE attribute

Using the Main Features of PL/SQL

Using PL/SQL 4-13

selected from the table or fetched from a cursor or cursor variable. For information
about records, see "Using Record Types" on page 4-24.

Columns in a row and corresponding fields in a record have the same names and
datatypes. In Example 4–15, you declare a record named emp_rec. Its fields have the
same names and datatypes as the columns in the employees table. You use dot
notation to reference fields, such as emp_rec.last_name.

In Example 4–15, the SELECT statement is used to store row information from the
employees table into the emp_rec record. When you run the SELECT INTO
statement, the value in the first_name column of the employees table is assigned
to the first_name field of emp_rec; the value in the last_name column is assigned
to the last_name field of emp_rec; and so on.

Example 4–15 Using %ROWTYPE with a PL/SQL Record

DECLARE -- declare variables
-- declare record variable that represents a row fetched from the employees table
 emp_rec employees%ROWTYPE; -- declare variable with %ROWTYPE attribute
BEGIN
 SELECT * INTO emp_rec FROM EMPLOYEES WHERE employee_id = 120; -- retrieve record
 DBMS_OUTPUT.PUT_LINE('Employee name: ' || emp_rec.first_name || ' '
 || emp_rec.last_name); -- display
END;
/

Declaring variables with the %ROWTYPE attribute has several advantages. First, you do
not need to know the exact datatype of the table columns. Second, if you change the
database definition of any of the table columns, the datatypes associated with the
%ROWTYPE declaration change accordingly at run time.

Using PL/SQL Control Structures
Control structures are the most important PL/SQL extension to SQL. Not only does
PL/SQL let you manipulate Oracle data, it lets you process the data using conditional,
iterative, and sequential flow-of-control statements such as IF-THEN-ELSE, CASE,
FOR-LOOP, WHILE-LOOP, EXIT-WHEN, and GOTO.

This section contains the following topics:

■ Conditional Control With IF-THEN on page 4-13

■ Conditional Control With the CASE Statement on page 4-14

■ Iterative Control With LOOPs on page 4-15

■ Sequential Control With GOTO on page 4-17

Conditional Control With IF-THEN
Often, it is necessary to take alternative actions depending on circumstances. The
IF-THEN statement lets you run a sequence of statements conditionally. The forms of
the statement can be IF-THEN, IF-THEN-ELSE, or IF-THEN-ELSEIF-ELSE. The IF
clause checks a condition; the THEN clause defines what to do if the condition is true;
and the ELSE clause defines what to do if the condition is false or null. Example 4–16
shows a simple use of the IF-THEN statement.

See Also: Oracle Database PL/SQL User's Guide and Reference for
information about the %ROWTYPE attribute

Using the Main Features of PL/SQL

4-14 Oracle Database Express Edition 2 Day Developer Guide

Example 4–16 Using a Simple IF-THEN Statement in PL/SQL

DECLARE
 sal NUMBER(8,2);
 bonus NUMBER(6,2);
 hiredate DATE;
 empid NUMBER(6) := 128; -- use employee 120 for testing
BEGIN
-- retrieve the salary and the date that employee was hired, the date is checked
-- to calculate the amount of the bonus for the employee
 SELECT salary, hire_date INTO sal, hiredate FROM employees
 WHERE employee_id = empid;
 IF hiredate > TO_DATE('01-JAN-00') THEN
 bonus := sal/20;
 DBMS_OUTPUT.PUT_LINE('Bonus for employee: ' || empid || ' is: ' || bonus);
 END IF;
END;
/

Example 4–17 shows the use of IF-THEN-ELSEIF-ELSE to determine the salary raise
an employee receives based on the hire date of the employee.

Example 4–17 Using the IF-THEN-ELSEIF Statement in PL/SQL

DECLARE
 bonus NUMBER(6,2);
 empid NUMBER(6) := 120;
 hiredate DATE;
BEGIN
-- retrieve the date that employee was hired, the date is checked
-- to determine the amount of the bonus for the employee
 SELECT hire_date INTO hiredate FROM employees WHERE employee_id = empid;
 IF hiredate > TO_DATE('01-JAN-98') THEN
 bonus := 500;
 ELSIF hiredate > TO_DATE('01-JAN-96') THEN
 bonus := 1000;
 ELSE
 bonus := 1500;
 END IF;
 DBMS_OUTPUT.PUT_LINE('Bonus for employee: ' || empid || ' is: ' || bonus);
END;
/

Conditional Control With the CASE Statement
To choose among several values or courses of action, you can use CASE constructs. The
CASE expression evaluates a condition and returns a value for each case. The case
statement evaluates a condition, and performs an action, such as an entire PL/SQL
block, for each case. When possible, rewrite lengthy IF-THEN-ELSIF statements as
CASE statements because the CASE statement is more readable and more efficient.

Example 4–18 shows a simple CASE statement.

Example 4–18 Using the CASE-WHEN Statement in PL/SQL

DECLARE
 grade CHAR(1);
BEGIN
 grade := 'B';
 CASE grade
 WHEN 'A' THEN DBMS_OUTPUT.PUT_LINE('Excellent');

Using the Main Features of PL/SQL

Using PL/SQL 4-15

 WHEN 'B' THEN DBMS_OUTPUT.PUT_LINE('Very Good');
 WHEN 'C' THEN DBMS_OUTPUT.PUT_LINE('Good');
 WHEN 'D' THEN DBMS_OUTPUT.PUT_LINE('Fair');
 WHEN 'F' THEN DBMS_OUTPUT.PUT_LINE('Poor');
 ELSE DBMS_OUTPUT.PUT_LINE('No such grade');
 END CASE;
END;
/

Example 4–19 determines the salary raise an employee receives based on the current
salary of the employee and the job ID. This complex example combines the CASE
expression with IF-THEN-ELSE statements.

Example 4–19 Using the IF-THEN_ELSE and CASE Statement in PL/SQL

DECLARE -- declare variables
 empid NUMBER(6) := 115;
 jobid VARCHAR2(10);
 sal NUMBER(8,2);
 sal_raise NUMBER(3,2); -- this is the rate of increase for the raise
BEGIN
-- retrieve the job ID and salary for the employee and
-- assign the values to variables jobid and sal
 SELECT job_id, salary INTO jobid, sal from employees WHERE employee_id = empid;
 CASE -- determine the salary raise rate based on employee job ID
 WHEN jobid = 'PU_CLERK' THEN
 IF sal < 3000 THEN sal_raise := .08;
 ELSE sal_raise := .07;
 END IF;
 WHEN jobid = 'SH_CLERK' THEN
 IF sal < 4000 THEN sal_raise := .06;
 ELSE sal_raise := .05;
 END IF;
 WHEN jobid = 'ST_CLERK' THEN
 IF sal < 3500 THEN sal_raise := .04;
 ELSE sal_raise := .03;
 END IF;
 ELSE
 BEGIN
-- if no conditions met, then the following
 DBMS_OUTPUT.PUT_LINE('No raise for this job: ' || jobid);
 END;
 END CASE;
-- display the percent raise for the employee
 DBMS_OUTPUT.PUT_LINE('Percent salary raise for employee: ' || empid || ' is: '
 || sal_raise);
END;
/

A sequence of statements that uses query results to select alternative actions is
common in database applications. Another common sequence inserts or deletes a row
only if an associated entry is found in another table. You can bundle these common
sequences into a PL/SQL block using conditional logic.

Iterative Control With LOOPs
LOOP statements let you run a sequence of statements multiple times. You place the
keyword LOOP before the first statement in the sequence and the keywords END LOOP
after the last statement in the sequence.

Using the Main Features of PL/SQL

4-16 Oracle Database Express Edition 2 Day Developer Guide

The FOR-LOOP statement lets you specify a range of integers, then run a sequence of
statements once for each integer in the range. In Example 4–20, the loop displays the
number and the square of the number for numbers 1 to 10. Note that you do not have
to declare or initialize the counter in the FOR-LOOP and any valid identifier can be
used for the name, such as loop_counter.

Example 4–20 Using the FOR-LOOP in PL/SQL

BEGIN
-- use a FOR loop to process a series of numbers
 FOR loop_counter IN 1..10 LOOP
 DBMS_OUTPUT.PUT_LINE('Number: ' || TO_CHAR(loop_counter)
 || ' Square: ' || TO_CHAR(loop_counter**2));
 END LOOP;
END;
/

The WHILE-LOOP statement associates a condition with a sequence of statements.
Before each iteration of the loop, the condition is evaluated. If the condition is true, the
sequence of statements is executed, then control resumes at the top of the loop. If the
condition is false or null, the loop is bypassed and control passes to the next statement.

In Example 4–21, the loop displays the number and the cube of the number while the
number is less than or equal to 10.

Example 4–21 Using WHILE-LOOP for Control in PL/SQL

DECLARE -- declare variables
 i NUMBER := 1; -- loop counter, initialize to one
 i_cubed NUMBER;
BEGIN
-- use WHILE LOOP to process data
 WHILE i <= 10 LOOP
 i_cubed := i**3;
 DBMS_OUTPUT.PUT_LINE('Number: ' || TO_CHAR(i)
 || ' Cube: ' || TO_CHAR(i_cubed));
 i := i + 1;
 END LOOP;
END;
/

The EXIT-WHEN statement lets you complete a loop if further processing is impossible
or undesirable. When the EXIT statement is encountered, the condition in the WHEN
clause is evaluated. If the condition is true, the loop completes and control passes to
the next statement. In Example 4–22, the loop completes when the value of total
exceeds 25,000:

Example 4–22 Using the EXIT-WHEN Statement in PL/SQL

DECLARE -- declare and assign values to variables
 total NUMBER(9) := 0;
 counter NUMBER(6) := 0;
BEGIN
 LOOP
 counter := counter + 1; -- increment counter variable
 total := total + counter * counter; -- compute total
 -- exit loop when condition is true
 EXIT WHEN total > 25000; -- LOOP until condition is met
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Counter: ' || TO_CHAR(counter)

Using the Main Features of PL/SQL

Using PL/SQL 4-17

 || ' Total: ' || TO_CHAR(total)); -- display results
END;
/

Sequential Control With GOTO
The GOTO statement lets you branch to a label unconditionally; however, you would
usually try to avoid exiting a loop in this manner. The label, an undeclared identifier
enclosed by double angle brackets, must precede an executable statement or a PL/SQL
block. When executed, the GOTO statement transfers control to the labeled statement or
block.

Example 4–23 shows the use of the GOTO statement in a loop that is testing for prime
numbers. When a number can be divided into evenly (no remainder), then it is not a
prime and the loop is immediately exited. Note the use of the SQL numeric function
MOD to check for no (zero) remainder. See "Using Numeric Functions" on page 3-14 for
information about SQL numeric functions.

Example 4–23 Using the GOTO Statement in PL/SQL

DECLARE -- declare variables
 p VARCHAR2(30);
 n PLS_INTEGER := 37; -- test any integer > 2 for prime, here 37
BEGIN
-- loop through divisors to determine if a prime number
 FOR j in 2..ROUND(SQRT(n))
 LOOP
 IF n MOD j = 0 THEN -- test for prime
 p := ' is NOT a prime number'; -- not a prime number
 GOTO print_now;
 END IF;
 END LOOP;
 p := ' is a prime number';
<<print_now>>
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(n) || p); -- display results
END;
/

Using Local PL/SQL Procedures and Functions in PL/SQL Blocks
Procedures and functions (subprograms) are named PL/SQL blocks that can be called
with a set of parameters from inside of a PL/SQL block.

A procedure is a subprogram that performs a specific action. You specify the name of
the procedure, its parameters, its local variables, and the BEGIN-END block that
contains its code and handles any exceptions. A function is a subprogram that
computes and returns a value. Functions and procedures are structured alike, except
that functions return a value.

When passing parameters to functions and procedures, the parameters can be declared
as IN or OUT or IN OUT parameters.

■ IN indicates that you must supply a value for the argument when calling the
function or procedure. This is the default.

■ OUT indicates that the function or procedure will set the value of the argument.

■ IN OUT indicates that a value for the argument can be supplied by you and can be
set by the function or procedure.

Using the Main Features of PL/SQL

4-18 Oracle Database Express Edition 2 Day Developer Guide

Example 4–24 is an example of a declaration of a PL/SQL procedure in a PL/SQL
block. Note that the v1 and v2 variables are declared as IN OUT parameters to a
subprogram.

Example 4–24 Declaring a Local PL/SQL Procedure With IN OUT Parameters

DECLARE -- declare variables and subprograms
 fname VARCHAR2(20) := 'randall';
 lname VARCHAR2(25) := 'dexter';

-- declare a local procedure which can only be used in this block
 PROCEDURE upper_name (v1 IN OUT VARCHAR2, v2 IN OUT VARCHAR2) AS
 BEGIN
 v1 := UPPER(v1); -- change the string to uppercase
 v2 := UPPER(v2); -- change the string to uppercase
 END upper_name;

-- start of executable part of block
BEGIN
 DBMS_OUTPUT.PUT_LINE(fname || ' ' || lname); -- display initial values
 upper_name (fname, lname); -- call the procedure with parameters
 DBMS_OUTPUT.PUT_LINE(fname || ' ' || lname); -- display new values
END;
/

Example 4–25 is an example of a declaration of a PL/SQL function in a PL/SQL block.
Note that the value returned by the function is used directly in the DBMS_
OUTPUT.PUT_LINE statement. Note that the v1 and v2 variables are declared as IN
parameters to a subprogram. An IN parameter passes an initial value that is read
inside of a subprogram. Any update to the value of the parameter inside of the
subprogram is not accessible outside of the subprogram.

Example 4–25 Declaring a Local PL/SQL Function With IN Parameters

DECLARE -- declare variables and subprograms
 fname VARCHAR2(20) := 'randall';
 lname VARCHAR2(25) := 'dexter';

-- declare local function which can only be used in this block
 FUNCTION upper_name (v1 IN VARCHAR2, v2 IN VARCHAR2)
 RETURN VARCHAR2 AS
 v3 VARCHAR2(45); -- this variable is local to the function
 BEGIN
 -- build a string that will be returned as the function value
 v3 := v1 || ' + ' || v2 || ' = ' || UPPER(v1) || ' ' || UPPER(v2);
 RETURN v3; -- return the value of v3
 END upper_name;

-- start of executable part of block
BEGIN
-- call the function and display results
 DBMS_OUTPUT.PUT_LINE(upper_name (fname, lname));
END;
/

In Example 4–26, both a variable and a numeric literal are passed as a parameter to a
more complex procedure.

Using the Main Features of PL/SQL

Using PL/SQL 4-19

Example 4–26 Declaring a Complex Local Procedure in a PL/SQL Block

DECLARE -- declare variables and subprograms
 empid NUMBER;

-- declare local procedure for this block
 PROCEDURE avg_min_max_sal (empid IN NUMBER) IS
 jobid VARCHAR2(10);
 avg_sal NUMBER;
 min_sal NUMBER;
 max_sal NUMBER;
 BEGIN
 -- determine the job ID for the employee
 SELECT job_id INTO jobid FROM employees WHERE employee_id = empid;
 -- calculate the average, minimum, and maximum salaries for that job ID
 SELECT AVG(salary), MIN(salary), MAX(salary) INTO avg_sal, min_sal, max_sal
 FROM employees WHERE job_id = jobid;
 -- display data
 DBMS_OUTPUT.PUT_LINE ('Employee ID: ' || empid || ' Job ID: ' || jobid);
 DBMS_OUTPUT.PUT_LINE ('The average salary for job ID: ' || jobid
 || ' is ' || TO_CHAR(avg_sal));
 DBMS_OUTPUT.PUT_LINE ('The minimum salary for job ID: ' || jobid
 || ' is ' || TO_CHAR(min_sal));
 DBMS_OUTPUT.PUT_LINE ('The maximum salary for job ID: ' || jobid
 || ' is ' || TO_CHAR(max_sal));
 END avg_min_max_sal;
-- end of local procedure

-- start executable part of block
BEGIN
-- call the procedure with several employee IDs
 empid := 125;
 avg_min_max_sal(empid);
 avg_min_max_sal(112);
END;
/

Subprograms can also be declared in packages. For an example of a subprogram
declaration in a package, see Example 5–9 on page 5-17. You can create standalone
subprograms that are stored in the database. These subprograms can be called from
other subprograms, packages, and SQL statements. See Chapter 5, "Using Procedures,
Functions, and Packages".

Using Cursors and Cursor Variables To Retrieve Data
A cursor is a name for a private SQL area in which information for processing the
specific statement is kept. PL/SQL uses both implicit and explicit cursors. Cursor
attributes return useful information about the status of cursors in the execution of SQL
statements.

PL/SQL implicitly creates a cursor for all SQL data manipulation statements on a set
of rows, including queries that return only one row. Implicit cursors are managed
automatically by PL/SQL so you are not required to write any code to handle these
cursors. However, you can track information about the execution of an implicit cursor
through its cursor attributes.

You can explicitly declare a cursor for one row or multiple rows if you want precise
control over query processing. You must declare an explicit cursor for queries that
return more than one row. For queries that return multiple rows, you can process the
rows individually.

Using the Main Features of PL/SQL

4-20 Oracle Database Express Edition 2 Day Developer Guide

A cursor variable (REF CURSOR) is similar to a cursor and points to the current row in
the result set of a multi-row query.

This section contains the following topics:

■ Explicit Cursors on page 4-20

■ Cursor Variables (REF CURSORs) on page 4-22

■ Cursor Attributes on page 4-23

Explicit Cursors
Example 4–27 is an example of explicit cursor used to process one row of a table.You
should explicitly open and close a cursor before and after use.

Example 4–27 Fetching a Single Row With a Cursor in PL/SQL

DECLARE
-- declare variables for first_name and last_name fetched from the employees table
 firstname employees.first_name%TYPE; -- variable for first_name
 lastname employees.last_name%TYPE; -- variable for last_name

-- declare a cursor to fetch data from a row (employee 120) in the employees table
 CURSOR cursor1 IS
 SELECT first_name, last_name FROM employees WHERE employee_id = 120;

BEGIN
 OPEN cursor1; -- open the cursor
 FETCH cursor1 INTO firstname, lastname; -- fetch data into local variables
 DBMS_OUTPUT.PUT_LINE('Employee name: ' || firstname || ' ' || lastname);
 CLOSE cursor1; -- close the cursor
END;
/

Example 4–28 shows examples of the use of a cursor to process multiple rows in a
table. The FETCH statement retrieves the rows in the result set one at a time. Each fetch
retrieves the current row and advances the cursor to the next row in the result set.
Note the use of the cursor attributes %ROWCOUNT and %NOTFOUND. For information
about cursor attributes, see "Cursor Attributes" on page 4-23.

Example 4–28 Fetching Multiple Rows With a Cursor in PL/SQL

DECLARE
-- declare variables for data fetched from cursors
 empid employees.employee_id%TYPE; -- variable for employee_id
 jobid employees.job_id%TYPE; -- variable for job_id
 lastname employees.last_name%TYPE; -- variable for last_name
 rowcount NUMBER;
-- declare the cursors
 CURSOR cursor1 IS SELECT last_name, job_id FROM employees
 WHERE job_id LIKE '%CLERK';
 CURSOR cursor2 is SELECT employee_id, last_name, job_id FROM employees
 WHERE job_id LIKE '%MAN' OR job_id LIKE '%MGR';
BEGIN
-- start the processing with cursor1
 OPEN cursor1; -- open cursor1 before fetching
 DBMS_OUTPUT.PUT_LINE('---------- cursor 1-----------------');
 LOOP
 FETCH cursor1 INTO lastname, jobid; -- fetches 2 columns into variables
-- check the cursor attribute NOTFOUND for the end of data

Using the Main Features of PL/SQL

Using PL/SQL 4-21

 EXIT WHEN cursor1%NOTFOUND;
-- display the last name and job ID for each record (row) fetched
 DBMS_OUTPUT.PUT_LINE(RPAD(lastname, 25, ' ') || jobid);
 END LOOP;
 rowcount := cursor1%ROWCOUNT;
 DBMS_OUTPUT.PUT_LINE('The number of rows fetched is ' || rowcount);
 CLOSE cursor1;

-- start the processing with cursor2
 OPEN cursor2;
 DBMS_OUTPUT.PUT_LINE('---------- cursor 2-----------------');
 LOOP
-- fetch 3 columns into the variables
 FETCH cursor2 INTO empid, lastname, jobid;
 EXIT WHEN cursor2%NOTFOUND;
-- display the employee ID, last name, and job ID for each record (row) fetched
 DBMS_OUTPUT.PUT_LINE(empid || ': ' || RPAD(lastname, 25, ' ') || jobid);
 END LOOP;
 rowcount := cursor2%ROWCOUNT;
 DBMS_OUTPUT.PUT_LINE('The number of rows fetched is ' || rowcount);
 CLOSE cursor2;
END;
/

In Example 4–28, the LIKE condition operator is used to specify the records to return
with the query. For information about LIKE, see "Restricting Data Using the WHERE
Clause" on page 3-6.

Example 4–29 shows how to pass a parameter to an explicit cursor. In the example, the
current month value is passed to the cursor to specify that only those employees hired
during this month are displayed. This provides a list of employees that have their
yearly anniversary dates and their bonus amount.

Example 4–29 Passing Parameters to a Cursor in PL/SQL

DECLARE
-- declare variables for data fetched from cursor
 empid employees.employee_id%TYPE; -- variable for employee_id
 hiredate employees.hire_date%TYPE; -- variable for hire_date
 firstname employees.first_name%TYPE; -- variable for first_name
 lastname employees.last_name%TYPE; -- variable for last_name
 rowcount NUMBER;
 bonusamount NUMBER;
 yearsworked NUMBER;
-- declare the cursor with a parameter,
 CURSOR cursor1 (thismonth NUMBER)IS
 SELECT employee_id, first_name, last_name, hire_date FROM employees
 WHERE EXTRACT(MONTH FROM hire_date) = thismonth;
BEGIN
-- open and pass a parameter to cursor1, select employees hired on this month
 OPEN cursor1(EXTRACT(MONTH FROM SYSDATE));
 DBMS_OUTPUT.PUT_LINE('----- Today is ' || TO_CHAR(SYSDATE, 'DL') || ' -----');
 DBMS_OUTPUT.PUT_LINE('Employees with yearly bonus amounts:');
 LOOP
-- fetches 4 columns into variables
 FETCH cursor1 INTO empid, firstname, lastname, hiredate;
-- check the cursor attribute NOTFOUND for the end of data
 EXIT WHEN cursor1%NOTFOUND;
-- calculate the yearly bonus amount based on months (years) worked
 yearsworked := ROUND((MONTHS_BETWEEN(SYSDATE, hiredate)/12));

Using the Main Features of PL/SQL

4-22 Oracle Database Express Edition 2 Day Developer Guide

 IF yearsworked > 10 THEN bonusamount := 2000;
 ELSIF yearsworked > 8 THEN bonusamount := 1600;
 ELSIF yearsworked > 6 THEN bonusamount := 1200;
 ELSIF yearsworked > 4 THEN bonusamount := 800;
 ELSIF yearsworked > 2 THEN bonusamount := 400;
 ELSIF yearsworked > 0 THEN bonusamount := 100;
 END IF;
-- display the employee Id, first name, last name, hire date, and bonus
-- for each record (row) fetched
 DBMS_OUTPUT.PUT_LINE(empid || ' ' || RPAD(firstname, 21, ' ') ||
 RPAD(lastname, 26, ' ') || hiredate || TO_CHAR(bonusamount, '$9,999'));
 END LOOP;
 rowcount := cursor1%ROWCOUNT;
 DBMS_OUTPUT.PUT_LINE('The number of rows fetched is ' || rowcount);
 CLOSE cursor1;
END;
/

Cursor Variables (REF CURSORs)
Cursor variables (REF CURSORs) are like pointers to result sets. A cursor variable is
more flexible than a cursor because it is not tied to a specific query. You can open a
cursor variable for any query that returns the correct set of columns.

Cursor variables are used when you want to perform a query in one function or
procedure, and process the results in a different subprogram, possibly in a different
language. A cursor variable has the datatype REF CURSOR, and is often referred to
informally as a REF CURSOR.

A REF CURSOR can be declared with a return type (strong type) or without a return
type (weak type). A strong REF CURSOR type is less error prone because the PL/SQL
compiler lets you associate a strongly typed cursor variable only with queries that
return the right set of columns. A weak REF CURSOR types is more flexible because the
compiler lets you associate a weakly typed cursor variable with any query. Because
there is no type checking with a weak REF CURSOR, all such types are interchangeable.
Instead of creating a new type, you can use the predefined type SYS_REFCURSOR.

Example 4–30 show how to declare a cursor variable of REF CURSOR datatype, then
use that cursor variable as a formal parameter in a procedure. For additional examples
of the use of REF CURSOR, see "Accessing Types in Packages" on page 5-21. For an
example of the use of a REF CURSOR with a PHP program, see Appendix C, "Using a
PL/SQL Procedure With PHP". For an example of the use of a REF CURSOR with a Java
program, see Appendix D, "Using a PL/SQL Procedure With JDBC".

Example 4–30 Using a Cursor Variable (REF CURSOR)

DECLARE
-- declare a REF CURSOR that returns employees%ROWTYPE (strongly typed)
 TYPE emp_refcur_typ IS REF CURSOR RETURN employees%ROWTYPE;
 emp_cursor emp_refcur_typ;
-- use the following local procedure to process all the rows after
-- the result set is built, rather than calling a procedure for each row
 PROCEDURE process_emp_cv (emp_cv IN emp_refcur_typ) IS
 person employees%ROWTYPE;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('-- Here are the names from the result set --');

See Also: Oracle Database PL/SQL User's Guide and Reference for
information about managing cursors with PL/SQL

Using the Main Features of PL/SQL

Using PL/SQL 4-23

 LOOP
 FETCH emp_cv INTO person;
 EXIT WHEN emp_cv%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(person.last_name || ', ' || person.first_name);
 END LOOP;
 END;
BEGIN
-- find employees whose employee ID is less than 108
 OPEN emp_cursor FOR SELECT * FROM employees WHERE employee_id < 108;
 process_emp_cv(emp_cursor); -- pass emp_cursor to the procedure for processing
 CLOSE emp_cursor;
-- find employees whose last name starts with R
 OPEN emp_cursor FOR SELECT * FROM employees WHERE last_name LIKE 'R%';
 process_emp_cv(emp_cursor); -- pass emp_cursor to the procedure for processing
 CLOSE emp_cursor;
END;
/

Cursor Attributes
Cursor attributes return information about the execution of DML and DDL statements,
such INSERT, UPDATE, DELETE, SELECT INTO, COMMIT, or ROLLBACK statements.
The cursor attributes are %FOUND, %ISOPEN, %NOTFOUND, and %ROWCOUNT. These
attributes return useful information about the most recently executed SQL statement.
When using an explicit cursor, add the explicit cursor or cursor variable name to the
beginning of the attribute, such as cursor1%FOUND, to return information for the
most recently executed SQL statement for that cursor.

The attributes provide the following information:

■ %FOUND Attribute: Has a Row Been Fetched?

After a cursor or cursor variable is opened but before the first fetch, %FOUND
returns NULL. After any fetches, it returns TRUE if the last fetch returned a row, or
FALSE if the last fetch did not return a row.

■ %ISOPEN Attribute: Is the Cursor Open?

If a cursor or cursor variable is open, then %ISOPEN returns TRUE ; otherwise,
%ISOPEN returns FALSE.

Note that implicit cursors are automatically opened before and closed after
executing the associated SQL statement so %ISOPEN always returns FALSE.

■ %NOTFOUND Attribute: Has a Fetch Failed?

If the last fetch returned a row, then %NOTFOUND returns FALSE. If the last fetch
failed to return a row, then %NOTFOUND returns TRUE. %NOTFOUND is the logical
opposite of %FOUND.

■ %ROWCOUNT Attribute: How Many Rows Fetched So Far?

After a cursor or cursor variable is opened, %ROWCOUNT returns 0 before the first
fetch. Thereafter, it returns the number of rows fetched so far. The number is
incremented if the last fetch returned a row.

See Also: Oracle Database PL/SQL User's Guide and Reference for
information about using cursor variables (REF CURSORs)

See Also: Oracle Database PL/SQL User's Guide and Reference for
information about cursor attributes

Using the Main Features of PL/SQL

4-24 Oracle Database Express Edition 2 Day Developer Guide

Working With PL/SQL Data Structures
Data structure are composite datatypes that let you work with the essential properties
of data without being too involved with details. After you design a data structure, you
can focus on designing algorithms that manipulate the data structure.

This section contains the following topics:

■ Using Record Types on page 4-24

■ Using Collections on page 4-25

Using Record Types
Record types are composite data structures whose fields can have different datatypes.
You can use records to hold related items and pass them to subprograms with a single
parameter. When declaring records, you use the TYPE definition, as shown in
Example 4–31.

Usually you would use a record to hold data from an entire row of a database table.
You can use the %ROWTYPE attribute to declare a record that represents a row in a table
or a row from a query result set, without specifying the names and types for the fields.
When using %ROWTYPE, the record type definition is implied, and the TYPE keyword
is not necessary, as shown in Example 4–32.

Example 4–31 shows how are records are declared and initialized.

Example 4–31 Declaring and Initializing a PL/SQL Record Type

DECLARE -- declare RECORD type variables
-- the following is a RECORD declaration to hold address information
 TYPE location_rec IS RECORD (
 room_number NUMBER(4),
 building VARCHAR2(25)
);
-- you use the %TYPE attribute to declare the datatype of a table column
-- you can include (nest) a record inside of another record
 TYPE person_rec IS RECORD (
 employee_id employees.employee_id%TYPE,
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 location location_rec
);
 person person_rec; -- declare a person variable of type person_rec
BEGIN
-- insert data in a record, one field at a time
 person.employee_id := 20;
 person.first_name := 'James';
 person.last_name := 'Boynton';
 person.location.room_number := 100;
 person.location.building:= 'School of Education';
-- display data in a record
 DBMS_OUTPUT.PUT_LINE(person.last_name || ', ' || person.first_name);
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(person.location.room_number) || ' '
 || person.location.building);
END;
/

Example 4–32 shows the use of %ROWTYPE in a record type declaration. This record is
used with a cursor that fetches an entire row.

Using the Main Features of PL/SQL

Using PL/SQL 4-25

Example 4–32 Using %ROWTYPE With a Cursor When Declaring a PL/SQL Record

DECLARE -- declare variables
 CURSOR cursor1 IS
 SELECT * FROM employees
 WHERE department_id = 60; -- declare cursor
-- declare record variable that represents a row fetched from the employees table
-- do not need to use TYPE .. IS RECORD with %ROWTYPE attribute
 employee_rec cursor1%ROWTYPE;
BEGIN
-- open the explicit cursor c1 and use it to fetch data into employee_rec
 OPEN cursor1;
 LOOP
 FETCH cursor1 INTO employee_rec; -- retrieve entire row into record
 EXIT WHEN cursor1%NOTFOUND;
-- the record contains all the fields for a row in the employees table
-- the following displays the data from the row fetched into the record
 DBMS_OUTPUT.PUT_LINE(' Department ' || employee_rec.department_id
 || ', Employee: ' || employee_rec.employee_id || ' - '
 || employee_rec.last_name || ', ' || employee_rec.first_name);
 END LOOP;
 CLOSE cursor1;
END;
/

Example 4–34 on page 4-26 shows the use of record as an element in a varray.

Using Collections
PL/SQL collection types let you declare high-level datatypes similar to arrays, sets,
and hash tables found in other languages. In PL/SQL, array types are known as
varrays (short for variable-size arrays), set types are known as nested tables, and hash
table types are known as associative arrays. Each kind of collection is an ordered
group of elements, all of the same type. Each element has a unique subscript that
determines its position in the collection. When declaring collections, you use a TYPE
definition. To reference an element, use subscript notation with parentheses.

Example 4–33 shows the use of a varray with elements of character type. A varray
must be initialized before use. When initializing a varry, you can also insert values into
the elements. After initialization, you need to use EXTEND to add additional elements
before inserting more values into the varray.

Example 4–33 Using a PL/SQL VARRAY Type With Character Elements

DECLARE -- declare variables
 TYPE jobids_array IS VARRAY(20) OF VARCHAR2(10); -- declare VARRAY
 jobids jobids_array; -- declare a variable of type jobids_array
 howmany NUMBER; -- declare a variable to hold employee count
BEGIN
 -- initialize the arrary with some job ID values
 jobids := jobids_array('AC_ACCOUNT', 'AC_MGR', 'AD_ASST', 'AD_PRES', 'AD_VP',
 'FI_ACCOUNT', 'FI_MGR', 'HR_REP', 'IT_PROG', 'PU_MAN',
 'SH_CLERK', 'ST_CLERK', 'ST_MAN');
-- display the current size of the array with COUNT
 DBMS_OUTPUT.PUT_LINE('The number of elements (current size) in the array is '
 || jobids.COUNT);
-- display the maximum number of elements for the array LIMIT
 DBMS_OUTPUT.PUT_LINE('The maximum number (limit) of elements in the array is '

See Also: Oracle Database PL/SQL User's Guide and Reference for
information about PL/SQL records

Using the Main Features of PL/SQL

4-26 Oracle Database Express Edition 2 Day Developer Guide

 || jobids.LIMIT);
-- check whether another element can be added to the array
 IF jobids.LIMIT - jobids.COUNT >= 1 THEN
 jobids.EXTEND(1); -- add one more element
 jobids(14) := 'PU_CLERK'; -- assign a value to the element
 END IF;
-- loop through all the varray values, starting
-- with the FIRST and ending with the LAST element
 FOR i IN jobids.FIRST..jobids.LAST LOOP
 -- determine the number of employees for each job ID in the array
 SELECT COUNT(*) INTO howmany FROM employees WHERE job_id = jobids(i);
 DBMS_OUTPUT.PUT_LINE ('Job ID: ' || RPAD(jobids(i), 10, ' ') ||
 ' Number of employees: ' || TO_CHAR(howmany));
 END LOOP;
-- display the current size of the array with COUNT
 DBMS_OUTPUT.PUT_LINE('The number of elements (current size) in the array is '
 || jobids.COUNT);
END;
/

Example 4–34 shows the use of a varray with record type elements.

Example 4–34 Using a PL/SQL VARRAY Type With Record Type Elements

DECLARE -- declare variables
 CURSOR cursor1 IS SELECT * FROM jobs; -- create a cursor for fetching the rows
 jobs_rec cursor1%ROWTYPE; -- create a record to hold the row data
 -- declare VARRAY with enough elements to hold all the rows in the jobs table
 TYPE jobs_array IS VARRAY(25) OF cursor1%ROWTYPE;
 jobs_arr jobs_array; -- declare a variable of type jobids_array
 howmany NUMBER; -- declare a variable to hold employee count
 i NUMBER := 1; -- counter for the number of elements in the array
BEGIN
 jobs_arr := jobs_array(); -- initialize the array before using
 OPEN cursor1; -- open the cursor before using
 LOOP
 FETCH cursor1 INTO jobs_rec; -- retrieve a row from the jobs table
 EXIT WHEN cursor1%NOTFOUND; -- exit when no data is retrieved
 jobs_arr.EXTEND(1); -- add another element to the varray with EXTEND
 jobs_arr(i) := jobs_rec; -- assign the fetched row to an element the array
 i := i + 1; -- increment the element count
 END LOOP;
 CLOSE cursor1; -- close the cursor when finished with it
 FOR j IN jobs_arr.FIRST..jobs_arr.LAST LOOP -- loop through the varray elements
 -- determine the number of employees for each job ID in the array
 SELECT COUNT(*) INTO howmany FROM employees WHERE job_id = jobs_arr(j).job_id;
 DBMS_OUTPUT.PUT_LINE ('Job ID: ' || RPAD(jobs_arr(j).job_id, 11, ' ') ||
 RPAD(jobs_arr(j).job_title, 36, ' ') ||
 ' Number of employees: ' || TO_CHAR(howmany));
 END LOOP;
END;
/

Collections can be passed as parameters, so that subprograms can process arbitrary
numbers of elements.

See Also: Oracle Database PL/SQL User's Guide and Reference for
information about PL/SQL collections

Using the Main Features of PL/SQL

Using PL/SQL 4-27

Using Bind Variables With PL/SQL
When you embed an INSERT, UPDATE, DELETE, or SELECT SQL statement directly in
your PL/SQL code, PL/SQL turns the variables in the WHERE and VALUES clauses into
bind variables automatically. Oracle Database XE can reuse these SQL statement each
time the same code is executed. When running similar statements with different
variable values, you can improve performance by calling a stored procedure that
accepts parameters, then issues the statements with the parameters substituted in the
appropriate places.

You need to specify bind variables with dynamic SQL, in clauses such as WHERE and
VALUES where you normally use variables. Instead of concatenating literals and
variable values into a single string, replace the variables with the names of bind
variables (preceded by a colon), and specify the corresponding PL/SQL variables with
the USING clause. Using the USING clause, instead of concatenating the variables into
the string, reduces parsing overhead and lets Oracle Database XE reuse the SQL
statements.

In Example 4–35, :dptid, :dptname, :mgrid, and :locid are examples of bind
variables.

Using Dynamic SQL in PL/SQL
PL/SQL supports both dynamic and static SQL. Dynamic SQL enables you to build
SQL statements dynamically at run time while static SQL statements are known in
advance. You can create more general-purpose, flexible applications by using dynamic
SQL because the full text of a SQL statement may be unknown at compilation time.

To process most dynamic SQL statements, you use the EXECUTE IMMEDIATE
statement. Dynamic SQL is especially useful for executing SQL statements to create
database objects, such as CREATE TABLE.

Example 4–35 shows an example of the use of dynamic SQL to manipulate data in a
table.

Example 4–35 Using Dynamic SQL to Manipulate Data in PL/SQL

DECLARE
 sql_stmt VARCHAR2(200); -- variable to hold SQL statement
 column_name VARCHAR2(30); -- variable for column name
 dept_id NUMBER(4);
 dept_name VARCHAR2(30);
 mgr_id NUMBER(6);
 loc_id NUMBER(4);
BEGIN
-- create a SQL statement (sql_stmt) to execute with EXECUTE IMMEDIATE
-- the statement INSERTs a row into the departments table using bind variables
-- note that there is no semi-colon (;) inside the quotation marks '...'
 sql_stmt := 'INSERT INTO departments VALUES (:dptid, :dptname, :mgrid, :locid)';
 dept_id := 46;
 dept_name := 'Special Projects';
 mgr_id := 200;
 loc_id := 1700;
-- execute the sql_stmt using the values of the variables in the USING clause
-- for the bind variables
 EXECUTE IMMEDIATE sql_stmt USING dept_id, dept_name, mgr_id, loc_id;

See Also: "About Bind Variables" in Oracle Database Express Edition
Application Express User’s Guide

Handling PL/SQL Errors

4-28 Oracle Database Express Edition 2 Day Developer Guide

-- use EXECUTE IMMEDIATE to delete the row that was previously inserted,
-- substituting for the column name and using a bind variable
 column_name := 'DEPARTMENT_ID';
 EXECUTE IMMEDIATE 'DELETE FROM departments WHERE ' || column_name || ' = :num'
 USING dept_id;
END;
/

Example 4–36 is an example of the use of dynamic SQL to create a table. For a more
complete example, see Example 5–3 on page 5-9.

Example 4–36 Using Dynamic SQL to Create a Table in PL/SQL

DECLARE
 tabname VARCHAR2(30); -- variable for table name
 current_date VARCHAR2(8); -- varible for current date
BEGIN
-- extract, format, and insert the year, month, and day from SYSDATE into
-- the current_date variable
 SELECT TO_CHAR(EXTRACT(YEAR FROM SYSDATE)) ||
 TO_CHAR(EXTRACT(MONTH FROM SYSDATE),'FM09') ||
 TO_CHAR(EXTRACT(DAY FROM SYSDATE),'FM09') INTO current_date FROM DUAL;
-- construct the table name with the current date as a suffix
 tabname := 'log_table_' || current_date;
-- use EXECUTE IMMEDIATE to create a table with tabname as the table name
 EXECUTE IMMEDIATE 'CREATE TABLE ' || tabname ||
 '(op_time VARCHAR2(10), operation VARCHAR2(50))' ;
 DBMS_OUTPUT.PUT_LINE(tabname || ' has been created');
-- now drop the table
 EXECUTE IMMEDIATE 'DROP TABLE ' || tabname;
END;
/

Handling PL/SQL Errors
PL/SQL makes it easy to detect and process error conditions known as exceptions.
When an error occurs, an exception is raised: normal processing stops, and control
transfers to special exception-handling code, which comes at the end of any PL/SQL
block. Each different exception is processed by a particular exception handler.

The exception handling for PL/SQL is different from the manual checking you might
be used to from C programming, where you insert a check to make sure that every
operation succeeded. Instead, the checks and calls to error routines are performed
automatically, similar to the exception mechanism in Java programming.

Predefined exceptions are raised automatically for certain common error conditions
involving variables or database operations. For example, if you try to divide a number
by zero, PL/SQL raises the predefined exception ZERO_DIVIDE automatically. See
"Summary of Predefined PL/SQL Exceptions" on page 4-29.

You can declare exceptions of your own, for conditions that you decide are errors, or to
correspond to database errors that normally result in ORA- error messages. When you
detect a user-defined error condition, you execute a RAISE statement. See "Declaring
PL/SQL Exceptions" on page 4-30.

This section contains the following topics:

See Also: Oracle Database Application Developer's Guide -
Fundamentals for additional information about dynamic SQL

Handling PL/SQL Errors

Using PL/SQL 4-29

■ Summary of Predefined PL/SQL Exceptions on page 4-29

■ Using the Exception Handler on page 4-30

■ Declaring PL/SQL Exceptions on page 4-30

■ Scope Rules for PL/SQL Exceptions on page 4-31

■ Continuing After an Exception Is Raised on page 4-31

Summary of Predefined PL/SQL Exceptions
An internal exception is raised automatically if your PL/SQL program violates an
Oracle rule or exceeds a system-dependent limit. In PL/SQL common Oracle errors
are predefined as exceptions. For example, PL/SQL raises the predefined exception
NO_DATA_FOUND if a SELECT INTO statement returns no rows. To handle unexpected
Oracle errors, you can use the OTHERS handler.

PL/SQL declares predefined exceptions globally in package STANDARD so you do not
need to declare them. You can write handlers for predefined exceptions using the
predefined names. Table 4–1 lists some of the predefined exceptions.

See Also: Oracle Database PL/SQL User's Guide and Reference for
information about handling PL/SQL errors

Table 4–1 Predefined PL/SQL Exceptions

Exception Description

ACCESS_INTO_NULL A program attempts to assign values to the attributes of an uninitialized object

CASE_NOT_FOUND None of the choices in the WHEN clauses of a CASE statement is selected, and
there is no ELSE clause.

COLLECTION_IS_NULL A program attempts to apply collection methods other than EXISTS to an
uninitialized nested table or varray, or the program attempts to assign values to
the elements of an uninitialized nested table or varray.

CURSOR_ALREADY_OPEN A program attempts to open a cursor that is already open. A cursor must be
closed before it can be reopened. A cursor FOR loop automatically opens the
cursor to which it refers, so your program cannot open that cursor inside the
loop.

DUP_VAL_ON_INDEX A program attempts to store duplicate values in a column that is constrained by
a unique index.

INVALID_CURSOR A program attempts a cursor operation that is not allowed, such as closing an
unopened cursor.

INVALID_NUMBER In a SQL statement, the conversion of a character string into a number fails
because the string does not represent a valid number. (In procedural statements,
VALUE_ERROR is raised.) This exception is also raised when the LIMIT-clause
expression in a bulk FETCH statement does not evaluate to a positive number.

LOGIN_DENIED A program attempts to log on to Oracle Database XE with a user name or
password that is not valid.

NO_DATA_FOUND A SELECT INTO statement returns no rows, or your program references a
deleted element in a nested table or an uninitialized element in an index-by
table.

Because this exception is used internally by some SQL functions to signal
completion, do not rely on this exception being propagated if you raise it within
a function that is called as part of a query.

NOT_LOGGED_ON A program issues a database call without being connected to Oracle Database
XE.

Handling PL/SQL Errors

4-30 Oracle Database Express Edition 2 Day Developer Guide

Using the Exception Handler
Using exceptions for error handling has several advantages. With exceptions, you can
reliably handle potential errors from many statements with a single exception handler,
as shown in Example 4–37.

Example 4–37 Managing Multiple Errors With a Single PL/SQL Exception Handler

DECLARE -- declare variables
 emp_column VARCHAR2(30) := 'last_name';
 table_name VARCHAR2(30) := 'emp'; -- set value to raise error
 temp_var VARCHAR2(30);
BEGIN
 temp_var := emp_column;
 SELECT COLUMN_NAME INTO temp_var FROM USER_TAB_COLS
 WHERE TABLE_NAME = 'EMPLOYEES' AND COLUMN_NAME = UPPER(emp_column);
-- processing here
 temp_var := table_name;
 SELECT OBJECT_NAME INTO temp_var FROM USER_OBJECTS
 WHERE OBJECT_NAME = UPPER(table_name) AND OBJECT_TYPE = 'TABLE';
-- processing here
EXCEPTION
 WHEN NO_DATA_FOUND THEN -- catches all 'no data found' errors
 DBMS_OUTPUT.PUT_LINE ('No Data found for SELECT on ' || temp_var);
END;
/

Declaring PL/SQL Exceptions
Exceptions can be declared only in the declarative part of a PL/SQL block,
subprogram, or package. You declare an exception by introducing its name, followed
by the EXCEPTION keyword. In Example 4–38, you declare an exception named
past_due that is raised when the due_date is less than the today's date.

Exception and variable declarations are similar. But remember, an exception is an error
condition, not a data item. Unlike variables, exceptions cannot appear in assignment

ROWTYPE_MISMATCH The host cursor variable and PL/SQL cursor variable involved in an
assignment have incompatible return types. When an open host cursor variable
is passed to a stored subprogram, the return types of the actual and formal
parameters must be compatible.

SUBSCRIPT_BEYOND_COUNT A program references a nested table or varray element using an index number
larger than the number of elements in the collection.

SUBSCRIPT_OUTSIDE_LIMIT A program references a nested table or varray element using an index number
(-1 for example) that is outside the legal range.

TOO_MANY_ROWS A SELECT INTO statement returns more than one row.

VALUE_ERROR An arithmetic, conversion, truncation, or size-constraint error occurs. For
example, when your program selects a column value into a character variable, if
the value is longer than the declared length of the variable, PL/SQL cancels the
assignment and raises VALUE_ERROR. In procedural statements, VALUE_ERROR
is raised if the conversion of a character string into a number fails. (In SQL
statements, INVALID_NUMBER is raised.)

ZERO_DIVIDE A program attempts to divide a number by zero.

Table 4–1 (Cont.) Predefined PL/SQL Exceptions

Exception Description

Handling PL/SQL Errors

Using PL/SQL 4-31

statements or SQL statements. However, the same scope rules apply to variables and
exceptions.

Scope Rules for PL/SQL Exceptions
You cannot declare an exception twice in the same block. You can, however, declare the
same exception in two different blocks.

Exceptions declared in a block are considered local to that block and global to all its
subblocks. Because a block can reference only local or global exceptions, enclosing
blocks cannot reference exceptions declared in a subblock.

If you redeclare a global exception in a subblock, the local declaration prevails. The
subblock cannot reference the global exception, unless the exception is declared in a
labeled block and you qualify its name with the block label, for example:

block_label.exception_name

Example 4–38 shows the scope rules.

Example 4–38 Determining the Scope of PL/SQL Exceptions

DECLARE
 past_due EXCEPTION;
 acct_num NUMBER;
BEGIN
 DECLARE ---------- subblock begins
 past_due EXCEPTION; -- this declaration prevails
 acct_num NUMBER;
 due_date DATE := SYSDATE - 1; -- set on purpose to raise exception
 todays_date DATE := SYSDATE;
 BEGIN
 IF due_date < todays_date THEN
 RAISE past_due; -- this is not handled
 END IF;
 END; ------------- subblock ends
EXCEPTION
 WHEN past_due THEN -- does not handle raised exception
 DBMS_OUTPUT.PUT_LINE('Handling PAST_DUE exception.');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('Could not recognize PAST_DUE_EXCEPTION in this scope.');
END;
/

The enclosing block does not handle the raised exception because the declaration of
past_due in the subblock prevails. Although they share the same name, the two
past_due exceptions are different, just as the two acct_num variables share the same
name but are different variables. Thus, the RAISE statement and the WHEN clause refer
to different exceptions. To have the enclosing block handle the raised exception, you
must remove its declaration from the subblock or define an OTHERS handler.

Continuing After an Exception Is Raised
By default, you put an exception handler at the end of a subprogram to handle
exceptions that are raised anywhere inside the subprogram. To continue execution
from the spot where an exception occurred, enclose the code that might raise an
exception inside another BEGIN-END block with its own exception handler. For
example, put separate BEGIN-END blocks around groups of SQL statements that
might raise NO_DATA_FOUND, or around arithmetic operations that might raise

Handling PL/SQL Errors

4-32 Oracle Database Express Edition 2 Day Developer Guide

DIVIDE_BY_ZERO. By putting a BEGIN-END block with an exception handler inside
of a loop, you can continue executing the loop if some loop iterations raise exceptions.

You can still handle an exception for a statement, then continue with the next
statement. Place the statement in its own subblock with its own exception handlers. If
an error occurs in the subblock, a local handler can catch the exception. When the
subblock ends, the enclosing block continues to execute at the point where the
subblock ends, as shown in Example 4–39.

Example 4–39 Continuing After an Exception in PL/SQL

-- create a temporary table for this example
CREATE TABLE employees_temp AS
 SELECT employee_id, salary, commission_pct FROM employees;

DECLARE
 sal_calc NUMBER(8,2);
BEGIN
 INSERT INTO employees_temp VALUES (303, 2500, 0);
 BEGIN -- subblock begins
 SELECT salary / commission_pct INTO sal_calc FROM employees_temp
 WHERE employee_id = 303;
 EXCEPTION
 WHEN ZERO_DIVIDE THEN
 sal_calc := 2500;
 END; -- subblock ends
 INSERT INTO employees_temp VALUES (304, sal_calc/100, .1);
EXCEPTION
 WHEN ZERO_DIVIDE THEN
 NULL;
END;
/
-- view the results
SELECT * FROM employees_temp WHERE employee_id = 303 OR employee_id = 304;
-- drop the temporary table
DROP TABLE employees_temp;

In this example, if the SELECT INTO statement raises a ZERO_DIVIDE exception, the
local handler catches it and sets sal_calc to 2500. Execution of the handler is
complete, so the subblock terminates, and execution continues with the INSERT
statement.

Using Procedures, Functions, and Packages 5-1

5
Using Procedures, Functions, and Packages

This section discusses the development of procedures, functions, and packages with
PL/SQL code, which was described in Chapter 4, "Using PL/SQL".

This section contains the following topics:

■ Overview of Procedures, Functions, and Packages on page 5-1

■ Managing Stored Procedures and Functions on page 5-3

■ Managing Packages on page 5-13

■ Oracle Provided Packages on page 5-23

Overview of Procedures, Functions, and Packages
Oracle Database XE offers the capability to store programs in the database. This
functionality enables commonly required code to be written and tested once and then
accessed by any application that requires the code. Database-resident program units
also ensure that the same processing is applied to the data when the code is invoked,
making the development of applications easier and providing consistency between
developers.

You can write database-resident programs in PL/SQL, and can use Object Browser to
manage source types such as procedures, functions, and packages. The actions include
creating, compiling, creating synonyms for, granting privileges on, and showing
dependencies for these source types.

This chapter describes the main types of program units you can create with PL/SQL:
procedures, functions, and packages. Procedures, functions, and packages are saved
and stored in the database, and can be used as building blocks for applications.

For information about the features of the PL/SQL language, see Chapter 4, "Using
PL/SQL".

This section contains the following topics:

■ Stored Procedures and Functions on page 5-2

■ Packages on page 5-2

See Also:

■ "Using PL/SQL Packages" in Oracle Database PL/SQL User's Guide
and Reference for additional information about PL/SQL packages

■ "Using PL/SQL Subprograms" in Oracle Database PL/SQL User's
Guide and Reference for information about PL/SQL subprograms

Overview of Procedures, Functions, and Packages

5-2 Oracle Database Express Edition 2 Day Developer Guide

Stored Procedures and Functions
Stored procedures and functions (subprograms) can be compiled and stored in an
Oracle Database XE, ready to be executed. Once compiled, it is a schema object known
as a stored procedure or stored function, which can be referenced or called any
number of times by multiple applications connected to Oracle Database XE. Both
stored procedures and functions can accept parameters when they are executed
(called). To execute a stored procedure or function, you only need to include its object
name.

Procedures and functions that are created outside of a package are called stored or
standalone subprograms. Procedures and functions defined within a package are
known as packaged subprograms. Procedures and functions nested inside other
subprograms or within a PL/SQL block are known as local subprograms, which
cannot be referenced by other applications and exist only inside of the enclosing block.
For information about subprograms in PL/SQL blocks, see "Using Local PL/SQL
Procedures and Functions in PL/SQL Blocks" on page 4-17.

Stored procedures and functions are the key to modular, reusable PL/SQL code.
Wherever you might use a JAR file in Java, a module in Perl, a shared library in C++,
or a DLL in Visual Basic, you can use PL/SQL stored procedures, stored functions, and
packages.

You can call stored procedures or functions from a database trigger, another stored
subprogram, or interactively from SQL Command Line (SQL*Plus). You can also
configure a Web server so that the HTML for a Web page is generated by a stored
subprogram, making it simple to provide a Web interface for data entry and report
generation.

Procedures and functions are stored in a compact compiled form. When called, they
are loaded and processed immediately. Subprograms take advantage of shared
memory, so that only one copy of a subprogram is loaded into memory for execution
by multiple users.

Packages
A package is a schema object that groups logically related PL/SQL types, variables,
and subprograms. Packages usually have two parts, a specification (called the spec)
and a body; sometimes the body is unnecessary. The specification is the interface to the
package. It declares the types, variables, constants, exceptions, cursors, and
subprograms that can be referenced from outside of the package. The body defines the
queries for the cursors and the code for the subprograms.

You can think of the specification as an interface and the body as a black box. You can
debug, enhance, or replace a package body without changing the package
specification.

The specification holds public declarations, which are visible to stored procedures and
other code outside of the package. You must declare subprograms at the end of the
specification.

The package body holds implementation details and private declarations, which are
hidden from code outside of the package. Following the declarative part of the

See Also: Oracle Database PL/SQL User's Guide and Reference to learn
about PL/SQL code and program units

See Also: Oracle Database Express Edition 2 Day DBA for information
about managing memory with Oracle Database XE

Managing Stored Procedures and Functions

Using Procedures, Functions, and Packages 5-3

package body is the optional initialization part, which holds statements that initialize
package variables and do any other one-time setup steps.

Applications that call the subprograms in a package only need to know the names and
parameters from the package specification. You can change the implementation details
inside the package body without affecting the calling applications.

Managing Stored Procedures and Functions
You can create, modify, run, and drop stored procedures and functions with the SQL
Commands page, the Object Browser page, the Script Editor page, or SQL Command
Line (SQL*Plus). You can view existing functions and procedures in Object Browser.

The SQL CREATE PROCEDURE statement is used to create stored procedures that are
stored in the database. The SQL CREATE FUNCTION statement is used to create stored
functions that are stored in an Oracle database.

A procedure or function is similar to a miniature program. It has an optional
declarative part, an executable part, and an optional exception-handling part. A
procedure is a subprogram that performs a specific action. You specify the name of the
procedure, its parameters, its local variables, and the BEGIN-END block that contains
its code and handles any exceptions. A function is a subprogram that computes and
returns a value. Functions and procedures are structured alike, except that functions
return a value. See "Using the PL/SQL Block Structure" on page 4-4.

When passing parameters to functions and procedures, the parameters can be declared
as IN or OUT or IN OUT parameters. For a description of these parameter declarations,
see "Using Local PL/SQL Procedures and Functions in PL/SQL Blocks" on page 4-17.

This section contains the following topics:

■ Creating a Procedure or Function With the SQL Commands Page on page 5-4

■ Creating a Procedure or Function With the Object Browser Page on page 5-5

■ Viewing Procedures or Functions With the Object Browser Page on page 5-6

■ Creating Stored Procedures With SQL CREATE PROCEDURE on page 5-7

■ Creating a Stored Procedure That Uses Parameters on page 5-7

■ Creating a Stored Procedure With the AUTHID Clause on page 5-9

■ Creating Stored Functions With the SQL CREATE FUNCTION Statement on
page 5-10

■ Calling Stored Procedures or Functions on page 5-11

■ Editing Procedures or Functions on page 5-12

■ Dropping a Procedure or Function on page 5-13

See Also:

■ See "CREATE PROCEDURE" in Oracle Database SQL Reference

■ See "CREATE FUNCTION" in Oracle Database SQL Reference

Managing Stored Procedures and Functions

5-4 Oracle Database Express Edition 2 Day Developer Guide

Creating a Procedure or Function With the SQL Commands Page
You can use the SQL Commands page to create stored procedures or functions.

To create a procedure or function with the SQL Commands page:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the home page, click the SQL icon to display the SQL page.

3. Click the SQL Commands icon to display the SQL Commands page.

4. On the SQL Commands page, enter the PL/SQL code for the PL/SQL procedure
or function. You can use the code in Example 5–1 on page 5-7.

5. Select (highlight) the code for creating the procedure or function, then click the
Run button to create the procedure or function.

6. Select (highlight) the code for calling the procedure or function, then click the Run
button to call the procedure or function.

See Also:

■ Oracle Database Express Edition Application Express User’s Guide for
information about managing functions with Object Browser

■ Oracle Database Express Edition Application Express User’s Guide for
information about managing procedures with Object Browser

Managing Stored Procedures and Functions

Using Procedures, Functions, and Packages 5-5

7. If you want to save the PL/SQL code for future use, click the Save button.

8. In the Name field, enter a name for the saved PL/SQL code. You can also enter an
optional description. Click the Save button to save the code.

9. To access saved PL/SQL code, click the Saved SQL tab and select the name of the
saved PL/SQL code that you want to access.

In the previous steps you created a procedure. For information about how to execute
or call a procedure, see "Calling Stored Procedures or Functions" on page 5-11.

Creating a Procedure or Function With the Object Browser Page
You can use the Object Browser page to create stored procedures or functions. This
section explains how to create a procedure.

To create a procedure:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4. To run the examples in this guide, log in as user HR with your
password for the HR account.

2. On the Database Home Page, click the Object Browser icon.

3. In the object list under Create, select Procedure.

4. Enter the procedure name (award_bonus), check the Include Arguments box,
and then click the Next button.

5. Enter information for the arguments, then click Next. Use the arguments in
Example 5–2 on page 5-7. For example:

Name IN/OUT Type
emp_id IN NUMBER
bonus_rate IN NUMBER

6. Enter the source code for the procedure body, then click the Next button. Enter the
PL/SQL source code in Example 5–2 on page 5-7.

Managing Stored Procedures and Functions

5-6 Oracle Database Express Edition 2 Day Developer Guide

7. Click the SQL tab to view the source code for the procedure body. If you need to
make corrections, click the Previous button.

8. When you have finished, click the Finish button. You can click the Edit button to
make updates to the subprogram, such as adding additional variable declarations
outside the BEGIN .. END block as in Example 5–2 on page 5-7.

9. Click the Compile button to compile the procedure. If errors occur, correct the
source code and try compiling again. Compiling the procedure also saves any
changes to the procedure.

10. When you have finished, click the Finish button.

In the previous steps, you created a procedure. For information about how to execute
or call a procedure, see "Calling Stored Procedures or Functions" on page 5-11.

Viewing Procedures or Functions With the Object Browser Page
To find out which stored procedures or functions exist in your database, use the Object
Browser.

To use Object Browser to view procedures and functions:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4. To run the examples in this guide, log in as user HR with your
password for the HR account.

2. On the Database Home Page, click the Object Browser icon.

3. In the object list, select Procedures or Functions, then click the name of the
procedure or function you want to display. For example, you could select
Procedures, then click the name of the procedure (AWARD_BONUS) you previously
created.

The procedure or function information displays.

Managing Stored Procedures and Functions

Using Procedures, Functions, and Packages 5-7

Creating Stored Procedures With SQL CREATE PROCEDURE
The SQL CREATE PROCEDURE statement lets you create stored procedures that are
stored in the database. These stored (schema level) subprograms can be accessed from
SQL. You can use the optional OR REPLACE clause to modify an existing procedure
without first dropping the procedure.

Example 5–1 is an example of a simple stored procedure that displays current date.

Example 5–1 Creating a Simple Stored Procedure

CREATE OR REPLACE PROCEDURE today_is AS
BEGIN
-- display the current system date in long format
 DBMS_OUTPUT.PUT_LINE('Today is ' || TO_CHAR(SYSDATE, 'DL'));
END today_is;
/
-- to call the procedure today_is, you can use the following block
BEGIN
 today_is(); -- the parentheses are optional here
END;
/

Creating a Stored Procedure That Uses Parameters
When you create a procedure or function, you can specify parameters that are passed
to the procedure or function when it is called (or invoked). In Example 5–2, note the
use of the IN option with procedure arguments emp_id and bonus_rate. For a
discussion of IN and IN OUT argument options in PL/SQL subprograms, see "Using
Local PL/SQL Procedures and Functions in PL/SQL Blocks" on page 4-17.

Example 5–2 Creating a Stored Procedure That Uses Parameters

-- including OR REPLACE is more convenient when updating a subprogram
-- IN is the default for parameter declarations so it could be omitted

Managing Stored Procedures and Functions

5-8 Oracle Database Express Edition 2 Day Developer Guide

CREATE OR REPLACE PROCEDURE award_bonus (emp_id IN NUMBER, bonus_rate IN NUMBER)
 AS
-- declare variables to hold values from table columns, use %TYPE attribute
 emp_comm employees.commission_pct%TYPE;
 emp_sal employees.salary%TYPE;
-- declare an exception to catch when the salary is NULL
 salary_missing EXCEPTION;
BEGIN -- executable part starts here
-- select the column values into the local variables
 SELECT salary, commission_pct INTO emp_sal, emp_comm FROM employees
 WHERE employee_id = emp_id;
-- check whether the salary for the employee is null, if so, raise an exception
 IF emp_sal IS NULL THEN
 RAISE salary_missing;
 ELSE
 IF emp_comm IS NULL THEN
-- if this is not a commissioned employee, increase the salary by the bonus rate
-- for this example, do not make the actual update to the salary
-- UPDATE employees SET salary = salary + salary * bonus_rate
-- WHERE employee_id = emp_id;
 DBMS_OUTPUT.PUT_LINE('Employee ' || emp_id || ' receives a bonus: '
 || TO_CHAR(emp_sal * bonus_rate));
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee ' || emp_id
 || ' receives a commission. No bonus allowed.');
 END IF;
 END IF;
EXCEPTION -- exception-handling part starts here
 WHEN salary_missing THEN
 DBMS_OUTPUT.PUT_LINE('Employee ' || emp_id ||
 ' does not have a value for salary. No update.');
 WHEN OTHERS THEN
 NULL; -- for other exceptions do nothing
END award_bonus;
/

-- the following BEGIN..END block calls, or executes, the award_bonus procedure
-- using employee IDs 123 and 179 with the bonus rate 0.05 (5%)
BEGIN
 award_bonus(123, 0.05);
 award_bonus(179, 0.05);
END;
/

The output of the calls is similar to:

Employee 123 received a bonus: 325

Employee 179 receives a commission. No bonus allowed.

When executed, this procedure processes an employee ID and a bonus rate. It uses the
Id to select the salary and commission percentage of the employee from the
employees table. If the salary is null, an exception is raised. If the employee does not
receive a commission, the employee's salary is updated by the bonus rate; otherwise
no update is made. For a discussion of exception handling, see "Handling PL/SQL
Errors" on page 4-28.

For different methods to execute (call) stored subprograms, see Example 5–6 on
page 5-11.

Managing Stored Procedures and Functions

Using Procedures, Functions, and Packages 5-9

Creating a Stored Procedure With the AUTHID Clause
By default, stored procedures and functions execute with the privileges of their owner,
not their current user. Such definer's rights subprograms are bound to the schema in
which they reside, allowing you to refer to objects in the same schema without
qualifying their names. For example, if schemas HR and OE both have a table called
departments, a procedure owned by HR can refer to departments rather than the
qualified HR.departments. If user OE calls the procedure owned by HR, the
procedure still accesses the departments table owned by HR.

You can use the AUTHID CURRENT_USER clause to make stored procedures and
functions execute with the privileges and schema context of the calling user. You can
create one instance of the procedure, and many users can call it to access their own
data because invoker's rights subprograms are not bound to a particular schema.

In Example 5–3, the procedure is created with the AUTHID CURRENT_USER clause.
This example is based on Example 4–36 on page 4-28.

Example 5–3 Creating a Stored Procedure With the AUTHID Clause

CREATE OR REPLACE PROCEDURE create_log_table
-- use AUTHID CURRENT _USER to execute with the privileges and
-- schema context of the calling user
 AUTHID CURRENT_USER AS
 tabname VARCHAR2(30); -- variable for table name
 temptabname VARCHAR2(30); -- temporary variable for table name
 currentdate VARCHAR2(8); -- varible for current date
BEGIN
-- extract, format, and insert the year, month, and day from SYSDATE into
-- the currentdate variable
 SELECT TO_CHAR(EXTRACT(YEAR FROM SYSDATE)) ||
 TO_CHAR(EXTRACT(MONTH FROM SYSDATE),'FM09') ||
 TO_CHAR(EXTRACT(DAY FROM SYSDATE),'FM09') INTO currentdate FROM DUAL;
-- construct the log table name with the current date as a suffix
 tabname := 'log_table_' || currentdate;

-- check whether a table already exists with that name
-- if it does NOT exist, then go to exception handler and create table
-- if the table does exist, then note that table already exists
 SELECT TABLE_NAME INTO temptabname FROM USER_TABLES
 WHERE TABLE_NAME = UPPER(tabname);
 DBMS_OUTPUT.PUT_LINE('Table ' || tabname || ' already exists.');

 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 -- this means the table does not exist because the table name
 -- was not found in USER_TABLES
 BEGIN
-- use EXECUTE IMMEDIATE to create a table with tabname as the table name
 EXECUTE IMMEDIATE 'CREATE TABLE ' || tabname
 || '(op_time VARCHAR2(10), operation VARCHAR2(50))' ;
 DBMS_OUTPUT.PUT_LINE(tabname || ' has been created');
 END;

END create_log_table;
/

-- to call the create_log_table procedure, you can use the following
BEGIN
 create_log_table;

Managing Stored Procedures and Functions

5-10 Oracle Database Express Edition 2 Day Developer Guide

END;
/

For different methods to execute (call) stored subprograms, see Example 5–6 on
page 5-11.

Creating Stored Functions With the SQL CREATE FUNCTION Statement
The SQL CREATE FUNCTION statement lets you create stored functions that are stored
in an Oracle database. These stored (schema level) subprograms can be accessed from
SQL. You can use the optional OR REPLACE clause to modify an existing function.

Example 5–4 is an example of a function that returns a character string that contains
the upper case last and first names of an employee. The example also show how to run
(call) the function.

Example 5–4 Creating a Stored Function That Returns a String

CREATE OR REPLACE FUNCTION last_first_name (empid NUMBER)
 RETURN VARCHAR2 IS
 lastname employees.last_name%TYPE; -- declare a variable same as last_name
 firstname employees.first_name%TYPE; -- declare a variable same as first_name
BEGIN
 SELECT last_name, first_name INTO lastname, firstname FROM employees
 WHERE employee_id = empid;
 RETURN ('Employee: ' || empid || ' - ' || UPPER(lastname)
 || ', ' || UPPER(firstname));
END last_first_name;
/

-- you can use the following block to call the function
DECLARE
 empid NUMBER := 163; -- pick an employee ID to test the function
BEGIN
-- display the output of the function
 DBMS_OUTPUT.PUT_LINE(last_first_name(empid));
END;
/

-- you can also call a function from a SQL SELECT statement
-- using the dummy DUAL table
SELECT last_first_name(163) FROM DUAL;

Example 5–5 is an example of a stored function that returns the calculated salary
ranking for a specific employee based on the current minimum and maximum salaries
of employees in the same job category.

Example 5–5 Creating a Stored Function That Returns a Number

-- function calculates the salary ranking of the employee based on the current
-- minimum and maximum salaries for employees in the same job category
CREATE OR REPLACE FUNCTION emp_sal_ranking (empid NUMBER)
 RETURN NUMBER IS
 minsal employees.salary%TYPE; -- declare a variable same as salary
 maxsal employees.salary%TYPE; -- declare a variable same as salary
 jobid employees.job_id%TYPE; -- declare a variable same as job_id
 sal employees.salary%TYPE; -- declare a variable same as salary
BEGIN
-- retrieve the jobid and salary for the specific employee ID
 SELECT job_id, salary INTO jobid, sal FROM employees WHERE employee_id = empid;

Managing Stored Procedures and Functions

Using Procedures, Functions, and Packages 5-11

-- retrieve the minimum and maximum salaries for employees with the same job ID
 SELECT MIN(salary), MAX(salary) INTO minsal, maxsal FROM employees
 WHERE job_id = jobid;
-- return the ranking as a decimal, based on the following calculation
 RETURN ((sal - minsal)/(maxsal - minsal));
END emp_sal_ranking;
/

-- create a PL/SQL block to call the function, you can also use another subprogram
-- because a function returns a value, it is called as part of a line of code
DECLARE
 empid NUMBER := 163; -- pick an employee ID to test the function
BEGIN
-- display the output of the function, round to 2 decimal places
 DBMS_OUTPUT.PUT_LINE('The salary ranking for employee ' || empid || ' is: '
 || ROUND(emp_sal_ranking(empid),2));
END;
/

The output of the PL/SQL block is similar to:

The salary ranking for employee 163 is: .63

Calling Stored Procedures or Functions
You can call a stored subprogram from a BEGIN ... END block or from another
subprogram or a package.

When calling a stored procedure or function, you can write the actual parameters
using the following type of notation:

■ Positional notation: You specify the same parameters in the same order as they are
declared in the procedure. This notation is compact, but you must specify the
parameters (especially literals) in the correct order.

■ Named notation: You specify the name of each parameter and its value. An arrow
(=>) serves as the association operator. The order of the parameters is not
significant.

■ Mixed notation: You specify the first parameters with positional notation, then
switch to named notation for the last parameters.

Example 5–6 shows how you can call the stored procedure in Example 5–2.

Example 5–6 Techniques for Calling Stored Procedures or Functions

-- use a PL/SQL block to execute the procedure
BEGIN
 award_bonus(179, 0.05);
END;
/
-- using named notation for the parameters, rather than positional
BEGIN
 award_bonus(bonus_rate=>0.05, emp_id=>123);
END;
/

You can also call stored PL/SQL procedures and functions from Application Builder,
Java programs, and PHP programs.

Managing Stored Procedures and Functions

5-12 Oracle Database Express Edition 2 Day Developer Guide

Editing Procedures or Functions
To edit procedures and functions, you can use the Object Browser page, the SQL
Commands page, or the SQL CREATE OR REPLACE statement with SQL Command
Line.

If you use the SQL CREATE OR REPLACE statement with SQL Command Line, you
simply type in the modified procedure or function code. See "Entering and Executing
SQL Statements and Commands" on page A-3.

To edit a procedure in the SQL Commands page:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the home page, click the SQL icon to display the SQL page.

3. Click the SQL Commands icon to display the SQL Commands page.

4. Click the Saved SQL tab to display the saved SQL modules.

5. Click the name of the saved SQL that contains the procedure or function code that
you want to edit.

6. Modify the source code for the procedure or function. Click the Run button if you
want to execute the procedure or function.

7. When you are finished, you can click the Save button to save the code for future
use.

To edit a subprogram with Object Browser:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4. To run the examples in this guide, log in as user HR with your
password for the HR account.

2. Click the Object Browser icon on the Database Home Page.

The Object Browser home page appears.

3. Select Procedures or Functions in the object list, then click the subprogram you
want to display.

4. With the subprogram displayed, click Edit button to modify the subprogram code.

5. Click the Compile button to ensure your changes did raise any errors when
executed. Compiling the subprogram also saves the changes.

See Also:

■ Oracle Database Express Edition Application Express User’s Guide for
information about calling stored PL/SQL procedures and
functions from Application Builder

■ Oracle Database Express Edition 2 Day Plus Java Developer Guide for
information about calling stored PL/SQL procedures and
functions from Java

■ Oracle Database Express Edition 2 Day Plus PHP Developer Guide for
information about calling stored PL/SQL procedures and
functions from PHP

Managing Packages

Using Procedures, Functions, and Packages 5-13

Dropping a Procedure or Function
You can drop a procedure or function from the database with the Object Browser page
or the SQL DROP statement.

To use the Object Browser page to drop procedures and functions:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4. To run the examples in this guide, log in as user HR with your
password for the HR account.

2. On the Database Home Page, click the Object Browser icon.

3. In the object list, select Procedures or Functions, then click the name of the
procedure or function you want to drop.

4. Click the Drop button.

5. Click the Finish button to confirm the action.

To drop procedures or functions with SQL statements, use the SQL DROP PROCEDURE
or DROP FUNCTION statement, as shown in Example 5–7.

Example 5–7 Dropping Subprograms With the DROP Statement

-- drop the procedure award_bonus to remove from the database
DROP PROCEDURE award_bonus;

-- drop the function emp_sal_ranking to remove from database
DROP FUNCTION emp_sal_ranking;

Managing Packages
You can create, modify, and drop packages and package bodies using the Object
Browser page, the SQL Commands page, the Script Editor page, or SQL Command
Line (SQL*Plus). You can view existing packages and package bodies with the Object
Browser page.

The SQL CREATE PACKAGE statement is used to create package specification (specs).
The CREATE PACKAGE BODY statement is used to define the package body.

This section contains the following topics:

■ Writing Packages With PL/SQL Code on page 5-14

■ Creating Packages in the SQL Commands Page on page 5-14

■ Creating Packages With the Object Browser Page on page 5-15

■ Viewing Packages With the Object Browser Page on page 5-16

■ Creating Packages With the SQL CREATE PACKAGE Statement on page 5-16

■ Editing Packages on page 5-18

■ Dropping Packages on page 5-19

■ Calling Procedures and Functions in Packages on page 5-20

See Also:

■ See "CREATE PACKAGE" in Oracle Database SQL Reference

■ See "CREATE PACKAGE BODY" in Oracle Database SQL Reference

Managing Packages

5-14 Oracle Database Express Edition 2 Day Developer Guide

■ Accessing Variables in Packages on page 5-20

■ Accessing Types in Packages on page 5-21

Writing Packages With PL/SQL Code
With PL/SQL, you can break down an application into well-defined modules. Using
PL/SQL code, you can write program units that are stored as database objects that can
be reused. These objects include packages, subprograms, and triggers. Subprograms
and packages are discussed in this section; triggers are discussed in Chapter 6, "Using
Triggers".

Guidelines for Writing Packages
When writing packages, keep them general so they can be reused in future
applications. Become familiar with the Oracle-supplied packages, and avoid writing
packages that duplicate features already provided by Oracle.

Design and define package specifications before the package bodies. Place in a
specification only those parts that must be visible to calling programs. That way, other
developers cannot build unsafe dependencies on your implementation details.

To reduce the need for recompiling when code is changed, place as few items as
possible in a package specification. Changes to a package body do not require
recompiling calling procedures. Changes to a package specification require Oracle
Database XE to recompile every stored subprogram that references the package.

Creating Packages in the SQL Commands Page
To create and run a package specification or body in the SQL Commands page:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the home page, click the SQL icon to display the SQL page.

3. Click the SQL Commands icon to display the SQL Commands page.

4. On the SQL Commands page, enter the PL/SQL code for the package specification
or body. Use the code in Example 5–8 on page 5-17.

See Also: Oracle Database Express Edition Application Express User’s
Guide for information about managing packages with Object Browser

Managing Packages

Using Procedures, Functions, and Packages 5-15

5. Click the Run button to create the package specification or body. If necessary,
select (highlight) only the specific code for creating the package specification or
body before clicking the Run button. Any comments outside the package or
package body block are not legal in the SQL Commands page.

6. If you want to save the PL/SQL code for future use, click the Save button.

7. In the Name field, enter a name for the saved PL/SQL code (emp_actions_pkg_
spec). You can also enter an optional description. Click the Save button to save
the code.

8. To access saved PL/SQL code, click the Saved SQL tab and select the name of the
saved PL/SQL code that you want to access.

9. To create, run, and save the PL/SQL code for a package body, repeat the steps in
this example with the code in Example 5–9 on page 5-17.

In the previous steps you created a package. For information about how to execute or
call a subprogram in the package, see "Calling Procedures and Functions in Packages"
on page 5-20.

Creating Packages With the Object Browser Page
You can use the Object Browser page to create packages. This section explains how to
create a package specification.

To create a package specification:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the Detail pane, select Package from the Create menu.

4. In the Create Package page, select the Specification option and click Next.

5. Enter the package name (emp_actions_new), and then click the Next button.

See Also: Oracle Database Express Edition Application Express User’s
Guide for detailed information about using SQL Scripts

Managing Packages

5-16 Oracle Database Express Edition 2 Day Developer Guide

6. Enter the PL/SQL source code for the package specification. Use the code in
Example 5–8 on page 5-17.

7. After entering the code for the package specification, click the Finish button.

8. Click the Body tab, then the Edit button to enter the source code for the package
body. Use the code in Example 5–9 on page 5-17, substituting emp_actions_new
for emp_actions.

9. Click the Compile button to run the package. If errors are raised, correct the
source code and try compiling again. Compiling the package also saves any
changes made to the package.

10. When you have finished, click the Finish button.

In the previous steps, you created a package. For information about how to execute or
call a subprogram in the package, see "Calling Procedures and Functions in Packages"
on page 5-20.

Viewing Packages With the Object Browser Page
To find out which packages and package bodies exist in your database, use the Object
Browser.

To use the Object Browser page to view packages and package bodies:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the Database Home Page, click the Object Browser icon.

3. In the object list, select Packages then click the name of the package you want to
display.

The package specification information displays.

4. With the package specification displayed, click the Body tab to view the package
body if it exists.

Creating Packages With the SQL CREATE PACKAGE Statement
To create packages, use the SQL CREATE PACKAGE and CREATE PACKAGE BODY
statements. You can use these SQL statements in the SQL Commands page, the Script
Editor page, the Object Browser page, or SQL Command Line (SQL*Plus). In

Managing Packages

Using Procedures, Functions, and Packages 5-17

Example 5–8 and Example 5–9, the OR REPLACE option is used so that you can update
an existing package without having to first drop the package.

In Example 5–8, the emp_actions package specification contains two procedures that
update the employees table and one function that provides information. The package
specification provides the declaration of the subprograms. The package body provides
the contents of the subprograms.

Example 5–8 Creating a Package Specification

CREATE OR REPLACE PACKAGE emp_actions AS -- package specification

 PROCEDURE hire_employee (lastname VARCHAR2,
 firstname VARCHAR2, email VARCHAR2, phoneno VARCHAR2,
 hiredate DATE, jobid VARCHAR2, sal NUMBER, commpct NUMBER,
 mgrid NUMBER, deptid NUMBER);
 PROCEDURE remove_employee (empid NUMBER);
 FUNCTION emp_sal_ranking (empid NUMBER) RETURN NUMBER;
END emp_actions;
/

In Example 5–9, the emp_actions package body is created. The package body
provides the contents of the subprograms in the package specification.

Example 5–9 Creating a Package Body

CREATE OR REPLACE PACKAGE BODY emp_actions AS -- package body

-- code for procedure hire_employee, which adds a new employee
 PROCEDURE hire_employee (lastname VARCHAR2,
 firstname VARCHAR2, email VARCHAR2, phoneno VARCHAR2, hiredate DATE,
 jobid VARCHAR2, sal NUMBER, commpct NUMBER, mgrid NUMBER, deptid NUMBER) IS
 min_sal employees.salary%TYPE; -- variable to hold minimum salary for jobid
 max_sal employees.salary%TYPE; -- variable to hold maximum salary for jobid
 seq_value NUMBER; -- variable to hold next sequence value
 BEGIN
 -- get the next sequence number in the employees_seq sequence
 SELECT employees_seq.NEXTVAL INTO seq_value FROM DUAL;
 -- use the next sequence number for the new employee_id
 INSERT INTO employees VALUES (seq_value, lastname, firstname, email,
 phoneno, hiredate, jobid, sal, commpct, mgrid, deptid);
 SELECT min_salary INTO min_sal FROM jobs WHERE job_id = jobid;
 SELECT max_salary INTO max_sal FROM jobs WHERE job_id = jobid;
 IF sal > max_sal THEN
 DBMS_OUTPUT.PUT_LINE('Warning: ' || TO_CHAR(sal)
 || ' is greater than the maximum salary '
 || TO_CHAR(max_sal) || ' for the job classification ' || jobid);
 ELSIF sal < min_sal THEN
 DBMS_OUTPUT.PUT_LINE('Warning: ' || TO_CHAR(sal)
 || ' is less than the minimum salary '
 || TO_CHAR(min_sal) || ' for the job classification ' || jobid);
 END IF;
 END hire_employee;

-- code for procedure remove_employee, which removes an existing employee
 PROCEDURE remove_employee (empid NUMBER) IS
 firstname employees.first_name%TYPE;
 lastname employees.last_name%TYPE;
 BEGIN
 SELECT first_name, last_name INTO firstname, lastname FROM employees

Managing Packages

5-18 Oracle Database Express Edition 2 Day Developer Guide

 WHERE employee_id = empid;
 DELETE FROM employees WHERE employee_id = empid;
 DBMS_OUTPUT.PUT_LINE('Employee: ' || TO_CHAR(empid) || ', '
 || firstname || ', ' || lastname || ' has been deleted.');
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee ID: ' || TO_CHAR(empid) || ' not found.');
 END remove_employee;

-- code for function emp_sal_ranking, which calculates the salary ranking of the
-- employee based on the minimum and maximum salaries for the job category
 FUNCTION emp_sal_ranking (empid NUMBER) RETURN NUMBER IS
 minsal employees.salary%TYPE; -- declare a variable same as salary
 maxsal employees.salary%TYPE; -- declare a variable same as salary
 jobid employees.job_id%TYPE; -- declare a variable same as job_id
 sal employees.salary%TYPE; -- declare a variable same as salary
 BEGIN
-- retrieve the jobid and salary for the specific employee ID
 SELECT job_id, salary INTO jobid, sal FROM employees
 WHERE employee_id = empid;
-- retrieve the minimum and maximum salaries for the job ID
 SELECT min_salary, max_salary INTO minsal, maxsal FROM jobs
 WHERE job_id = jobid;
-- return the ranking as a decimal, based on the following calculation
 RETURN ((sal - minsal)/(maxsal - minsal));
 END emp_sal_ranking;
END emp_actions;
/

-- the following BEGIN..END block calls, or executes, the emp_sal_ranking
-- function in the emp_actions package with an argument value
DECLARE
 empid NUMBER := 163; -- use a test value for the employee_id
BEGIN
 DBMS_OUTPUT.put_line('The salary ranking for employee ' || empid || ' is: '
 || ROUND(emp_actions.emp_sal_ranking(empid),2));
END;
/

The output of the PL/SQL block is similar to:

The salary ranking for employee 163 is: .58

Note that the function result for employee 163 is different from the result for
Example 5–5 on page 5-10. While the functions have the same function name (emp_
sal_ranking), they are not the same function. The function in the package is
identified by the package name prefix, as in emp_actions.emp_sal_ranking.

For methods on calling subprograms in a package, see "Calling a Subprogram in a
Package" on page 5-20.

Editing Packages
To edit packages and package bodies, you can use the Object Browser page, the SQL
Commands page, or the SQL CREATE OR REPLACE statement with SQL Command
Line.

If you use the SQL CREATE OR REPLACE statement with SQL Command Line, you
simply type in the modified package specification or body code. See "Entering and
Executing SQL Statements and Commands" on page A-3.

Managing Packages

Using Procedures, Functions, and Packages 5-19

To edit a package in the SQL Commands page:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. On the home page, click the SQL icon to display the SQL page.

3. Click the SQL Commands icon to display the SQL Commands page.

4. Click the Saved SQL tab to display the saved SQL modules.

5. Click the name of the saved SQL that contains the package code that you want to
edit.

6. Modify the source code for the package. Click the Run button if you want to
execute the package.

7. When you are finished, you can click the Save button to save the code for future
use.

To edit a package with the Object Browser page:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4. To run the examples in this guide, log in as user HR with your
password for the HR account.

2. On the Database Home Page, click the Object Browser icon.

3. In the object list, select Packages and then click the package you want to display.

The package specification information displays.

4. With the package specification displayed, click the Edit button to modify the
package specification. You can click the Body tab to edit the source code for the
package body if it exists.

5. Click the Compile button to ensure your changes did raise any errors when
executed. Compiling the package also saves the changes.

Dropping Packages
You can use the SQL DROP statement or the Object Browser page to drop packages and
package bodies.

You can drop a package or package body with the SQL DROP statement. When drop a
package specification, the corresponding package body is dropped also. You can
choose to drop only the package body. For example:

-- drop only the package body
DROP PACKAGE BODY my_package;
-- drop the package specification and package body
DROP PACKAGE my_package;

To drop a package or package body with the Object Browser page:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4. To run the examples in this guide, log in as user HR with your
password for the HR account.

2. On the Database Home Page, click the Object Browser icon.

3. Select Packages in the object list, then click the package you want to display.

The package specification information displays.

Managing Packages

5-20 Oracle Database Express Edition 2 Day Developer Guide

4. With the package specification displayed, click the Drop button to drop the
package specification and package body. You can click the Body tab and then the
Drop button to drop only the packaged body if it exists.

5. Click the Finish button to confirm that you want to drop the package specification
or package body.

Calling Procedures and Functions in Packages
To call the procedures or functions of the emp_actions package created in
Example 5–9, you can execute the statements in Example 5–10. The subprograms can
be executed in a BEGIN .. END block or from another subprogram. Note the use of the
package name as a prefix to the subprogram name.

Example 5–10 Calling a Subprogram in a Package

-- the following calls the hire_employee subprogram in the emp_actions package
-- with the associated parameter values
BEGIN
 emp_actions.hire_employee('Townsend', 'Mark', 'MTOWNSEND',
 '555.123.2222', '31-JUL-05', 'AC_MGR', 9000, .1, 101, 110);
END;
/

-- the following calls the remove_employee subprogram in the emp_actions package
-- in this case, remove the employee just added (employee_id = 208)
-- note that the employee ID might be different on your system
BEGIN
 emp_actions.remove_employee(208);
END;
/

-- cleanup: drop the package
DROP PACKAGE emp_actions;

Packages are stored in the database, where they can be shared by many applications.
Calling a packaged subprogram for the first time loads the whole package and caches
it in memory, saving on disk I/O for subsequent calls. Thus, packages enhance reuse
and improve performance in a multiple-user, multiple-application environment.

If a subprogram does not take any parameters, you can include an empty set of
parentheses or omit the parentheses, both in PL/SQL and in functions called from SQL
queries. For calls to a method that takes no parameters, an empty set of parentheses is
optional within PL/SQL scopes, but they are required within SQL scopes.

Accessing Variables in Packages
You can create a package specification that is designated only to supply common
variables to other packages or subprograms. With the variables in one package, they
can be easily maintained for all subprograms that use the variables, rather than
maintaining the variables in all the individual subprograms. Common variables are
typically used in multiple subprograms, such as a sales tax rate.

In Example 5–11, the variables my_var_pi, my_var_e, and my_var_sales_tax can
be used by any subprogram. If you change the value of any of those variables, then all
subprograms that use the variable will get the new value without having to change
anything in those individual subprograms.

Managing Packages

Using Procedures, Functions, and Packages 5-21

Note that you need to use of the package name as a prefix to the variable name, such
as my_var_pkg.my_var_pi.

Example 5–11 Creating Variables in a PL/SQL Package Specification

CREATE OR REPLACE PACKAGE my_var_pkg AS
-- set up a variable for pi, used in calculations with circles and spheres
 my_var_pi NUMBER := 3.14016408289008292431940027343666863227;
-- set up a variable for e, the base of the natural logarithm
 my_var_e NUMBER := 2.71828182845904523536028747135266249775;
-- set up a variable for the current retail sales tax rate
 my_var_sales_tax NUMBER := 0.0825;
END my_var_pkg;
/

Example 5–12 shows how variables that are defined in the my_var_pkg package
specification can be used in PL/SQL subprograms.

Example 5–12 Using Variables From a Package Specification

CREATE OR REPLACE PROCEDURE circle_area(radius NUMBER) IS
 c_area NUMBER;
BEGIN
-- the following uses the value of the my_var_pi variable in my_var_pkg for pi
-- in the following calculation of the area of a circle
 c_area := my_var_pkg.my_var_pi * radius**2;
 DBMS_OUTPUT.PUT_LINE('Radius: ' || TO_CHAR(radius)
 || ' Area: ' || TO_CHAR(c_area));
END circle_area;
/

BEGIN -- some examples of the use of package variables
-- call the circle_area procedure with radius equal to 3, my_var_pi is used to
-- calculate the area in circle_area
 circle_area(3);
-- determine the sales tax on a $25 item using my_var_sales_tax for the tax rate
 DBMS_OUTPUT.PUT_LINE('Sales tax on $25.99 is $'
 || TO_CHAR(25.99 * my_var_pkg.my_var_sales_tax));
END;
/

Accessing Types in Packages
You can create a package specification that is designated only to supply common
types, along with common variables, to other packages or subprograms. With the
types in one package, they can be easily maintained for all subprograms that use the
types, rather than maintaining the types in all the individual subprograms. Common
types, such as a REF CURSOR, can be used to declare variables in other packages and
subprograms. See "Cursor Variables (REF CURSORs)" on page 4-22.

In Example 5–13, the emp_refcur_typ and my_refcur_typ types can be used by
any subprogram to declare cursor variables. Note that you need to use of the package
name as a prefix to the type name, such as my_var_pkg.my_refcur_typ.

Example 5–13 Creating Types and Variables in a PL/SQL Package Specification

CREATE OR REPLACE PACKAGE my_var_pkg AS
-- set up a strongly typed cursor variable for the employees table
 TYPE emp_refcur_typ IS REF CURSOR RETURN employees%ROWTYPE;

Managing Packages

5-22 Oracle Database Express Edition 2 Day Developer Guide

-- set up a weakly typed cursor variable for multiple use
 TYPE my_refcur_typ IS REF CURSOR;
-- set up a variable for pi, used in calculations with circles and spheres
 my_var_pi NUMBER := 3.14016408289008292431940027343666863227;
-- set up a variable for e, the base of the natural logarithm
 my_var_e NUMBER := 2.71828182845904523536028747135266249775;
-- set up a variable for the current retail sales tax rate
 my_var_sales_tax NUMBER := 0.0825;
END my_var_pkg;
/

Example 5–14 show how the emp_refcur_typ cursor variable that is defined in the
my_var_pkg package specification can be used in PL/SQL subprograms.

Example 5–14 Using the emp_refcur_typ REF CURSOR From a Package Specification

-- this procedure uses the strongly-typed my_var_pkg.emp_refcur_typ REF CURSOR
CREATE OR REPLACE PROCEDURE display_emp_cursor (
 emp_cursor IN OUT my_var_pkg.emp_refcur_typ) AS
 person employees%ROWTYPE;
BEGIN
 DBMS_OUTPUT.PUT_LINE('-- Here are the employees in the result set --');
 LOOP
 FETCH emp_cursor INTO person;
 EXIT WHEN emp_cursor%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(person.employee_id || ' - ' || person.last_name
 || ', ' || person.first_name);
 END LOOP;
END display_emp_cursor;
/

-- this procedure uses the strongly-typed my_var_pkg.emp_refcur_typ REF CURSOR
CREATE OR REPLACE PROCEDURE get_emp_id (firstname IN VARCHAR2,
 lastname IN VARCHAR2) AS
 emp_cursor my_var_pkg.emp_refcur_typ;
BEGIN
-- search for employee IDs based on the input for first and last names
 OPEN emp_cursor FOR SELECT * FROM employees
 WHERE SUBSTR(UPPER(first_name), 1, LENGTH(firstname)) = UPPER(firstname)
 AND SUBSTR(UPPER(last_name), 1, LENGTH(lastname)) = UPPER(lastname);
-- pass emp_cursor to the display_emp_cursor procedure for processing
 display_emp_cursor(emp_cursor);
 CLOSE emp_cursor;
END get_emp_id;
/

BEGIN -- some examples of the use of package types
-- call the get_emp_id procedure that uses a REF CURSOR defined in a package
 get_emp_id('steve', 'kin');
END;
/

Example 5–15 show how the my_refcur_typ cursor variable that is defined in the
my_var_pkg package specification can be used to return a result set that could be
accessed by other subprograms.

Example 5–15 Using the my_refcur_typ REF CURSOR From a Package Specification

-- this procedure uses the weakly-typed my_var_pkg.my_refcur_typ REF CURSOR
CREATE OR REPLACE PROCEDURE get_emp_info (firstname IN VARCHAR2,

Oracle Provided Packages

Using Procedures, Functions, and Packages 5-23

 lastname IN VARCHAR2, emp_cursor IN OUT my_var_pkg.my_refcur_typ) AS
BEGIN
-- the following returns employee info based on first and last names
 OPEN emp_cursor FOR SELECT employee_id, first_name, last_name, email,
 phone_number FROM employees
 WHERE SUBSTR(UPPER(first_name), 1, LENGTH(firstname)) = UPPER(firstname)
 AND SUBSTR(UPPER(last_name), 1, LENGTH(lastname)) = UPPER(lastname);
END get_emp_info;
/

-- the procedure can be updated to change the columns returned in the result set
CREATE OR REPLACE PROCEDURE get_emp_info (firstname IN VARCHAR2,
 lastname IN VARCHAR2, emp_cursor IN OUT my_var_pkg.my_refcur_typ) AS
BEGIN
-- because this procedure uses a weakly typed REF CURSOR, the cursor is flexible
-- and the SELECT statement can be changed, as in the following
 OPEN emp_cursor FOR SELECT e.employee_id, e.first_name, e.last_name, e.email,
 e.phone_number, e.hire_date, j.job_title FROM employees e
 JOIN jobs j ON e.job_id = j.job_id
 WHERE SUBSTR(UPPER(first_name), 1, LENGTH(firstname)) = UPPER(firstname)
 AND SUBSTR(UPPER(last_name), 1, LENGTH(lastname)) = UPPER(lastname);
END get_emp_info;
/

Oracle Provided Packages
Oracle Database XE provides product-specific packages that define application
programming interfaces (APIs) you can call from PL/SQL, SQL, Java, or other
programming environments. This section includes a list of the most common packages
with a brief description and an overview of a few useful packages.

This section contains the following topics:

■ List of Oracle Database XE Packages on page 5-23

■ Overview of Some Useful Packages on page 5-27

List of Oracle Database XE Packages
Table 5–1 provides a list of the common PL/SQL packages included with Oracle
Database XE.

See Also: Oracle Database PL/SQL Packages and Types Reference for
information about and usage of provided packages

Table 5–1 Summary of Oracle Supplied PL/SQL Packages

Package Name Description

DBMS_ALERT Provides support for the asynchronous notification of
database events.

DBMS_APPLICATION_INFO Lets you register an application name with the database
for auditing or performance tracking purposes.

DBMS_CHANGE_NOTIFICATION Is part of a set of features that clients use to receive
notifications when result sets of a query have changed.
The package contains interfaces that can be used by
mid-tier clients to register objects and specify delivery
mechanisms.

Oracle Provided Packages

5-24 Oracle Database Express Edition 2 Day Developer Guide

DBMS_CRYPTO Lets you encrypt and decrypt stored data, can be used in
conjunction with PL/SQL programs running network
communications, and supports encryption and hashing
algorithms.

DBMS_DATAPUMP Lets you move all, or part of, a database between
databases, including both data and metadata.

DBMS_DB_VERSION Specifies the Oracle version numbers and other
information useful for simple conditional compilation
selections based on Oracle versions.

DBMS_DDL Provides access to some SQL DDL statements from
stored procedures, and provides special administration
operations not available as DDLs.

DBMS_DEBUG Implements server-side debuggers and provides a way
to debug server-side PL/SQL program units.

DBMS_DESCRIBE Describes the arguments of a stored procedure with full
name translation and security checking.

DBMS_EPG Implements the embedded PL/SQL gateway that
enables a Web browser to invoke a PL/SQL stored
procedure through an HTTP listener.

DBMS_ERRLOG Provides a procedure that enables you to create an error
logging table so that DML operations can continue after
encountering errors rather than abort and roll back.

DMBS_FILE_TRANSFER Lets you copy a binary file within a database or to
transfer a binary file between databases.

DBMS_JOB Lets you schedule administrative procedures that you
want performed at periodic intervals; it is also the
interface for the job queue.

DBMS_LOCK Lets you request, convert and release locks through
Oracle Lock Management services.

DBMS_METADATA Lets callers easily retrieve complete database object
definitions (metadata) from the dictionary.

DBMS_OBFUSCATION_TOOLKIT Provides procedures for Data Encryption Standards.

DBMS_OUTPUT Displays output from stored procedures, packages, and
triggers, which is especially useful for displaying
PL/SQL debugging information.

DBMS_PIPE Provides a DBMS pipe service which enables messages
to be sent between sessions.

DBMS_RANDOM Provides a built-in random number generator.

DBMS_RESUMABLE Lets you suspend large operations that run out of space
or reach space limits after executing for a long time, fix
the problem, and make the statement resume execution.

DBMS_ROWID Provides procedures to create rowids and to interpret
their contents.

DBMS_SCHEDULER Provides a collection of scheduling functions that are
callable from any PL/SQL program.

DBMS_SERVER_ALERT Lets you issue alerts when some threshold has been
violated.

DBMS_SESSION Provides access to SQL ALTER SESSION statements,
and other session information, from stored procedures.

Table 5–1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description

Oracle Provided Packages

Using Procedures, Functions, and Packages 5-25

DBMS_SQL Lets you use dynamic SQL to access the database.

DBMS_TDB Reports whether a database can be transported between
platforms using the RMAN CONVERT DATABASE
command. It verifies that databases on the current host
platform are of the same endian format as the destination
platform, and that the state of the current database does
not prevent transport of the database.

DBMS_TTS Checks if the transportable set is self-contained.

DBMS_TYPES Consists of constants, which represent the built-in and
user-defined types.

DBMS_UTILITY Provides various utility routines.

DBMS_WARNING Provides the interface to query, modify and delete
current system or session settings.

DBMS_XDB Describes Resource Management and Access Control
APIs for PL/SQL

DBMS_XDB_VERSION Describes versioning APIs

DBMS_XDBT Describes how an administrator can create a ConText
index on the XML DB hierarchy and configure it for
automatic maintenance

DBMS_XDBZ Controls the Oracle XML DB repository security, which is
based on Access Control Lists (ACLs).

DBMS_XMLDOM Explains access to XMLType objects

DBMS_XMLGEN Converts the results of a SQL query to a canonical XML
format.

DBMS_XMLPARSER Explains access to the contents and structure of XML
documents.

DMBS_XMLQUERY Provides database-to-XMLType functionality.

DBMS_XMLSAVE Provides XML-to-database-type functionality.

DBMS_XMLSCHEMA Explains procedures to register and delete XML schemas.

DBMS_XMLSTORE Provides the ability to store XML data in relational
tables.

DBMS_XPLAN Describes how to format the output of the EXPLAIN
PLAN command.

DBMS_XSLPROCESSOR Explains access to the contents and structure of XML
documents.

HTF Hypertext functions generate HTML tags.

HTMLDB_APPLICATION Enables users to take advantage of global variables

HTMLDB_CUSTOM_AUTH Enables users to create form elements dynamically based
on a SQL query instead of creating individual items page
by page.

HTMLDB_ITEM Enables users to create form elements dynamically based
on a SQL query instead of creating individual items page
by page.

Table 5–1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description

Oracle Provided Packages

5-26 Oracle Database Express Edition 2 Day Developer Guide

HTMLDB_UTIL Provides utilities for getting and setting session state,
getting files, checking authorizations for users, resetting
different states for users, and also getting and setting
preferences for users.

HTP Hypertext procedures generate HTML tags.

OWA_CACHE Provides an interface that enables the PL/SQL Gateway
cache to improve the performance of PL/SQL Web
applications.

OWA_COOKIE Provides an interface for sending and retrieving HTTP
cookies from the client's browser.

OWA_CUSTOM Provides a Global PLSQL Agent Authorization callback
function

OWA_IMAGE Provides an interface to access the coordinates where a
user clicked on an image.

OWA_OPT_LOCK Contains subprograms that impose optimistic locking
strategies so as to prevent lost updates.

OWA_PATTERN Provides an interface to locate text patterns within
strings and replace the matched string with another
string.

OWA_SEC Provides an interface for custom authentication.

OWA_TEXT Contains subprograms used by OWA_PATTERN for
manipulating strings. They are externalized so you can
use them directly.

OWA_UTIL Contains utility subprograms for performing operations
such as getting the value of CGI environment variables,
printing the data that is returned to the client, and
printing the results of a query in an HTML table.

UTL_COLL Enables PL/SQL programs to use collection locators to
query and update.

UTL_COMPRESS Provides a set of data compression utilities.

UTL_DBWS Provides database Web services.

UTL_ENCODE Provides functions that encode RAW data into a
standard encoded format so that the data can be
transported between hosts.

UTL_FILE Enables your PL/SQL programs to read and write
operating system text files and provides a restricted
version of standard operating system stream file I/O.

UTL_HTTP Enables HTTP callouts from PL/SQL and SQL to access
data on the Internet or to call Oracle Web Server
Cartridges.

UTL_I18N Provides a set of services (Oracle Globalization Service)
that help developers build multilingual applications.

UTL_INADDR Provides a procedure to support internet addressing.

UTL_LMS Retrieves and formats error messages in different
languages.

UTL_MAIL A utility for managing e-mail which includes commonly
used e-mail features, such as attachments, CC, BCC, and
return receipt.

Table 5–1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description

Oracle Provided Packages

Using Procedures, Functions, and Packages 5-27

Overview of Some Useful Packages
This section provides a summary of some useful packages.

This section contains the following topics:

■ DBMS_OUTPUT Package on page 5-27

■ DBMS_RANDOM Package on page 5-27

■ HTP Package on page 5-28

■ UTL_FILE Package on page 5-30

DBMS_OUTPUT Package
The DBMS_OUTPUT package enables you to display output from PL/SQL blocks,
subprograms, packages, and triggers. This package is especially useful for displaying
PL/SQL debugging information. The PUT_LINE procedure outputs information to a
buffer that can be read by another trigger, procedure, or package. You display the
information by calling the GET_LINE procedure or by setting the SERVEROUTPUT ON
setting in SQL Command Line.

For more information, see "Inputting and Outputting Data with PL/SQL" on page 4-5.
For examples of the use of DBMS_OUTPUT.PUT_LINE, see Example 5–1 on page 5-7,
Example 5–2 on page 5-7, and Example 5–3 on page 5-9.

DBMS_RANDOM Package
The DBMS_RANDOM package provides a built-in random number generator. DBMS_
RANDOM can be explicitly initialized, but does not need to be initialized before calling
the random number generator. It will automatically initialize with the date, userid,
and process id if no explicit initialization is performed.

If this package is seeded twice with the same seed, then accessed in the same way, it
will produce the same results in both cases.

The DBMS_RANDOM.VALUE function can be called with no parameters to return a
random number, greater than or equal to 0 and less than 1, with 38 digits to the right of
the decimal (38-digit precision). Alternatively, you can call the function with low and

UTL_RAW Provides SQL functions for RAW datatypes that concat,
substr to and from RAWS.

UTL_RECOMP Recompiles invalid PL/SQL modules, Java classes,
indextypes and operators in a database, either
sequentially or in parallel.

UTL_REF Enables a PL/SQL program to access an object by
providing a reference to the object.

UTL_SMTP Provides PL/SQL functionality to send e-mails.

UTL_TCP Provides PL/SQL functionality to support simple
TCP/IP-based communications between servers and the
outside world.

UTL_URL Provides escape and unescape mechanisms for URL
characters.

See Also: Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_OUTPUT packages

Table 5–1 (Cont.) Summary of Oracle Supplied PL/SQL Packages

Package Name Description

Oracle Provided Packages

5-28 Oracle Database Express Edition 2 Day Developer Guide

high parameters to return a random number which is greater than or equal to the low
parameter and less than high parameter.

Example 5–16 shows the use of the DBMS_RANDOM.VALUE function to return random
numbers from 1 ton 100. The random numbers are truncated to integer values and
stored in an array.

Example 5–16 Using the DBMS_RANDOM Package

DECLARE
-- declare an array type with 10 elements of NUMBER
 TYPE random_array IS VARRAY(10) OF NUMBER;
 random_numbers random_array;
 j NUMBER;
BEGIN
 random_numbers := random_array(); -- initialize the array
 FOR i IN 1..10 LOOP
-- add an element to the array
 random_numbers.EXTEND(1);
-- insert a random number in the next element in the array
 random_numbers(i) := TRUNC(DBMS_RANDOM.VALUE(1,101));

 j := 1;
-- make sure the random number is not already in the array
-- if it is, generated a new random number and check again
 WHILE j < random_numbers.LAST LOOP
 IF random_numbers(i) = random_numbers(j) THEN
 random_numbers(i) := TRUNC(DBMS_RANDOM.VALUE(1,101));
 j := 1;
 ELSE
 j := j + 1;
 END IF;
 END LOOP;

 END LOOP;

-- display the random numbers in the array
 FOR k IN random_numbers.FIRST..random_numbers.LAST LOOP
 DBMS_OUTPUT.PUT_LINE(random_numbers(k));
 END LOOP;

END;
/

HTP Package
With the HTP package, you can create a Web page using HTP hypertext procedures to
generate HTML tags. For example the procedure HTP.PARA generates the <P>
paragraph tag and HTP.ANCHOR generates the <A> anchor tag. You can also use
HTP.PRINT to explicit print HTML tags.

Note that for nearly every HTP procedure that generates one or more HTML tags, there
is a corresponding HTF package hypertext function with identical parameters.

Example 5–17 is a modification of Example 4–29 on page 4-21 using the HTP.PRINT
procedure. For each DBMS_OUTPUT.PUT_LINE in the original example, an
HTP.PRINT has been substituted in the modified example.

See Also: Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_RANDOM packages

Oracle Provided Packages

Using Procedures, Functions, and Packages 5-29

Example 5–17 Using HTP Print Procedure

CREATE OR REPLACE PROCEDURE htp_yearly_bonus AS
-- declare variables for data fetched from cursor
 empid employees.employee_id%TYPE; -- variable for employee_id
 hiredate employees.hire_date%TYPE; -- variable for hire_date
 firstname employees.first_name%TYPE; -- variable for first_name
 lastname employees.last_name%TYPE; -- variable for last_name
 rowcount NUMBER;
 bonusamount NUMBER;
 yearsworked NUMBER;
-- declare the cursor with a parameter
 CURSOR cursor1 (thismonth NUMBER)IS
 SELECT employee_id, first_name, last_name, hire_date FROM employees
 WHERE EXTRACT(MONTH FROM hire_date) = thismonth;
BEGIN
 HTP.PRINT('<html>'); -- HTML open
 HTP.PRINT('<head>'); -- HEAD open
 HTP.PRINT('<title>Using the HTP Package</title>'); -- title line
 HTP.PRINT('</head>'); -- HEAD close
 HTP.PRINT('<body TEXT="#000000" BGCOLOR="#FFFFFF">') ; -- BODY open
-- open and pass a parameter to cursor1, select employees hired on this month
 OPEN cursor1(EXTRACT(MONTH FROM SYSDATE));
 HTP.PRINT('<h1>----- Today is ' || TO_CHAR(SYSDATE, 'DL') || ' -----</h1>');
 HTP.PRINT('<p>Employees with yearly bonus amounts:</p>');
 HTP.PRINT('<pre>'); -- insert the preformat tag
 LOOP
-- fetches 4 columns into variables
 FETCH cursor1 INTO empid, firstname, lastname, hiredate;
-- check the cursor attribute NOTFOUND for the end of data
 EXIT WHEN cursor1%NOTFOUND;
-- calculate the yearly bonus amount based on months (years) worked
 yearsworked := ROUND((MONTHS_BETWEEN(SYSDATE, hiredate)/12));
 IF yearsworked > 10 THEN bonusamount := 2000;
 ELSIF yearsworked > 8 THEN bonusamount := 1600;
 ELSIF yearsworked > 6 THEN bonusamount := 1200;
 ELSIF yearsworked > 4 THEN bonusamount := 800;
 ELSIF yearsworked > 2 THEN bonusamount := 400;
 ELSIF yearsworked > 0 THEN bonusamount := 100;
 END IF;
-- display the employee Id, first name, last name, hire date, and bonus
-- for each record (row) fetched
 HTP.PRINT(empid || ' ' || RPAD(firstname, 21, ' ') ||
 RPAD(lastname, 26, ' ') || hiredate || TO_CHAR(bonusamount, '$9,999'));
 END LOOP;
 HTP.PRINT('</pre>'); -- end the preformat tag
 rowcount := cursor1%ROWCOUNT;
 HTP.PRINT('<p>The number of rows fetched is ' || rowcount || '</p>');
 CLOSE cursor1;
 HTP.PRINT('</body>'); -- BODY close
 HTP.PRINT('</html>'); -- HTML close
END;
/

See Also: Oracle Database PL/SQL Packages and Types Reference for
information about the HTP packages

Oracle Provided Packages

5-30 Oracle Database Express Edition 2 Day Developer Guide

UTL_FILE Package
The UTL_FILE package enables PL/SQL programs to read and write operating system
(OS) text files. It provides a restricted version of standard OS stream file I/O, including
open, put, get, and close operations. When you want to read or write a text file, you
call the FOPEN function, which returns a file handle for use in subsequent procedure
calls. When opening a file with FOPEN, the file can be opened in append (A), read (R),
or write (W) mode. After a file is opened, you can use UTL_FULE procedures such as
PUT_LINE to write a text string and line terminator to an open file and GET_LINE to
read a line of text from an open file into an output buffer.

Before a user can run UTL_FILE procedures, the user must be granted access to UTL_
FILE and there must be an accessible directory for the user to read and write files. As
the user SYS, you need to run the SQL GRANT EXECUTE statement to provide access to
the UTL_FILE package, run the SQL CREATE DIRECTORY statement to set up an
accessible directory, and run the SQL GRANT ... DIRECTORY statement to grant
privileges to that directory. Example 5–18 shows how to set up an existing directory
and grant the HR user access to that directory.

Example 5–18 Setting up a Directory for Use With UTL_FILE

-- first connect as SYS to perform the necessary setups
-- when you run the following to connect as SYS, use your password for SYS
CONNECT SYS/ORACLE AS SYSDBA
-- the following grants access on the UTL_FILE package to user HR
GRANT EXECUTE ON UTL_FILE TO HR;
-- the following sets up directory access for /tmp on a Linux platform
CREATE OR REPLACE DIRECTORY temp_dir AS '/tmp';
-- you could use 'c:\temp' for temp_dir on a Windows platform, note that
-- c:\temp must exist on the Windows computer
-- the following grants the user read and write access to the directory
GRANT READ, WRITE ON DIRECTORY temp_dir TO HR;
-- now connect as user HR/HR to check directory setup
-- when you connect as HR, use your password for HR
CONNECT HR/HR
-- the following SELECT query lists information about all directories that
-- have been set up for the user
SELECT * FROM ALL_DIRECTORIES;
-- if TEMP_DIR is listed, then you are ready to run UTL_FILE procedures as HR

After the SQL statements in Example 5–18 are executed, you can connect as the user
HR and run UTL_FILE procedures. Some simple examples are shown in Example 5–19.

Example 5–19 Using the UTL_FILE Package

-- connect as user HR and run UTL_FILE procedures
DECLARE
 string1 VARCHAR2(32767);
 file1 UTL_FILE.FILE_TYPE;
BEGIN
 file1 := UTL_FILE.FOPEN('TEMP_DIR','log_file_test','A'); -- open in append mode
 string1 := TO_CHAR(SYSDATE) || ' UTL_FILE test';
 UTL_FILE.PUT_LINE(file1, string1); -- write a string to the file
 UTL_FILE.FFLUSH(file1);
 UTL_FILE.FCLOSE_ALL; -- close all open files
END;
/

DECLARE
 string1 VARCHAR2(32767);

Oracle Provided Packages

Using Procedures, Functions, and Packages 5-31

 file1 UTL_FILE.FILE_TYPE;
BEGIN
 file1 := UTL_FILE.FOPEN('TEMP_DIR','log_file_test','R'); -- open in read mode
 UTL_FILE.GET_LINE(file1, string1, 32767); -- read a string from the file
 DBMS_OUTPUT.PUT_LINE(string1); -- display the string
 UTL_FILE.FCLOSE_ALL; -- close all open files
END;
/

See Also: Oracle Database PL/SQL Packages and Types Reference for
information about the UTL_FILE packages

Oracle Provided Packages

5-32 Oracle Database Express Edition 2 Day Developer Guide

Using Triggers 6-1

6
Using Triggers

This section discusses the development of triggers with PL/SQL code and the use of
database triggers with Oracle Database Express Edition.

This section contains the following topics:

■ Overview of Triggers on page 6-1

■ Designing Triggers on page 6-5

■ Managing Triggers in the Database on page 6-7

Overview of Triggers
A database trigger is a stored procedure associated with a database table, view, or
event. The trigger can be called once, when some event occurs, or many times, once for
each row affected by an INSERT, UPDATE, or DELETE statement. The trigger can be
called after the event, to record it, or take some follow-up action. The trigger can be
called before the event, to prevent erroneous operations or fix new data so that it
conforms to business rules. The executable part of a trigger can contain procedural
statements and SQL data manipulation statements.

Triggers are created using the SQL CREATE TRIGGER statement. This statement can be
used with Object Browser, SQL Script Editor, or SQL Command Line (SQL*Plus). The
CREATE (or CREATE OR REPLACE) statement fails if any errors exist in the PL/SQL
block.

This section contains the following topics:

■ Types of Triggers on page 6-2

■ Naming Triggers on page 6-2

■ When Is a Trigger Fired? on page 6-2

■ Controlling When a Trigger Is Fired on page 6-3

■ Accessing Column Values in Row Triggers on page 6-4

■ Detecting the DML Operation That Fired a Trigger on page 6-5

See Also:

■ Oracle Database Concepts for conceptual information about triggers

■ Oracle Database Application Developer's Guide - Fundamentals for
information about coding triggers

■ Oracle Database SQL Reference for information about the CREATE
TRIGGER SQL statement

Overview of Triggers

6-2 Oracle Database Express Edition 2 Day Developer Guide

■ Enabled and Disabled Trigger Modes on page 6-5

■ Error Conditions and Exceptions in the Trigger Body on page 6-5

Types of Triggers
A trigger can be a stored PL/SQL or C procedure associated with a table, view,
schema, or the database itself. Oracle Database XE automatically executes a trigger
when a specified event takes place, which usually is a DML statement being issued
against the table. The types of triggers are:

■ DML triggers on tables

■ INSTEAD OF triggers on views

■ System triggers on DATABASE or SCHEMA

You can create triggers to be fired on any of the following:

■ DML statements (DELETE, INSERT, UPDATE)

■ DDL statements (CREATE, ALTER, DROP)

■ Database operations (LOGON, LOGOFF)

Naming Triggers
Trigger names must be unique with respect to other triggers in the same schema.
Trigger names do not need to be unique with respect to other schema objects, such as
tables, views, and procedures. For example, a table and a trigger can have the same
name; however, to avoid confusion, this is not recommended.

When Is a Trigger Fired?
A trigger is fired based on a triggering statement, which specifies:

■ The SQL statement or the system event, database event, or DDL event that fires
the trigger body. The options include DELETE, INSERT, and UPDATE. One, two, or
all three of these options can be included in the triggering statement specification.

■ The table, view, database, or schema associated with the trigger.

If a trigger contained the following statement:

AFTER DELETE OR INSERT OR UPDATE ON employees ...

then any of the following statements would fire the trigger:

DELETE FROM employees WHERE ...;
INSERT INTO employees VALUES (...);
INSERT INTO employees SELECT ... FROM ... ;
UPDATE employees SET ... ;

An UPDATE statement might include a list of columns. If a triggering statement
includes a column list, the trigger is fired only when one of the specified columns is
updated. If a triggering statement omits a column list, the trigger is fired when any
column of the associated table is updated. A column list cannot be specified for
INSERT or DELETE triggering statements. In Example 6–1 on page 6-11 the audit_
sal trigger specifies the salary column, and is only fired after an UPDATE of the

See Also: Oracle Database SQL Reference for information about trigger
creation syntax

Overview of Triggers

Using Triggers 6-3

salary of an employee in the employees table. Updates of other columns would not
fire the trigger.

Controlling When a Trigger Is Fired
This section describes options that control when a trigger is fired.

This section contains the following topics:

■ Firing Triggers With the BEORE and AFTER Options on page 6-3

■ Firing Triggers With the FOR EACH ROW Option on page 6-3

■ Firing Triggers Based on Conditions (WHEN Clause) on page 6-4

■ Firing Triggers With the INSTEAD OF Option on page 6-4

Firing Triggers With the BEORE and AFTER Options
The BEFORE or AFTER option in the CREATE TRIGGER statement specifies exactly
when to fire the trigger body in relation to the triggering statement that is being run. In
a CREATE TRIGGER statement, the BEFORE or AFTER option is specified just before the
triggering statement.

In general, you use BEFORE or AFTER triggers to achieve the following results:

■ Use a BEFORE row trigger to modify the row before the row data is written to disk.
See Example 6–2 for an example of a BEFORE trigger.

■ Use an AFTER row trigger to obtain and perform operations using the row ID. See
Example 6–1 on page 6-11 for an example of an AFTER trigger.

If an UPDATE or DELETE statement detects a conflict with a concurrent UPDATE
statement, then Oracle Database XE performs a transparent ROLLBACK and restarts the
update operation. This can occur many times before the statement completes
successfully. Each time the statement is restarted, the BEFORE statement trigger is fired
again. The rollback does not undo changes to any package variables referenced in the
trigger. Your package should include a counter variable to detect this situation.

Firing Triggers With the FOR EACH ROW Option
The FOR EACH ROW option determines whether the trigger is a row trigger or a
statement trigger. If you specify FOR EACH ROW, then the trigger fires once for each row
of the table that is affected by the triggering statement. These triggers are referred to as
row-level triggers. See the use of FOR EACH ROW in Example 6–1 on page 6-11 and
Example 6–2 on page 6-12.

The absence of the FOR EACH ROW option indicates that the trigger fires only once for
each applicable statement, but not separately for each row affected by the statement.
These triggers are referred to as statement-level triggers and are useful for performing
validation checks for the entire statement. In Example 6–6 on page 6-14, the trigger
fires only once for each update of the employees table.

Note: BEFORE row triggers are slightly more efficient than AFTER
row triggers. With AFTER row triggers, affected data blocks must be
read (logical read, not physical read) once for the trigger and then
again for the triggering statement. Alternatively, with BEFORE row
triggers, the data blocks must be read only once for both the triggering
statement and the trigger.

Overview of Triggers

6-4 Oracle Database Express Edition 2 Day Developer Guide

Firing Triggers Based on Conditions (WHEN Clause)
An optional trigger restriction can be included in the definition of a row trigger by
specifying a Boolean SQL expression in a WHEN clause.

If included, the expression in the WHEN clause is evaluated for each row that the trigger
affects. If the expression evaluates to TRUE for a row, then the trigger body is fired on
behalf of that row. Otherwise, if the expression evaluates to FALSE, the trigger body is
not fired. See Example 6–2 on page 6-12 for an example of the use of the WHEN clause in
a trigger.

The expression in a WHEN clause must be a SQL expression, and it cannot include a
subquery. You cannot use a PL/SQL expression (including user-defined functions) in a
WHEN clause. A WHEN clause cannot be included in the definition of a statement trigger.

Firing Triggers With the INSTEAD OF Option
Use the INSTEAD OF option to fire the trigger instead of executing the triggering
event. Unlike other types of triggers, Oracle Database XE fires the trigger instead of
executing the triggering SQL DML statement.

With an INSTEAD OF trigger, you can run an UPDATE, INSERT, or DELETE statement
on a complex view that otherwise could not be updated. Also, the trigger can be used
to control how updates are performed on a view. The INSTEAD OF trigger runs
transparently in the background to perform the correct actions on the underlying
tables of the view. The INSTEAD OF option only can only be specified for a trigger
created on a view and can only be activated for each row. INSTEAD OF triggers are
valid for DML events on views. They are not valid for DDL or database events.

See "Creating a Trigger With the INSTEAD OF Option" on page 6-12.

Accessing Column Values in Row Triggers
Within a trigger body of a row trigger, the PL/SQL code and SQL statements have
access to the old and new column values of the current row affected by the triggering
statement. Two correlation names exist for every column of the table being modified.
There is one for the old column value and one for the new column value. These
columns in the table are identified by :OLD.colum_name and :NEW.column_name.
The use of :NEW and :OLD is shown in Example 6–1 on page 6-11 and Example 6–2 on
page 6-12.

Depending on the type of triggering statement, certain correlation names might not
have any meaning:

■ A trigger fired by an INSERT statement has meaningful access to new column
values only. Because the row is being created by the INSERT operation, the old
values are null.

■ A trigger fired by an UPDATE statement has access to both old and new column
values for both BEFORE and AFTER row triggers.

■ A trigger fired by a DELETE statement has meaningful access to old (:OLD) column
values only. Because the row no longer exists after the row is deleted, the new
(:NEW) values are NULL and cannot be modified.

Old and new values are available in both BEFORE and AFTER row triggers. A new
column value can be assigned in a BEFORE row trigger, but not in an AFTER row
trigger (because the triggering statement takes effect before an AFTER row trigger is
fired). If a BEFORE row trigger changes the value of NEW.column, then an AFTER row
trigger fired by the same statement sees the change assigned by the BEFORE row
trigger.

Designing Triggers

Using Triggers 6-5

Correlation names can also be used in the Boolean expression of a WHEN clause. A
colon (:) must precede the OLD and NEW qualifiers when they are used in a trigger
body, but a colon is not allowed when using the qualifiers in the WHEN clause.

Detecting the DML Operation That Fired a Trigger
If more than one type of DML operation can fire a trigger, such as ON INSERT or
UPDATE, the trigger body can use the conditional predicates INSERTING, DELETING,
and UPDATING to check which type of statement fires the trigger.

Within the code of the trigger body, you can execute blocks of code depending on the
kind of DML operation that fired the trigger. For an example of INSERTING and
UPDATING predicates, see Example 6–6 on page 6-14.

In an UPDATE trigger, a column name can be specified with an UPDATING conditional
predicate to determine if the named column is being updated. For example, assume a
trigger is defined as the following:

CREATE OR REPLACE TRIGGER ...
... UPDATE OF salary ON employees ...
BEGIN
... IF UPDATING ('salary') THEN ... END IF;
...

The code in the THEN clause runs only if the triggering UPDATE statement updates the
salary column. This way, the trigger can minimize its overhead when the column of
interest is not being changed.

Enabled and Disabled Trigger Modes
This section discusses enabled and disabled triggers. A trigger can be in an enabled or
disabled mode:

■ An enabled trigger executes its trigger body if a triggering statement is entered
and the trigger restriction (if any) evaluates to TRUE.

■ A disabled trigger does not execute its trigger body, even if a triggering statement
is entered and the trigger restriction (if any) evaluates to TRUE.

Disable a trigger if you do not want the trigger to execute, for example during
maintenance activities on the database.

See "Enabling Triggers" on page 6-17 and "Disabling Triggers" on page 6-16.

Error Conditions and Exceptions in the Trigger Body
If a predefined or user-defined error condition or exception occurs during the
execution of a trigger body, then all effects of the trigger body, as well as the triggering
statement, are rolled back unless the error is trapped by an exception handler.
Therefore, a trigger body can prevent the execution of the triggering statement by
raising an exception. User-defined exceptions are commonly used in triggers that
enforce complex security authorizations or integrity constraints. See "Creating a
Trigger With an Exception Handler" on page 6-13 and "Handling PL/SQL Errors" on
page 4-28.

Designing Triggers
This section discusses the design of triggers.

Designing Triggers

6-6 Oracle Database Express Edition 2 Day Developer Guide

This section contains the following topics:

■ Guidelines For Triggers on page 6-6

■ Restrictions For Creating Triggers on page 6-6

■ Privileges Needed to Work with Triggers on page 6-7

Guidelines For Triggers
Use the following guidelines when designing triggers:

■ Use triggers to guarantee that when a specific operation is performed, related
actions are performed.

■ Do not define triggers that duplicate features already built into Oracle Database
XE. For example, do not define triggers to reject bad data if you can do the same
checking through declarative integrity constraints.

■ Limit the size of triggers. If the logic for a trigger requires more than 60 lines of
PL/SQL code, it is better to include most of the code in a stored procedure, and
call the procedure from the trigger. The size of the trigger cannot be more than
32K.

■ Use triggers only for centralized, global operations that should be fired for the
triggering statement, regardless of which user or database application issues the
statement.

■ Do not create recursive triggers. For example, creating an AFTER UPDATE
statement trigger on the employees table that will then issue an UPDATE
statement on the same employees table, will cause the trigger to fire recursively
until it has run out of memory.

■ Use triggers on the database judiciously. They are executed for every user, every
time the event occurs on which the trigger is created.

Restrictions For Creating Triggers
When creating triggers with PL/SQL code, there are some restrictions that are not
required for standard PL/SQL blocks. The following sections discuss these restrictions.

SQL Statements Allowed in Trigger Bodies
The body of a trigger can contain DML SQL statements. It can also contain SELECT
statements, but they must be SELECT... INTO... statements or the SELECT statement in
the definition of a cursor.

DDL statements are not allowed in the body of a trigger and transaction control
statements are not allowed in a trigger. ROLLBACK, COMMIT, and SAVEPOINT
statements cannot be used. For system triggers, CREATE, ALTER, and DROP TABLE
statements and ALTER...COMPILE statements are allowed.

Statements inside of a trigger can reference remote schema objects. However, pay
special attention when calling remote procedures from within a local trigger. If a
timestamp or signature mismatch is found during execution of the trigger, then the
remote procedure is not run, and the trigger is invalidated.

Note: A procedure called by a trigger cannot run the previous
transaction control statements because the procedure runs within the
context of the trigger body.

Managing Triggers in the Database

Using Triggers 6-7

System Trigger Restrictions
Only committed triggers are fired. For example, if you create a trigger that should be
fired after all CREATE events, then the trigger itself does not fire after the creation,
because the correct information about this trigger was not committed at the time when
the trigger on CREATE events was fired.

For example, if you execute the following SQL statement, trigger my_trigger is not
fired after the creation of my_trigger. Oracle Database XE does not fire a trigger that
is not committed.

CREATE OR REPLACE TRIGGER my_trigger
AFTER CREATE ON DATABASE

BEGIN
NULL;

END;

Privileges Needed to Work with Triggers
To create a trigger in your schema, you must have the CREATE TRIGGER system
privilege, and one of the following:

■ Own the table specified in the triggering statement

■ Have the ALTER privilege for the table in the triggering statement

■ Have the ALTER ANY TABLE system privilege

The CREATE TRIGGER system privilege is included in predefined RESOURCE role that
has been granted to the user HR. See "Logging in to the Database Home Page" on
page 1-4.

To create a trigger on a database, you must have the ADMINISTER DATABASE
TRIGGER privilege. If this privilege is later revoked, then you can drop the trigger, but
not alter it.

The object privileges to the schema objects referenced in the trigger body must be
granted to the trigger owner explicitly (not through a role). The statements in the
trigger body operate under the privilege domain of the trigger owner, not the privilege
domain of the user issuing the triggering statement. This is similar to the privilege
model for stored procedures.

Managing Triggers in the Database
Triggers are another type of database object that you can manage with Object Browser.
You can also create and update triggers with the SQL Commands page or SQL Editor
page.

In addition, you can use SQL Command Line (SQL*Plus) to create and update triggers.
For information about using SQL Command Line, see Appendix A, "Using SQL
Command Line".

■ Creating a Trigger With the SQL Commands Page on page 6-8

■ Creating a Trigger With the Object Browser Page on page 6-9

■ Viewing a Trigger With Object Browser on page 6-10

■ Creating a Trigger With the AFTER and FOR EACH ROW Option on page 6-11

■ Creating a Trigger With the BEFORE Option and WHEN Clause on page 6-12

■ Creating a Trigger With the INSTEAD OF Option on page 6-12

Managing Triggers in the Database

6-8 Oracle Database Express Edition 2 Day Developer Guide

■ Creating a Trigger With an Exception Handler on page 6-13

■ Creating a Trigger That Fires Once For Each Update on page 6-14

■ Creating LOGON and LOGOFF Triggers on page 6-15

■ Modifying Triggers on page 6-16

■ Dropping Triggers on page 6-16

■ Disabling Triggers on page 6-16

■ Enabling Triggers on page 6-17

■ Compiling Triggers on page 6-17

Creating a Trigger With the SQL Commands Page
With the SQL Commands page, you can create and update triggers.

To create a trigger with the SQL Commands page:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4. To run the examples in this guide, you should log in as user HR with
your password for the HR account.

2. On the home page, click the SQL icon to display the SQL page.

3. Click the SQL Commands icon to display the SQL Command page.

4. On the SQL Commands page, first enter the SQL statements to create any objects
that are needed in the trigger body. For example, the emp_audit table needs to be
created before creating the audit_sal trigger in Example 6–1 on page 6-11. If a
database object is referred to in the trigger code, then that object must exist for the
trigger to be valid.

5. Click the Run button to execute the SQL statements to create any supporting
objects for the trigger. If the statements run successfully, delete the statements from
the SQL Commands page. Otherwise, update the statements so they run
successfully.

6. On the SQL Commands page, enter the PL/SQL code to create the trigger after
any objects that are needed by the trigger are created. For an example of code to
create a trigger, see Example 6–1 on page 6-11.

See Also: Oracle Database Application Developer's Guide -
Fundamentals for information about the uses for and creation of
triggers

Managing Triggers in the Database

Using Triggers 6-9

7. Click the Run button to execute the PL/SQL code to create the trigger. Correct the
code if it does not execute successfully.

8. If you want to save the PL/SQL code for future use, click the Save button.

9. In the Name field, enter a name for the saved PL/SQL code. You can also enter an
optional description. Click the Save button to complete the action.

10. To access the saved PL/SQL code, click the Saved SQL tab and select the name of
the saved PL/SQL code that you want to access.

Creating a Trigger With the Object Browser Page
You can create and update triggers in the database with Object Browser.

To create a trigger with the Object Browser page:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4. To run the examples in this guide, log in as user HR with your
password for the HR account.

2. Click the Object Browser icon on the Database Home Page.

3. Click the Create button, and select Trigger from the list.

4. Enter the name of the table (employees) that the trigger activity is based on and
click the Next button. You can also select a table name from list.

5. In the Trigger Name field, enter the trigger name (emp_salary_trigger). The
the Preserve Case box should be unchecked.

6. From the Firing Point list, select the firing point (AFTER).

7. From the Options list, select an option (update of).

8. From the Column list, select a column (salary).

9. Check the For Each Row option. Do not enter anything in the When field.

See Also: Oracle Database Express Edition Application Express User’s
Guide for detailed information about using SQL Commands

Managing Triggers in the Database

6-10 Oracle Database Express Edition 2 Day Developer Guide

10. In the Trigger Body field, enter the code for the trigger body. See Example 6–1 on
page 6-11. Note that if a database object is referred to in the trigger body code, then
that object must exist for the trigger to be valid.

11. Click the Next button.

12. Click the SQL button to view the SQL statements for creating the trigger.

13. Click the Finish button to complete the action.

Viewing a Trigger With Object Browser
To find out which triggers exist in your database and display information about a
specific trigger, use the Object Browser.

To display information about a trigger with Object Browser:

1. Log in to the Database Home Page. See "Logging in to the Database Home Page"
on page 1-4.

2. Click the Object Browser icon on the Database Home Page.

3. Select Triggers in the object list, then select the trigger (emp_salary_trigger)
you want to display.

4. Click the Object Details tab to display details about the trigger.

See Also: Oracle Database Express Edition Application Express User’s
Guide for information about managing triggers with the Object
Browser page

Managing Triggers in the Database

Using Triggers 6-11

5. Click the Code, Errors, or SQL tab to display additional information about the
trigger.

Note that the HR.update_job_history trigger is fired whenever an update is
performed on the department_id or job_id column of an employee record. This
trigger writes a record to the job_history table and can raise an error if more than
one update occurs in a single day.

Creating a Trigger With the AFTER and FOR EACH ROW Option
Example 6–1 shows the code for a trigger on the employees table. In the example, the
table-level trigger fires after salaries in the employees table are updated and writes a
record in an audit table.

With the FOR EACH ROW option, the trigger writes a record to the emp_audit table for
each update. This record contains the employee ID, the date of the update, the
updated salary, and the original salary. Note the use of the :OLD.column_name and
:NEW.column_name to access the values in the columns before and after the update.

With the AFTER keyword, the trigger can also query or change the same table. Triggers
can only do that after the initial changes are applied, and the table is back in a
consistent state.

Because the trigger uses the FOR EACH ROW clause, it might be executed multiple times,
such as when updating or deleting multiple rows. You might omit this clause if you
just want to record the fact that the operation occurred, but not examine the data for
each row.

Example 6–1 Creating a Database Trigger WIth the AFTER Option

-- create a table to use for with the trigger in this example if
-- it has not already been created previously
-- if the table does not exist, the trigger will be invalid
CREATE TABLE emp_audit (emp_audit_id NUMBER(6), up_date DATE,
 new_sal NUMBER(8,2), old_sal NUMBER(8,2));

Managing Triggers in the Database

6-12 Oracle Database Express Edition 2 Day Developer Guide

-- create or replace the trigger
CREATE OR REPLACE TRIGGER audit_sal
 AFTER UPDATE OF salary ON employees FOR EACH ROW
BEGIN
-- bind variables are used here for values
 INSERT INTO emp_audit VALUES(:OLD.employee_id, SYSDATE,
 :NEW.salary, :OLD.salary);
END;
/
-- fire the trigger with an update of salary
UPDATE employees SET salary = salary * 1.01 WHERE manager_id = 122;

-- check the audit table to see if trigger was fired
SELECT * FROM emp_audit;

Creating a Trigger With the BEFORE Option and WHEN Clause
In Example 6–2, you define a BEFORE trigger that is fired for each row that is updated.
If there are five employees in department 20, and the salaries for all the employees in
the department are updated, then the trigger fires five times when those rows are
updated. Note the use of the WHEN clause to restrict the firing of the trigger.

Example 6–2 Creating a Database Trigger With the BEFORE Option

-- create a temporary table
CREATE TABLE emp_sal_log (emp_id NUMBER, log_date DATE,
 new_salary NUMBER, action VARCHAR2(50));

CREATE OR REPLACE TRIGGER log_salary_increase -- create a trigger
 BEFORE UPDATE of salary ON employees FOR EACH ROW
 WHEN (OLD.salary < 8000)
BEGIN
 INSERT INTO emp_sal_log (emp_id, log_date, new_salary, action)
 VALUES (:NEW.employee_id, SYSDATE, :NEW.salary, 'New Salary');
END;
/
-- update the salary with the following UPDATE statement
-- trigger fires for each row that is udpated
UPDATE employees SET salary = salary * 1.01 WHERE department_id = 60;

-- view the log table
SELECT * FROM emp_sal_log;

Creating a Trigger With the INSTEAD OF Option
In Example 6–3 a view is created with multiple underlying tables. Note that the view
in the example uses the JOIN syntax to display data from multiple tables. See
"Displaying Data From Multiple Tables" on page 3-10.

Example 6–3 Creating a View That is Updated With an INSTEAD OF Trigger

CREATE OR REPLACE VIEW my_mgr_view AS
 SELECT (d.department_id || ' ' || d.department_name) "Department",
 d.manager_id, e.first_name, e.last_name, e.email, e.hire_date "Hired On",
 e.phone_number, e.salary, e.commission_pct,
 (e.job_id || ' ' || j.job_title) "Job Class"
 FROM departments d
 JOIN employees e ON d.manager_id = e.employee_id
 JOIN jobs j ON e.job_id = j.job_id
 ORDER BY d.department_id;

Managing Triggers in the Database

Using Triggers 6-13

You cannot update the employee details (first_name, last_name, email, phone_
number, salary, or commission_pct) in the view in Example 6–3 with a SQL
UPDATE statement. For example, the employees table cannot be updated with an
UPDATE statement such as:

UPDATE my_mgr_view SET first_name = 'Denis'
WHERE manager_id = 114;

-- using WHERE employee_id = 114 does not work also

In Example 6–4 an INSTEAD OF trigger is created that updates the underlying
employees table of the view when an UPDATE statement is run on the view.

Example 6–4 Creating an INSTEAD OF Trigger for Updating a View

CREATE OR REPLACE TRIGGER update_my_mgr_view
 INSTEAD OF UPDATE ON my_mgr_view
 FOR EACH ROW
BEGIN
-- allow the following updates to the underlying employees table
 UPDATE employees SET
 last_name = :NEW.last_name,
 first_name = :NEW.first_name,
 email = :NEW.email,
 phone_number = :NEW.phone_number,
 salary = :NEW.salary,
 commission_pct = :NEW.commission_pct
 WHERE employee_id = :OLD.manager_id;
 END;
/

When the trigger in Example 6–4 is created, the following UPDATE statement can be
run on the view and the INSTEAD OF trigger performs the update.

UPDATE my_mgr_view SET first_name = 'Denis' WHERE manager_id = 114;

Creating a Trigger With an Exception Handler
Example 6–5 shows how to include an exception handler with a trigger. In this
example, an exception is raised if an UPDATE operation changes the manager ID of an
employee.

Example 6–5 Creating a Database Trigger With an Exception Handler

-- create a temporary table
CREATE TABLE emp_except_log (emp_id NUMBER, mgr_id_new NUMBER,
 mgr_id_old NUMBER, log_date DATE, action VARCHAR2(50));

CREATE OR REPLACE TRIGGER emp_log_update -- create a trigger
 BEFORE UPDATE ON employees FOR EACH ROW
DECLARE
 mgrid_exception EXCEPTION;
BEGIN
 IF (:NEW.manager_id <> :OLD.manager_id) THEN
 RAISE mgrid_exception;
 END IF;
 INSERT INTO emp_except_log (emp_id, mgr_id_new, mgr_id_old, log_date, action)
 VALUES (:NEW.employee_id, :NEW.manager_id, :OLD.manager_id,
 SYSDATE, 'Employee updated');

Managing Triggers in the Database

6-14 Oracle Database Express Edition 2 Day Developer Guide

EXCEPTION
 WHEN mgrid_exception THEN
 INSERT INTO emp_except_log (emp_id, mgr_id_new, mgr_id_old, log_date, action)
 VALUES (:NEW.employee_id, :NEW.manager_id, :OLD.manager_id,
 SYSDATE, 'Employee manager ID updated!');
END;
/
-- update employees with the following UPDATE statements, firing trigger
UPDATE employees SET salary = salary * 1.01 WHERE employee_id = 105;
-- the trigger raises an exception with this UPDATE
UPDATE employees SET manager_id = 102 WHERE employee_id = 105;

-- view the log table
SELECT * FROM emp_except_log;

Creating a Trigger That Fires Once For Each Update
In Example 6–6, the FOR EACH ROW clause is omitted so the trigger fires only once for
each update of or insert into the employees table. Because there are two operations
that fire the trigger, this example includes IF-THEN statements to log the specific
operation that fired the trigger. The check for the INSERTING condition evaluates to
TRUE only if the statement that fired the trigger is an INSERT statement. The check for
the UPDATING condition evaluates to TRUE only if the statement that fired the trigger
is an UPDATE statement.

Example 6–6 Creating a Trigger That Fires Only Once

-- create a log table
CREATE TABLE emp_update_log (log_date DATE, action VARCHAR2(50));

-- create a trigger
CREATE OR REPLACE TRIGGER log_emp_update
 AFTER UPDATE OR INSERT ON employees
DECLARE
 v_action VARCHAR2(50);
BEGIN
 IF UPDATING THEN
 v_action := 'A row has been updated in the employees table';
 END IF;
 IF INSERTING THEN
 v_action := 'A row has been inserted in the employees table';
 END IF;
 INSERT INTO emp_update_log (log_date, action)
 VALUES (SYSDATE, v_action);
END;
/

-- fire the trigger with an update
UPDATE employees SET salary = salary * 1.01 WHERE department_id = 60;
INSERT INTO employees VALUES(14, 'Belden', 'Enrique', 'EBELDEN','555.111.2222',
 '31-AUG-05', 'AC_MGR', 9000, .1, 101, 110);

-- view the log table
SELECT * FROM emp_update_log;
-- clean up: remove the inserted record
DELETE FROM employees WHERE employee_id = 14;

Managing Triggers in the Database

Using Triggers 6-15

Creating LOGON and LOGOFF Triggers
You can create a trigger that performs an action when a user logs on or off the
database.

In Example 6–7, a trigger is created to write a record to a log table whenever a user
logs on to the HR account. In this example, the user name (USER), the type of activity
(LOGON or LOGOFF), current system date (SYSDATE), and the number of employees in
the employees table are written to a table. Both SYSDATE and USER are
pseudocolumns that return values. See "Using ROWNUM, SYSDATE, and USER
Pseudocolumns With SQL" on page 3-13.

Example 6–7 Creating a LOGON Trigger

-- create a table to hold the data on user logons and logoffs
CREATE TABLE hr_log_table (user_name VARCHAR2(30), activity VARCHAR2(20),
 logon_date DATE, employee_count NUMBER);

-- create a trigger that inserts a record in hr_log_table
-- every time a user logs on to the HR schema
CREATE OR REPLACE TRIGGER on_hr_logon
 AFTER LOGON
 ON HR.schema
DECLARE
 emp_count NUMBER;
BEGIN
 SELECT COUNT(*) INTO emp_count FROM employees; -- count the number of employees
 INSERT INTO hr_log_table VALUES(USER, 'Log on', SYSDATE, emp_count);
END;
/

In Example 6–8, a trigger is created to write a record to a table whenever a user logs off
the HR account.

Example 6–8 Creating a LOGOFF Trigger

-- create a trigger that inserts a record in hr_log_table
-- every time a user logs off the HR schema
CREATE OR REPLACE TRIGGER on_hr_logoff
 BEFORE LOGOFF
 ON HR.schema
DECLARE
 emp_count NUMBER;
BEGIN
 SELECT COUNT(*) INTO emp_count FROM employees; -- count the number of employees
 INSERT INTO hr_log_table VALUES(USER, 'Log off', SYSDATE, emp_count);
END;
/

After you log on and log off of the HR account, you can check the hr_log_table to
view results of the triggers. For example:

DISCONNECT
CONNECT hr/hr
SELECT * FROM hr_log_table;

Managing Triggers in the Database

6-16 Oracle Database Express Edition 2 Day Developer Guide

Modifying Triggers
Similar to a stored procedure, a trigger cannot be explicitly altered. It must be replaced
with a new definition. The ALTER TRIGGER statement is used only to recompile,
enable, or disable a trigger.

When replacing a trigger, you must include the OR REPLACE option in the CREATE
TRIGGER statement. The OR REPLACE option is provided to allow a new version of an
existing trigger to replace the older version, without affecting any grants made for the
original version of the trigger.

Alternatively, the trigger can be dropped using the DROP TRIGGER statement, and you
can rerun the CREATE TRIGGER statement.

To drop a trigger, the trigger must be in your schema, or you must have the DROP ANY
TRIGGER system privilege.

Dropping Triggers
When you no longer need a trigger, you can drop the trigger with Object Browser or
with the SQL DROP command. After dropping a trigger, you can drop any dependent
objects that are no longer needed.

You can disable, rather than drop, a trigger if you temporarily want to stop it from
firing. See Disabling Triggers on page 6-16.

Example 6–9 shows how to drop triggers and tables used by the triggers.

Example 6–9 Dropping Triggers

-- first, drop the audit_sal trigger
DROP TRIGGER audit_sal;
-- then drop the table used by the trigger
DROP TABLE emp_audit;

-- drop the log_salary_increase trigger, then the table used by the trigger
DROP TRIGGER log_salary_increase;
DROP TABLE emp_sal_log;

-- drop the emp_log_update trigger, then the table used by the trigger
DROP TRIGGER emp_log_update;
DROP TABLE emp_except_log;

-- drop on_hr_logoff and on_hr_logon triggers, then drop hr_log_table
DROP TRIGGER on_hr_logon;
DROP TRIGGER on_hr_logoff;
DROP TABLE hr_log_table;

Disabling Triggers
You can temporarily disable a trigger. You might want to do this if:

■ An object it references is not available.

■ You need to perform a large data load, and you want it to proceed quickly without
firing triggers.

■ You are reloading data.

By default, triggers are enabled when first created. Disable a specific trigger using the
ALTER TRIGGER statement with the DISABLE option as shown in Example 6–10.

Managing Triggers in the Database

Using Triggers 6-17

Example 6–10 Disabling a Specific Trigger

ALTER TRIGGER log_emp_update DISABLE;

All triggers associated with a table can be disabled with one statement using the
ALTER TABLE statement with the DISABLE clause and the ALL TRIGGERS option.
Example 6–11 shows how to disable all triggers defined for the departments table.

Example 6–11 Disabling All Triggers on a Table

ALTER TABLE departments DISABLE ALL TRIGGERS;

Enabling Triggers
By default, a trigger is automatically enabled when it is created. However, it can be
disabled if necessary. After you complete the task that requires the trigger to be
disabled, reenable the trigger so that it fires when appropriate.

To enable a disabled trigger, use the ALTER TRIGGER statement with the ENABLE
option as shown in Example 6–12.

Example 6–12 Enabling a Specific Trigger

ALTER TRIGGER log_emp_update ENABLE;

All triggers defined for a specific table can be enabled with one statement using the
ALTER TABLE statement with the ENABLE clause with the ALL TRIGGERS option.
Example 6–13 shows how to enable all triggers defined for the departments table.

Example 6–13 Enabling All Triggers for a Table

ALTER TABLE departments ENABLE ALL TRIGGERS;

Compiling Triggers
Triggers are similar to PL/SQL anonymous blocks with the addition of the :NEW and
:OLD capabilities, but their compilation is different. A PL/SQL anonymous block is
compiled each time it is loaded into memory. Triggers, in contrast, are fully compiled
when the CREATE TRIGGER statement is entered, and the code is stored in the data
dictionary. This means that a trigger is executed directly.

This section contains the following topics:

■ Trigger Errors on page 6-17

■ Dependencies for Triggers on page 6-18

■ Recompiling Triggers on page 6-18

Trigger Errors
If errors occur during the compilation of a trigger, then the trigger is still created. If a
DML statement fires this trigger, then the DML statement fails. You can use the SHOW
ERRORS statement in SQL Command Line to display any compilation errors when you
create a trigger in SQL, or you can use the SELECT statement to display the errors
from the USER_ERRORS view as follows:

SELECT * FROM USER_ERRORS WHERE TYPE = 'TRIGGER';

Managing Triggers in the Database

6-18 Oracle Database Express Edition 2 Day Developer Guide

Dependencies for Triggers
Compiled triggers have dependencies on database objects and become invalid if these
objects, such as a table accessed from or a stored procedure called from the trigger
body, is modified. Triggers that are invalidated for dependency reasons are recompiled
the next time they are invoked.

You can examine the ALL_DEPENDENCIES view to see the dependencies for a trigger.
Example 6–14 shows the use of the SQL SELECT statement to display the
dependencies for a trigger in the HR schema.

Example 6–14 Viewing the Dependencies for a Trigger

SELECT NAME, REFERENCED_OWNER, REFERENCED_NAME, REFERENCED_TYPE
 FROM ALL_DEPENDENCIES
 WHERE OWNER = 'HR' and TYPE = 'TRIGGER' AND NAME = 'LOG_EMP_UPDATE';

You can also view information about a trigger with Object Browser. See "Viewing a
Trigger With Object Browser" on page 6-10.

Triggers can depend on other functions, procedures, or packages. If the function,
procedure, or package specified in the trigger is dropped, then the trigger is marked
invalid. An attempt is made to validate the trigger when the event occurs. If the trigger
cannot be validated successfully, then it is marked VALID WITH ERRORS, and the event
fails. For information about viewing invalid triggers in a database, see "Viewing
Information With Object Reports" on page 2-6.

Recompiling Triggers
Use the ALTER TRIGGER statement to recompile a trigger manually. Example 6–15
shows the use of the SQL ALTER TRIGGER statement to recompile the emp_log_
update trigger.

Example 6–15 Recompiling a Trigger

ALTER TRIGGER log_emp_update COMPILE;
-- cleanup: drop the log_emp_update trigger and emp_update_log table
DROP TRIGGER log_emp_update;
DROP TABLE emp_update_log;

To recompile a trigger, you must own the trigger or have the ALTER ANY TRIGGER
system privilege.

Note: There is an exception for STARTUP events. STARTUP events
succeed even if the trigger fails. There are also exceptions for
SHUTDOWN events and for LOGON events if you login as SYSTEM.

Working in a Global Environment 7-1

7
Working in a Global Environment

This section discusses how to develop applications in a globalization support
environment, providing information about SQL and PL/SQL Unicode programming
in a global environment.

This section contains the following topics:

■ Overview of Globalization Support on page 7-1

■ Setting Up the Globalization Support Environment on page 7-3

■ SQL and PL/SQL Programming with Unicode on page 7-19

■ Locale-Dependent SQL Functions with Optional NLS Parameters on page 7-22

Overview of Globalization Support
Oracle Database Express Edition globalization support enables you to store, process,
and retrieve data in native languages. It ensures that database utilities, error messages,
and sort order, plus date, time, monetary, numeric, and calendar conventions,
automatically adapt to any native language and locale.

Oracle Database XE globalization support includes National Language Support (NLS)
features. National Language Support is the ability to choose a national language and
store data in a specific character set. Globalization support enables you to develop
multilingual applications and software products that can be accessed and run from
anywhere in the world simultaneously. An application can render content of the user
interface and process data in the native language and locale preferences of the user.

This section contains the following topics:

■ Globalization Support Features on page 7-2

■ Running the Examples on page 7-3

See Also:

■ Oracle Database Express Edition Installation Guide for Linux or Oracle
Database Express Edition Installation Guide for Microsoft Windows for
information about setting globalization parameters and
environmental variables

■ Oracle Database Globalization Support Guide for a complete
discussion of globalization support with Oracle Database Express
Edition, including setting up the globalization support
environment

■ Oracle Database SQL Reference for information about date and time
formats

Overview of Globalization Support

7-2 Oracle Database Express Edition 2 Day Developer Guide

Globalization Support Features
Oracle Database XE standard features include:

■ Language support

This feature enables you to store, process, and retrieve data in native languages.
Through the use of Unicode databases and datatypes, Oracle Database XE
supports most contemporary languages.

See "Setting NLS Parameters" on page 7-4.

■ Territory support

This feature supports cultural conventions that are specific to geographical
locations. The default local time format, date format, numeric conventions, and
monetary conventions depend on the local territory setting.

See "Language and Territory Parameters" on page 7-5.

■ Date and time formats

This feature supports local formats for displaying the hour, day, month, and year.
Time zones and daylight saving support are also available.

See "Date and Time Parameters" on page 7-8.

■ Monetary and numeric formats

This feature supports local formats for representing currency, credit, debit
symbols, and numbers.

Note: There are two distributions of Oracle Database Express
Edition: one for Western Europe and the other for all languages.

■ The Western European version includes a database created using a
single-byte LATIN1 (WE8MSWIN1252) character set. The
database can store Western European language text, such as
French, Spanish, Portuguese, Italian, Dutch, German, Danish,
Swedish, Norwegian, Finnish, Icelandic, as well as English.
Database error messages are available in Brazilian Portuguese,
English, French, German, Italian, and Spanish. The Oracle
Database XE browser-based user interface is available in English
only.

■ The Universal version includes a multi-byte Unicode (AL32UTF8)
database. The database is suitable for data of all languages,
including Greek, Russian, Polish, Romanian, Hungarian, Arabic,
Hebrew, Turkish, Chinese, Japanese, Korean, and all the Western
European languages listed in the previous package. Both the
database error messages and Oracle Database XE browser-based
user interface are available in Brazilian Portuguese, Chinese
(Simplified and Traditional), English, French, German, Italian,
Japanese, Korean and Spanish.

The smaller, Western European version is suitable for Western
European language deployment, in environments where working
with an English-only development interface is acceptable. The
Universal package offers support for development and deployment in
all languages, and it should be used when a Unicode database is
desired.

Setting Up the Globalization Support Environment

Working in a Global Environment 7-3

See "Monetary Parameters" on page 7-14 and "Numeric and List Parameters" on
page 7-12.

■ Calendars feature

This feature supports seven different calendar systems in use around the world:
Gregorian, Japanese Imperial, ROC Official (Republic of China), Thai Buddha,
Persian, English Hijrah, and Arabic Hijrah.

See "Calendar Definitions" on page 7-11.

■ Linguistic sorting

This feature supports linguistic definitions for culturally accurate sorting and case
conversion.

See "Linguistic Sorting and Searching" on page 7-15.

■ Character set support

This feature supports a large number of single-byte, multi-byte, and fixed-width
encoding schemes that are based on national, international, and vendor-specific
standards.

See Oracle Database Express Edition Installation Guide for Linux or Oracle Database
Express Edition Installation Guide for Microsoft Windows for a listing of the character
sets supported by Oracle Database XE.

■ Character semantics

This feature supports character semantics. It is useful for defining the storage
requirements for multi-byte strings of varying widths in terms of characters
instead of bytes.

See "Length Semantics" on page 7-18.

■ Unicode support

This features supports Unicode, which is a universal encoded character set that
enables you to store information in any language, using a single character set.
Oracle Database Express Edition provides products such as SQL and PL/SQL for
inserting and retrieving Unicode data.

See "SQL and PL/SQL Programming with Unicode" on page 7-19.

Running the Examples
You can run the SQL examples in this chapter using the SQL Commands page, Script
Editor page, or SQL Command Line (SQL*Plus). You will need to log in as the HR user
to use the SQL statements in the examples.

For information about running SQL statements on the SQL Commands page or Script
Editor page, see "Running SQL Statements" on page 3-2. For information about
running SQL statements using SQL Command Line, see Appendix A, "Using SQL
Command Line".

Setting Up the Globalization Support Environment
This section describes how to set up a globalization support environment.

This section contains the following topics:

■ Choosing a Locale with the NLS_LANG Environment Variable on page 7-4

Setting Up the Globalization Support Environment

7-4 Oracle Database Express Edition 2 Day Developer Guide

■ Setting NLS Parameters on page 7-4

■ Language and Territory Parameters on page 7-5

■ Date and Time Parameters on page 7-8

■ Calendar Definitions on page 7-11

■ Numeric and List Parameters on page 7-12

■ Monetary Parameters on page 7-14

■ Linguistic Sorting and Searching on page 7-15

■ Length Semantics on page 7-18

Choosing a Locale with the NLS_LANG Environment Variable
A locale is a linguistic and cultural environment in which a system or program is
running. Setting the NLS_LANG environment parameter is the simplest way to specify
locale behavior for Oracle software. It sets the language and territory used by the client
application and the database. It also sets the client character set, which is the character
set for data entered or displayed by a client program.

The NLS_LANG parameter sets the language and territory environment used by both
the server session (for example, SQL statement processing) and the client application
(for example, display formatting in Oracle tools).

While the default NLS_LANG behavior defined during installation is appropriate for
most situations, you might want to modify the NLS environment dynamically during
the session. To do so, you can use the ALTER SESSION statement to change NLS_
LANGUAGE, NLS_TERRITORY, and other NLS parameters.

The ALTER SESSION statement modifies only the session environment. The local
client NLS environment is not modified, unless the client explicitly retrieves the new
settings and modifies its local environment.

Setting NLS Parameters
National Language Support (NLS) parameters determine the locale-specific behavior
on both the client and the server. NLS parameters can be specified several ways. In this
guide, altering parameters for the user session and overriding the parameters in SQL
functions are discussed. Both of these techniques are accomplished through the use of
SQL statements.

You can alter the NLS parameters settings by:

Note: You cannot modify the setting for the client character set
with the ALTER SESSION statement.

See Also:

■ Oracle Database Express Edition Installation Guide for Linux or
Oracle Database Express Edition Installation Guide for Microsoft
Windows for information about the NLS_LANG environmental
variable

■ Oracle Database SQL Reference for information about the ALTER
SESSION statement

Setting Up the Globalization Support Environment

Working in a Global Environment 7-5

■ Setting NLS parameters in an ALTER SESSION statement to override the default
values that are set for the session in the initialization parameter file, or that are set
by the client with environment variables. For example:

ALTER SESSION SET NLS_SORT = french;

Note that the changes that you make with the ALTER SESSION statement apply
only to the current user session and are not present the next time you log in.

■ Using NLS parameters within a SQL function to override the default values that
are set for the session in the initialization parameter file, set for the client with
environment variables, or set for the session by the ALTER SESSION statement.
For example:

TO_CHAR(hiredate,'DD/MON/YYYY','nls_date_language = FRENCH')

Additional methods for setting the NLS parameters include the use of NLS
environment variables on the client, which may be platform-dependent, to specify
locale-dependent behavior for the client and also to override the default values set for
the session in the initialization parameter file. For example, on a Linux system:

% setenv NLS_SORT FRENCH

Language and Territory Parameters
Setting different NLS parameters for local territories allows the database session to use
different cultural settings. For example, you can set the euro (EUR) as the primary
currency and the Japanese yen (JPY) as the secondary currency for a given database
session, even when the territory is defined as AMERICA.

This section contains information about the following parameters:

■ NLS_LANGUAGE Parameter on page 7-6

■ NLS_TERRITORY Parameter on page 7-7

See Also:

■ "Setting NLS Parameters" in Oracle Database Globalization
Support Guide for details on setting the NLS parameters

■ Oracle Database SQL Reference for more information about the
ALTER SESSION statement

■ Oracle Database Administrator's Guide for information about the
initialization parameter file

■ Oracle Database Reference for information about initialization
parameters used for globalization support

See Also:

■ "Setting NLS Parameters" in Oracle Database Globalization
Support Guide for information about setting the NLS parameters

■ Oracle Database SQL Reference for more information about SQL
functions, including the TO_CHAR function

See Also: Oracle Database Express Edition Installation Guide for
Linux or Oracle Database Express Edition Installation Guide for
Microsoft Windows for information about setting globalization
parameters and environmental variables

Setting Up the Globalization Support Environment

7-6 Oracle Database Express Edition 2 Day Developer Guide

NLS_LANGUAGE Parameter
The NLS_LANGUAGE parameter can be set to any valid language name. The default is
derived from the NLS_LANG setting. NLS_LANGUAGE specifies the default conventions
for the following session characteristics:

■ Language for server messages

■ Language for day and month names and their abbreviations (specified in the SQL
functions TO_CHAR and TO_DATE)

■ Symbols for equivalents of AM, PM, AD, and BC

■ Default sorting sequence for character data when the ORDER BY clause is specified
(The GROUP BY clause uses a binary sort order unless ORDER BY is specified)

Example 7–1 and Example 7–2 show the results from setting the NLS_LANGUAGE
parameter to different values. In Example 7–1, the ALTER SESSION statement is issued
to set NLS_LANGUAGE to Italian.

Example 7–1 Setting NLS_LANGUAGE=ITALIAN

ALTER SESSION SET NLS_LANGUAGE=Italian;

-- enter a SELECT to check the format of the output after the ALTER SESSION
SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees
 WHERE employee_id IN (111, 112, 113);

The output from the example should be similar to the following:

LAST_NAME HIRE_DATE SALARY
------------------------- --------- ----------
Sciarra 30-SET-97 962.5
Urman 07-MAR-98 975
Popp 07-DIC-99 862.5

Note that the abbreviations for month names are in Italian.

In Example 7–2, the ALTER SESSION statement is issued to change the language to
German.

Example 7–2 Setting NLS_LANGUAGE=GERMAN

ALTER SESSION SET NLS_LANGUAGE=German;

SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees
 WHERE employee_id IN (111, 112, 113);

The output from the example should be similar to the following:

LAST_NAME HIRE_DATE SALARY
------------------------- --------- ----------
Sciarra 30-SEP-97 962.5
Urman 07-MRZ-98 975
Popp 07-DEZ-99 862.5

Note that the abbreviations for the month names are now in German.

Setting Up the Globalization Support Environment

Working in a Global Environment 7-7

NLS_TERRITORY Parameter
The NLS_TERRITORY parameter can be set to any valid territory name. The default is
derived from the NLS_LANG setting. NLS_TERRITORY specifies the conventions for
the following default date and numeric formatting characteristics:

■ Date format

■ Decimal character and group separator

■ Local currency symbol

■ ISO currency symbol

■ Dual currency symbol

The territory can be modified dynamically during the session by specifying the new
NLS_TERRITORY value in an ALTER SESSION statement. For example, to change the
territory to France during a session, issue the following ALTER SESSION statement:

ALTER SESSION SET NLS_TERRITORY = France;

Modifying the NLS_TERRITORY parameter resets all derived NLS session parameters
to default values for the new territory. Example 7–3 and Example 7–4 show the results
from different settings of NLS_TERRITORY and NLS_LANGUAGE.

Example 7–3 Setting NLS_LANGUAGE=AMERICAN, NLS_TERRITORY=AMERICA

-- set NLS_LANAGUAGE and NLS_TERRITORY
ALTER SESSION SET NLS_LANGUAGE = American NLS_TERRITORY = America;

-- enter the following SELECT to view the format of the output for currency
SELECT TO_CHAR(salary,'L99G999D99') salary FROM employees
 WHERE employee_id IN (100, 101, 102);

When NLS_TERRITORY is set to AMERICA and NLS_LANGUAGE is set to AMERICAN,
the results should be similar to the following:

SALARY

$24,000.00
$17,000.00
$17,000.00

In Example 7–4, an ALTER SESSION statement is issued to change the territory to
Germany.

Example 7–4 Setting NLS_LANGUAGE=AMERICAN and NLS_TERRITORY=GERMANY

-- set NLS_TERRITORY to Germany for this session
ALTER SESSION SET NLS_TERRITORY = Germany;

SELECT TO_CHAR(salary,'L99G999D99') salary FROM employees

See Also:

■ Oracle Database Express Edition Installation Guide for Linux or
Oracle Database Express Edition Installation Guide for Microsoft
Windows for information about the supported languages in the
Oracle Database Express Edition

■ Oracle Database Globalization Support Guide for more information
about supported languages

Setting Up the Globalization Support Environment

7-8 Oracle Database Express Edition 2 Day Developer Guide

 WHERE employee_id IN (100, 101, 102);

The output from the example should be similar to the following:

SALARY

€24.000,00
€17.000,00
€17.000,00

Note that the currency symbol changed from dollars ($) to euros (€). The numbers
have not changed because the underlying data is the same.

Date and Time Parameters
Oracle Database XE enables you to control the display of the date and time, allowing
different conventions for displaying the hour, day, month, and year based on the local
formats. For example, in the United Kingdom, the date is displayed using the
DD/MM/YYYY format, while China commonly uses the YYYY-MM-DD format.

This section contains the following topics:

■ Date Formats on page 7-8

■ Time Formats on page 7-10

Date Formats
Different date formats are shown in Table 7–1.

This section describes the following parameters:

■ NLS_DATE_FORMAT Parameter on page 7-8

■ NLS_DATE_LANGUAGE Parameter on page 7-9

NLS_DATE_FORMAT Parameter The NLS_DATE_FORMAT parameter defines the default
date format to use with the TO_CHAR and TO_DATE functions. The NLS_TERRITORY
parameter determines the default value of the NLS_DATE_FORMAT parameter. The
value of NLS_DATE_FORMAT can be any valid date format model. For example:

See Also:

■ Oracle Database Express Edition Installation Guide for Linux or
Oracle Database Express Edition Installation Guide for Microsoft
Windows for information about the supported territories in the
Oracle Database Express Edition

■ Oracle Database Globalization Support Guide for more information
about supported territories

Table 7–1 Examples of Short Date Formats

Country Description Example

Estonia dd.mm.yyyy 28.02.2005

Germany dd.mm.rr 28.02.05

China yyyy-mm-dd 2005-02-28

UK dd/mm/yyyy 28/02/2005

US mm/dd/yyyy 02/28/2005

Setting Up the Globalization Support Environment

Working in a Global Environment 7-9

NLS_DATE_FORMAT = "MM/DD/YYYY"

The Oracle default date format may not always correspond to the cultural-specific
convention used in a given territory. You can use the short date and long date format
in SQL, using the 'DS' and 'DL' format models, respectively, to obtain dates in
localized formats. The examples in this section show the differences among some of
the date formats.

Example 7–5 shows the use of the default, short, and long date formats.

Example 7–5 Using the Default, Short, and Long Date Formats

-- Use an ALTER SESSION statement to change the territory to America,
-- and the language to American
ALTER SESSION SET NLS_TERRITORY = America NLS_LANGUAGE = American;

-- After the session is altered, select the dates with the format models
SELECT hire_date, TO_CHAR(hire_date,'DS') "Short",
 TO_CHAR(hire_date,'DL') "Long" FROM employees
 WHERE employee_id IN (111, 112, 113);

The results of the query in Example 7–5 should be similar to the following:

HIRE_DATE Short Long
--------- ---------- -----------------------------
30-SEP-97 9/30/1997 Tuesday, September 30, 1997
07-MAR-98 3/7/1998 Saturday, March 07, 1998
07-DEC-99 12/7/1999 Tuesday, December 07, 1999

To add string literals to the date format, enclose the string literal with double quotes.
Note that when double quotation marks are included in the date format, the entire
value must be enclosed by single quotation marks. For example:

NLS_DATE_FORMAT = '"Date: "MM/DD/YYYY'

NLS_DATE_LANGUAGE Parameter The NLS_DATE_LANGUAGE parameter specifies the
language for the day and month produced by the TO_CHAR and TO_DATE functions.
NLS_DATE_LANGUAGE overrides the language that is specified implicitly by NLS_
LANGUAGE. The NLS_DATE_LANGUAGE parameter has the same syntax as the NLS_
LANGUAGE parameter, and all supported languages are valid values.

The NLS_DATE_LANGUAGE parameter also determines the language used for:

■ Month and day abbreviations returned by the TO_CHAR and TO_DATE functions

■ Month and day abbreviations used by the default date format (NLS_DATE_
FORMAT)

Example 7–6 shows how to use NLS_DATE_LANGUAGE to set the date language to
French.

Example 7–6 Setting NLS_DATE_LANGUAGE=FRENCH: Month and Day

-- set NLS_DATE_LANAGUAGE for this user session
ALTER SESSION SET NLS_DATE_LANGUAGE = FRENCH;

-- display the current system date
SELECT TO_CHAR(SYSDATE, 'Day:Dd Month yyyy') FROM DUAL;

The output from the example should be similar to the following, depending on the
current system date:

Setting Up the Globalization Support Environment

7-10 Oracle Database Express Edition 2 Day Developer Guide

TO_CHAR(SYSDATE,'DAY:DDMON

Jeudi :06 Octobre 2005

The default date format uses the month abbreviations determined by the NLS_DATE_
LANGUAGE parameter. For example, if the default date format is DD-MON-YYYY and
NLS_DATE_LANGUAGE = FRENCH, then insert a date as follows:

INSERT INTO table_name VALUES ('12-Févr.-1997');

Time Formats
Different time formats are shown in Table 7–2.

This section describes the following parameters:

■ NLS_TIMESTAMP_FORMAT Parameter on page 7-10

■ NLS_TIMESTAMP_TZ_FORMAT Parameter on page 7-10

NLS_TIMESTAMP_FORMAT Parameter The NLS_TIMESTAMP_FORMAT parameter defines
the default date format for the TIMESTAMP and TIMESTAMP WITH LOCAL TIME
ZONE datatypes. The NLS_TERRITORY parameter determines the default value of
NLS_TIMESTAMP_FORMAT. The value of NLS_TIMESTAMP_FORMAT can be any valid
datetime format model.

The following example shows a value for NLS_TIMESTAMP_FORMAT:

NLS_TIMESTAMP_FORMAT = 'YYYY-MM-DD HH:MI:SS.FF'

NLS_TIMESTAMP_TZ_FORMAT Parameter The NLS_TIMESTAMP_TZ_FORMAT parameter
defines the default date format for the TIMESTAMP and TIMESTAMP WITH LOCAL
TIME ZONE datatypes. It is used with the TO_CHAR and TO_TIMESTAMP_TZ
functions. The NLS_TERRITORY parameter determines the default value of the NLS_
TIMESTAMP_TZ_FORMAT parameter. The value of NLS_TIMESTAMP_TZ_FORMAT can
be any valid datetime format model.

The format value must be surrounded by quotation marks. For example:

NLS_TIMESTAMP_TZ_FORMAT = 'YYYY-MM-DD HH:MI:SS.FF TZH:TZM'

In Example 7–7 the TO_TIMESTAMP_TZ function uses the format value that was
specified for NLS_TIMESTAMP_TZ_FORMAT.

Example 7–7 Setting NLS_TIMESTAMP_TZ_FORMAT

-- display August 20, 2005 using the format of NLS_TIMPSTAMP_TZ_FORMAT
SELECT TO_TIMESTAMP_TZ('2005-08-20, 05:00:00.55 America/Los_Angeles',

See Also: Oracle Database SQL Reference for information about
date format models

Table 7–2 Examples of Time Formats

Country Description Example

Estonia hh24:mi:ss 13:50:23

Germany hh24:mi:ss 13:50:23

China hh24:mi:ss 13:50:23

UK hh24:mi:ss 13:50:23

US hh:mi:ssxff am 1:50:23.555 PM

Setting Up the Globalization Support Environment

Working in a Global Environment 7-11

 'yyyy-mm-dd hh:mi:ss.ff TZR') "TIMESTAMP_TZ Format" FROM DUAL;

The output from the example should be similar to the following:

TIMESTAMP_TZ Format
--
20-AUG-05 05.00.00.550000000 AM AMERICA/LOS_ANGELES

Calendar Definitions
This section contains the following topics:

■ Calendar Formats on page 7-11

■ NLS_CALENDAR Parameter on page 7-12

Calendar Formats
The following calendar information is stored for each territory:

■ First Day of the Week on page 7-11

■ First Calendar Week of the Year on page 7-11

■ Number of Days and Months in a Year on page 7-11

■ First Year of Era on page 7-12

First Day of the Week Some cultures consider Sunday to be the first day of the week.
Others consider Monday to be the first day of the week.

The first day of the week is determined by the NLS_TERRITORY parameter.

First Calendar Week of the Year Some countries use week numbers for scheduling,
planning, and bookkeeping. Oracle supports this convention. In the ISO standard, the
week number can be different from the week number of the calendar year. For
example, 1st Jan 1988 is in ISO week number 53 of 1987. An ISO week starts on
Monday and ends on Sunday.

To support the ISO standard, Oracle provides the IW date format element. It returns
the ISO week number.

The first calendar week of the year is determined by the NLS_TERRITORY parameter.

Number of Days and Months in a Year Oracle supports six calendar systems in addition to
the Gregorian calendar, which is the default. The six calendar systems are:

■ Japanese Imperial—uses the same number of months and days as the Gregorian
calendar, but the year starts with the beginning of each Imperial Era

■ ROC Official—uses the same number of months and days as the Gregorian
calendar, but the year starts with the founding of the Republic of China

■ Persian—has 31 days for each of the first 6 months. The next 5 months have 30
days each. The last month has either 29 days or 30 days (leap year).

■ Thai Buddha—uses a Buddhist calendar

■ Arabic Hijrah—has 12 months with 354 or 355 days

■ English Hijrah—has 12 months with 354 or 355 days

The calendar system is specified by the NLS_CALENDAR parameter.

Setting Up the Globalization Support Environment

7-12 Oracle Database Express Edition 2 Day Developer Guide

First Year of Era The Islamic calendar starts from the year of the Hegira.

The Japanese Imperial calendar starts from the beginning of an Emperor's reign. For
example, 1998 is the tenth year of the Heisei era.

NLS_CALENDAR Parameter
Many different calendar systems are in use throughout the world. The NLS_CALENDAR
parameter specifies which calendar system Oracle Database XE uses. The default value
is Gregorian. The value can be any valid calendar format name.

The NLS_CALENDAR parameter can have one of the following values:

■ Arabic Hijrah

■ English Hijrah

■ Gregorian

■ Japanese Imperial

■ Persian

■ ROC Official (Republic of China)

■ Thai Buddha

In Example 7–8, the NLS_CALENDAR parameter is set to English Hijrah.

Example 7–8 Setting NLS_CALENDAR='English Hijrah'

-- set NLS_CALENDAR with ALTER SESSION
ALTER SESSION SET NLS_CALENDAR='English Hijrah';

-- display the current system date
SELECT SYSDATE FROM DUAL;

The output from the example should be similar to the following, depending on the
current system date:

SYSDATE

24 Ramadan 1422

Numeric and List Parameters
This section contains the following topics:

■ Numeric Formats on page 7-12

■ NLS_NUMERIC_CHARACTERS Parameter on page 7-13

Numeric Formats
The database must know the number-formatting convention used in each session to
interpret numeric strings correctly. For example, the database needs to know whether
numbers are entered with a period or a comma as the decimal character (234.00 or
234,00). Similarly, applications must be able to display numeric information in the
format expected at the client site.

Examples of numeric formats are shown in Table 7–3.

Setting Up the Globalization Support Environment

Working in a Global Environment 7-13

Numeric formats are derived from the NLS_TERRITORY parameter setting, but they
can be overridden by the NLS_NUMERIC_CHARACTERS parameter.

NLS_NUMERIC_CHARACTERS Parameter
The NLS_NUMERIC_CHARACTERS parameter specifies the group separator and
decimal character. The group separator is the character that separates integer groups to
show thousands and millions, for example. The group separator is the character
returned by the G number format model. The decimal character separates the integer
and decimal parts of a number. Setting the NLS_NUMERIC_CHARACTERS parameter
overrides the default values derived from the setting of NLS_TERRITORY. The value
can be any two valid numeric characters for the group separator and decimal
character.

Any character can be the decimal character or group separator. The two characters
specified must be single-byte, and the characters must be different from each other.
The characters cannot be a numeric character or any of the following characters: plus
sign (+), minus sign (-), less than sign (<), greater than sign (>). Either character can be
a space.

To set the decimal character to a comma and the grouping separator to a period,
specify the NLS_NUMERIC_CHARACTERS parameter as follows:

ALTER SESSION SET NLS_NUMERIC_CHARACTERS = ",.";

SQL statements can include numbers represented as numeric or text literals. Numeric
literals are not enclosed in quotation marks. They are part of the SQL language syntax,
and always use a period as the decimal character and never contain a group separator.
Text literals are enclosed in single quotation marks. They are implicitly or explicitly
converted to numbers, if required, according to the current NLS settings.

The SELECT statement in Example 7–9 formats 4000 with the decimal character and
group separator specified in the ALTER SESSION statement:

Example 7–9 Setting NLS_NUMERIC_CHARACTERS=",."

ALTER SESSION SET NLS_NUMERIC_CHARACTERS = ",.";
SELECT TO_CHAR(4000, '9G999D99') FROM DUAL;

The output from the example should be similar to the following:

TO_CHAR(4

 4.000,00

Table 7–3 Examples of Numeric Formats

Country Numeric Formats

Estonia 1 234 567,89

Germany 1.234.567,89

China 1,234,567.89

UK 1,234,567.89

US 1,234,567.89

Setting Up the Globalization Support Environment

7-14 Oracle Database Express Edition 2 Day Developer Guide

Monetary Parameters
Oracle Database XE enables you to define radix symbols and thousands separators by
locales. For example, in the US, the decimal point is a period (.), while it is a comma (,)
in France. Because $1,234 has different meanings in different countries, it is important
to display the amount appropriately by locale.

This section contains the following topics:

■ Currency Formats on page 7-14

■ NLS_CURRENCY Parameter on page 7-14

■ NLS_ISO_CURRENCY Parameter on page 7-15

■ NLS_DUAL_CURRENCY Parameter on page 7-15

Currency Formats
Different currency formats are used throughout the world. Some typical formats are
shown in Table 7–4.

NLS_CURRENCY Parameter
The NLS_CURRENCY parameter specifies the character string returned by the L number
format model, the local currency symbol. Setting NLS_CURRENCY overrides the default
setting defined implicitly by NLS_TERRITORY. The value can be any valid currency
symbol string, as shown in Example 7–10.

Example 7–10 Displaying the Local Currency Symbol

-- select and format the salary column from employees
SELECT TO_CHAR(salary, 'L099G999D99') "salary" FROM employees
 WHERE salary > 11000;

The output from the example should be similar to the following:

SALARY

$024,000.00
$017,000.00
$017,000.00
$012,000.00
$014,000.00
$013,500.00
$012,000.00
$011,500.00
$013,000.00
$012,000.00

Table 7–4 Currency Format Examples

Country Example

Estonia 1 234,56 kr

Germany 1.234,56€

China ¥1,234.56

UK £1,234.56

US $1,234.56

Setting Up the Globalization Support Environment

Working in a Global Environment 7-15

NLS_ISO_CURRENCY Parameter
The NLS_ISO_CURRENCY parameter specifies the character string returned by the C
number format model, the ISO currency symbol. Setting NLS_ISO_CURRENCY
overrides the default value defined implicitly by NLS_TERRITORY. The value can be
any valid string.

Local currency symbols can be ambiguous. For example, a dollar sign ($) can refer to
U.S. dollars or Australian dollars. ISO specifications define unique currency symbols
for specific territories or countries. For example, the ISO currency symbol for the U.S.
dollar is USD. The ISO currency symbol for the Australian dollar is AUD.

The NLS_ISO_CURRENCY parameter has the same syntax as the NLS_TERRITORY
parameter, and all supported territories are valid values.

To specify the ISO currency symbol for France, set NLS_ISO_CURRENCY as shown in
Example 7–11.

Example 7–11 Setting NLS_ISO_CURRENCY=FRANCE

-- set NLS_ISO_CURRENCY to France
ALTER SESSION SET NLS_ISO_CURRENCY = FRANCE;

-- display the salary of selected employees
SELECT TO_CHAR(salary, 'C099G999D99') "Salary" FROM employees
 WHERE department_id = 60;

The output from the example should be similar to the following:

Salary

EUR009,000.00
EUR006,000.00
EUR004,800.00
EUR004,800.00
EUR004,200.00

NLS_DUAL_CURRENCY Parameter
Use the NLS_DUAL_CURRENCY parameter to override the default dual currency
symbol defined implicitly by NLS_TERRITORY. The value can be any valid symbol.

NLS_DUAL_CURRENCY was introduced to support the euro currency symbol during
the euro transition period.

Linguistic Sorting and Searching
Different languages have their own sorting rules. Some languages are collated
according to the letter sequence in the alphabet, some according to the number of
stroke counts in the letter, and some are ordered by the pronunciation of the words.
Treatment of letter accents also differs among languages. For example, in Danish, Æ is
sorted after Z, while Y and Ü are considered to be variants of the same letter.

You can define how to sort data by using linguistic sort parameters. The basic
linguistic definition treats strings as sequences of independent characters.

This section contains the following topics:

■ NLS_SORT Parameter on page 7-16

■ NLS_COMP Parameter on page 7-17

Setting Up the Globalization Support Environment

7-16 Oracle Database Express Edition 2 Day Developer Guide

■ Case-Insensitive and Accent-Insensitive Searching on page 7-18

NLS_SORT Parameter
The NLS_SORT parameter specifies the collating (linguistic sort) sequence for ORDER
BY queries. It overrides the default NLS_SORT value that is derived from the NLS_
LANGUAGE parameter. The value of NLS_SORT can be BINARY or any valid linguistic
sort name:

NLS_SORT = BINARY | sort_name

If the value is BINARY, then the collating sequence is based on the numeric code of the
characters in the underlying encoding scheme. Depending on the datatype, this will
either be in the binary sequence order of the database character set or the national
character set. If the value is a named linguistic sort, sorting is based on the order of the
defined sort. Most, but not all, languages supported by the NLS_LANGUAGE parameter
also support a linguistic sort with the same name.

Spain traditionally treats ch, ll, and ñ as letters of their own, ordered after c, l, and n,
respectively. Example 7–12 and Example 7–13 illustrate the effect of using a Spanish
sort against the employee names Chen and Chung. In Example 7–12, the NLS_SORT
parameter is set to BINARY.

In Example 7–12, the LIKE comparison operator is used to specify the records to
return with the query. For information about LIKE, see "Restricting Data Using the
WHERE Clause" on page 3-6.

Example 7–12 Setting NLS_SORT to BINARY

-- set the NLS_SORT for this user session
ALTER SESSION SET NLS_SORT=binary;

-- select the last name of those employees whose last name begin with C
SELECT last_name FROM employees
 WHERE last_name LIKE 'C%' ORDER BY last_name;

The output from the example should be similar to the following:

LAST_NAME

Cabrio
Cambrault
Cambrault
Chen
Chung
Colmenares

In Example 7–13, the NLS_SORT parameter is set to SPANISH_M.

Example 7–13 Setting NLS_SORT to Spanish

-- set the NLS_SORT for this user session
ALTER SESSION SET NLS_SORT=spanish_m;

-- select the last name of those employees whose last name begin with C
SELECT last_name FROM employees
 WHERE last_name LIKE 'C%' ORDER BY last_name;

The output from the example should be similar to the following:

LAST_NAME

Setting Up the Globalization Support Environment

Working in a Global Environment 7-17

Cabrio
Cambrault
Cambrault
Colmenares
Chen
Chung

Note that the order of last names in the output from the SELECT statement in
Example 7–12 and Example 7–13 is different.

NLS_COMP Parameter
When using comparison operators, characters are compared according to their binary
codes in the designated encoding scheme. A character is greater than another if it has a
higher binary code. Because the binary sequence of characters may not match the
linguistic sequence for a particular language, those comparisons might not be
linguistically correct.

The value of the NLS_COMP parameter affects the comparison behavior of SQL
operations. The value can be BINARY (default) or LINGUISTIC. You can use the NLS_
COMP parameter to avoid the cumbersome process of using the NLSSORT function in
SQL statements when you want to perform a linguistic comparison instead of a binary
comparison. When NLS_COMP is set to LINGUISTIC, SQL performs a linguistic
comparison based on the value of the NLS_SORT parameter.

Example 7–14 and Example 7–15 illustrate the effect of performing a binary
comparison follow by a Spanish linguistic sensitive comparison against the employee
names. In Example 7–14 the NLS_COMP parameter is set to BINARY while NLS_SORT is
set to Spanish.

Example 7–14 Setting NLS_COMP to BINARY

-- set NLS_SORT and NLS_COMP for this user session
ALTER SESSION SET NLS_SORT=spanish_m NLS_COMP=binary;

-- select the last name of those employees whose last name begin with C
SELECT last_name FROM employees
 WHERE last_name LIKE 'C%';

The output from the example should be similar to the following:

LAST_NAME

Cabrio
Cambrault
Cambrault
Chen
Chung
Colmenares

In Example 7–15 the NLS_COMP parameter is set to LINGUISTIC while NLS_SORT is
set to Spanish.

See Also: Oracle Database Globalization Support Guide for more
information about supported linguistic sorts

Setting Up the Globalization Support Environment

7-18 Oracle Database Express Edition 2 Day Developer Guide

Example 7–15 Setting NLS_COMP to LINGUISTIC

-- set NLS_SORT and NLS_COMP for this user session
ALTER SESSION SET NLS_SORT=spanish_m NLS_COMP=linguistic;

-- select the last name of those employees whose last name begin with C
SELECT last_name FROM employees
 WHERE last_name LIKE 'C%';

The output from the example should be similar to the following:

LAST_NAME

Cabrio
Cambrault
Cambrault
Colmenares

Note the difference in the output from Example 7–14 and Example 7–15. In Spanish ch
is treated as a separate character that follows c, so ch is excluded when a Spanish
linguistic-sensitive comparison is performed in Example 7–15.

Case-Insensitive and Accent-Insensitive Searching
Operations inside of a database are sensitive to the case and the accents of the
characters. Sometimes, you might need to perform case-insensitive or
accent-insensitive comparisons. Use the NLS_SORT session parameter to specify a
case-insensitive or accent-insensitive sort.

To specify a case-insensitive or accent-insensitive sort:

■ Append _CI to an Oracle sort name for a case-insensitive sort. For example:

BINARY_CI: accent-sensitive and case-insensitive binary sort
GENERIC_M_CI: accent-sensitive and case-insensitive GENERIC_M sort

■ Append _AI to an Oracle sort name for an accent-insensitive and case-insensitive
sort. For example:

BINARY_AI: accent-insensitive and case-insensitive binary sort
FRENCH_M_AI: accent-insensitive and case-insensitive FRENCH_M sort

Length Semantics
In single-byte character sets, the number of bytes and the number of characters in a
string are the same. In multi-byte character sets, a character or code point consists of
one or more bytes. Calculating the number of characters based on byte length can be
difficult in a variable-width character set. Calculating column length in bytes is called
byte semantics, while measuring column length in characters is called character
semantics.

Character semantics is useful to define the storage requirements for multi-byte strings
of varying widths. For example, in a Unicode database (AL32UTF8), suppose that you
need to define a VARCHAR2 column that can store up to five Chinese characters
together with five English characters. Using byte semantics, this column requires 15
bytes for the Chinese characters, which are 3 bytes long, and 5 bytes for the English
characters, which are 1 byte long, for a total of 20 bytes. Using character semantics, the
column requires 10 characters.

The expressions in the following list use byte semantics. Note the BYTE qualifier in the
VARCHAR2 expression and the B suffix in the SQL function name.

SQL and PL/SQL Programming with Unicode

Working in a Global Environment 7-19

■ VARCHAR2(20 BYTE)

■ SUBSTRB(string, 1, 20)

The expressions in the following list use character semantics. Note the CHAR qualifier
in the VARCHAR2 expression.

■ VARCHAR2(20 CHAR)

■ SUBSTR(string, 1, 20)

This section contains the following topic:

■ NLS_LENGTH_SEMANTICS Parameter on page 7-19

NLS_LENGTH_SEMANTICS Parameter
The NLS_LENGTH_SEMANTICS parameter specifies BYTE (default) or CHAR semantics.
By default, the character datatypes CHAR and VARCHAR2 are specified in bytes, not
characters. Therefore, the specification CHAR(20) in a table definition allows 20 bytes
for storing character data.

The NLS_LENGTH_SEMANTICS parameter enables you to create CHAR, VARCHAR2, and
LONG columns using either byte-length or character-length semantics. NCHAR,
NVARCHAR2, CLOB, and NCLOB columns are always character-based. Existing columns
are not affected.

Example 7–16 shows an example of creating a table. When the database character set is
WE8MSWIN1252, the last_name column of the table can hold up to 10 Western
European characters, occupying a maximum of 10 bytes. When the database character
set is Unicode (AL32UTF8), the last_name column can still hold up to 10 Unicode
characters regardless of the language; however, it can occupy a maximum of 40 bytes.

Example 7–16 Setting Length Semantics and Creating a Table

-- reset NLS parameters back to default here
ALTER SESSION SET NLS_LANGUAGE = American NLS_TERRITORY = America;
CREATE TABLE temp_employees_table
(employee_id NUMBER(4), last_name VARCHAR2(10 CHAR), job_id VARCHAR2(9),
 manager_id NUMBER(4), hire_date DATE, salary NUMBER(7,2),
 department_id NUMBER(2)) ;
-- cleanup: drop the table
DROP TABLE temp_employees_table;

SQL and PL/SQL Programming with Unicode
This section describes Unicode-related features in SQL and PL/SQL that you can
deploy for multiple language applications. Oracle Database XE provides products
such as SQL and PL/SQL for inserting and retrieving Unicode data. Data is
transparently converted among the database and client programs, which ensures that
client programs are independent of the database character set and national character
set.

This section contains the following topics:

■ Overview of Unicode on page 7-20

■ SQL NCHAR Datatypes on page 7-20

See Also: "Length Semantics for Character Datatypes" in Oracle
Database Concepts

SQL and PL/SQL Programming with Unicode

7-20 Oracle Database Express Edition 2 Day Developer Guide

■ Unicode String Literals on page 7-21

■ NCHAR Literal Replacement on page 7-22

Overview of Unicode
Unicode is a universal encoded character set that enables you to store information in
any language, using a single character set. Unicode provides a unique code value for
every character, regardless of the platform, program, or language.

Unicode has the following advantages:

■ It simplifies character set conversion and linguistic sort functions.

■ It improves performance compared with native multi-byte character sets.

■ It supports the Unicode datatype based on the Unicode standard.

You can store Unicode characters in an Oracle database in two ways:

■ You can create a Unicode database that enables you to store UTF-8 encoded
characters as SQL CHAR datatypes.

■ You can support multiple language data in specific columns by using Unicode
datatypes. You can store Unicode characters into columns of the SQL NCHAR
datatypes regardless of how the database character set has been defined. The
NCHAR datatype is an exclusively Unicode datatype.

SQL NCHAR Datatypes
There are two SQL NCHAR datatypes:

■ NCHAR Datatype on page 7-20

■ NVARCHAR2 Datatype on page 7-21

NCHAR Datatype
When you define a table column or a PL/SQL variable as the NCHAR datatype, the
length is specified as the number of characters. For example, the following statement
creates a column with a maximum length of 30 characters:

CREATE TABLE table1 (column1 NCHAR(30));

The maximum number of bytes for the column is determined as follows:

maximum number of bytes =
(maximum number of characters) x (maximum number of bytes for each character)

For example, if the national character set is UTF8, then the maximum byte length is 30
characters times 3 bytes for each character, or 90 bytes.

The national character set, which is used for all NCHAR datatypes, is defined when the
database is created. The national character set can be either UTF8 or AL16UTF16. The
default is AL16UTF16.

The maximum column size allowed is 2000 characters when the national character set
is UTF8 and 1000 when it is AL16UTF16. The actual data is subject to the maximum

See Also:

■ Oracle Database SQL Reference for information about SQL

■ Oracle Database PL/SQL User's Guide and Reference for
information about PL/SQL

SQL and PL/SQL Programming with Unicode

Working in a Global Environment 7-21

byte limit of 2000. The two size constraints must be satisfied at the same time. In
PL/SQL, the maximum length of the NCHAR data is 32,767 bytes. You can define an
NCHAR variable of up to 32,767 characters, but the actual data cannot exceed 32,767
bytes. If you insert a value that is shorter than the column length, then Oracle pads the
value with blanks to whichever length is smaller: maximum character length or
maximum byte length.

NVARCHAR2 Datatype
The NVARCHAR2 datatype specifies a variable-length character string that uses the
national character set. When you create a table with an NVARCHAR2 column, you
specify the maximum number of characters for the column. Lengths for NVARCHAR2
are in units of characters, just as for NCHAR. Oracle Database XE subsequently stores
each value in the column exactly as you specify it, if the value does not exceed the
maximum length of the column. Oracle Database XE does not pad the string value to
the maximum length.

The maximum column size allowed is 4000 characters when the national character set
is UTF8, and it is 2000 when AL16UTF16. The maximum length of an NVARCHAR2
column in bytes is 4000. Both the byte limit and the character limit must be met, so the
maximum number of characters that is allowed in an NVARCHAR2 column is the
number of characters that can be written in 4000 bytes.

In PL/SQL, the maximum length for an NVARCHAR2 variable is 32,767 bytes. You can
define NVARCHAR2 variables up to 32,767 characters, but the actual data cannot exceed
32,767 bytes.

The following statement creates a table with one NVARCHAR2 column whose
maximum length in characters is 2000 and maximum length in bytes is 4000.

CREATE TABLE table2 (column2 NVARCHAR2(2000));

Unicode String Literals
You can input Unicode string literals in SQL and PL/SQL as follows:

■ Put the letter N before a string literal that is enclosed with single quotation marks.
This explicitly indicates that the following string literal is an NCHAR string literal.
For example, N'résumé' is an NCHAR string literal. See "NCHAR Literal
Replacement" on page 7-22 for limitations of this method.

■ Use the NCHR(n) SQL function. The NCHR(n) SQL function returns a unit of
character code in the national character set, which is AL16UTF16 or UTF8. The
result of concatenating several NCHR(n) functions is NVARCHAR2 data. In this
way, you can bypass the client and server character set conversions and create an
NVARCHAR2 string directly. For example, NCHR(32) represents a blank character.

Because NCHR(n) is associated with the national character set, portability of the
resulting value is limited to applications that use the same national character set. If
this is a concern, then use the UNISTR function to remove portability limitations.

■ Use the UNISTR('string') SQL function. The UNISTR('string') function
converts a string to the national character set. To ensure portability and to preserve
data, include only ASCII characters and Unicode encoding in the following form:
\xxxx, where xxxx is the hexadecimal value of a character code value in UTF-16
encoding format. For example, UNISTR('G\0061ry') represents 'Gary'. The
ASCII characters are converted to the database character set and then to the
national character set. The Unicode encoding is converted directly to the national
character set.

Locale-Dependent SQL Functions with Optional NLS Parameters

7-22 Oracle Database Express Edition 2 Day Developer Guide

The last two methods can be used to encode any Unicode string literals.

NCHAR Literal Replacement
Being part of a SQL or PL/SQL statement, the text of any literal, with or without the
prefix N, is encoded in the same character set as the rest of the statement. On the client
side, the statement is in the client character set, determined by the character set
defined in the NLS_LANG parameter. On the server side the statement is in the
database character set.

When the SQL or PL/SQL statement is transferred from client to the database, its
character set is converted accordingly. If the database character set does not contain all
characters used in the text literals, the data is lost in this conversion. This affects
NCHAR string literals more than the CHAR text literals, this is because the N' literals is
designed to be independent of the database character set, and it should be able to
include any data that the client character set allows.

To avoid data loss during conversion to an incompatible database character set, you
can activate the NCHAR literal replacement functionality. It transparently replaces the
N’ literals on the client side into an internal format, the database then decodes this to
Unicode when the statement is executed. You can set the client environment variable
ORA_NCHAR_LITERAL_REPLACE to TRUE to enable this functionality. By default, the
functionality is switched off to maintain backward compatibility.

Locale-Dependent SQL Functions with Optional NLS Parameters
All SQL functions whose behavior depends on globalization support conventions
allow NLS parameters to be specified. These functions are:

TO_CHAR
TO_DATE
TO_NUMBER
NLS_UPPER
NLS_LOWER
NLS_INITCAP
NLSSORT

Explicitly specifying the optional NLS parameters for these functions enables the
functions to be evaluated independently of the session's NLS parameters. This feature
can be important for SQL statements that contain numbers and dates as string literals.

For example, the following query is evaluated correctly if the language specified for
dates is AMERICAN and the calender is specified as GREGORIAN.

Example 7–17 Setting NLS_DATE_LANGUAGE=American, NLS_CALENDAR=Gregorian

ALTER SESSION SET NLS_DATE_LANGUAGE=American;
ALTER SESSION SET NLS_CALENDAR=Gregorian;
SELECT last_name FROM employees WHERE hire_date > '01-JAN-1999';

The previous query can be made independent of the current date language by using a
statement similar to the following:

Example 7–18 Setting NLS_LANGUAGE in a Query

SELECT last_name FROM employees
 WHERE hire_date > TO_DATE('01-JAN-1999','DD-MON-YYYY',
 'NLS_DATE_LANGUAGE = AMERICAN');

Locale-Dependent SQL Functions with Optional NLS Parameters

Working in a Global Environment 7-23

In this way, SQL statements that are independent of the session language can be
defined where necessary. These statements are necessary when string literals appear in
SQL statements in views, CHECK constraints, or triggers.

All character functions support both single-byte and multi-byte characters. Except
where explicitly stated, character functions operate character by character, rather than
byte by byte.

The remainder of this section contains the following topics:

■ Default Values for NLS Parameters in SQL Functions on page 7-23

■ Specifying NLS Parameters in SQL Functions on page 7-23

■ Unacceptable NLS Parameters in SQL Functions on page 7-25

Default Values for NLS Parameters in SQL Functions
When SQL functions evaluate views and triggers, default values from the current
session are used for the NLS function parameters. When SQL functions evaluate
CHECK constraints, they use the default values that were specified for the NLS
parameters when the database was created.

Specifying NLS Parameters in SQL Functions
NLS parameters are specified in SQL functions as 'parameter = value'. For example:

'NLS_DATE_LANGUAGE = AMERICAN'

The following NLS parameters can be specified in SQL functions:

NLS_DATE_LANGUAGE
NLS_NUMERIC_CHARACTERS
NLS_CURRENCY
NLS_ISO_CURRENCY
NLS_DUAL_CURRENCY
NLS_CALENDAR
NLS_SORT

Table 7–5 shows which NLS parameters are valid for specific SQL functions.

Note: Only SQL statements that must be independent of the
session NLS parameter values should explicitly specify optional
NLS parameters in locale-dependent SQL functions. Using session
default values for NLS parameters in SQL functions usually results
in better performance.

Table 7–5 SQL Functions and Their Valid NLS Parameters

SQL Function Valid NLS Parameters

TO_DATE NLS_DATE_LANGUAGE,
NLS_CALENDAR

TO_NUMBER NLS_NUMERIC_CHARACTERS,
NLS_CURRENCY,
NLS_DUAL_CURRENCY,
NLS_ISO_CURRENCY,

Locale-Dependent SQL Functions with Optional NLS Parameters

7-24 Oracle Database Express Edition 2 Day Developer Guide

Example 7–19 shows how to use NLS parameters in SQL functions.

Example 7–19 Using NLS Parameters in SQL Functions

SELECT TO_DATE('1-JAN-99', 'DD-MON-YY',
 'NLS_DATE_LANGUAGE = American') "01/01/99" FROM DUAL;

SELECT TO_CHAR(hire_date, 'DD/MON/YYYY',
 'NLS_DATE_LANGUAGE = French') "Hire Date" FROM employees;

SELECT TO_CHAR(SYSDATE, 'DD/MON/YYYY',
 'NLS_DATE_LANGUAGE = ''Traditional Chinese'' ') "System Date" FROM DUAL;

SELECT TO_CHAR(13000, '99G999D99',
 'NLS_NUMERIC_CHARACTERS = '',.''') "13K" FROM DUAL;

SELECT TO_CHAR(salary, '99G999D99L', 'NLS_NUMERIC_CHARACTERS = '',.''
 NLS_CURRENCY = ''EUR''') salary FROM employees;

SELECT TO_CHAR(salary, '99G999D99C', 'NLS_NUMERIC_CHARACTERS = ''.,''
 NLS_ISO_CURRENCY = Japan') salary FROM employees;

SELECT NLS_UPPER(last_name, 'NLS_SORT = Swiss') "Last Name" FROM employees;

SELECT last_name FROM employees
 ORDER BY NLSSORT(last_name, 'NLS_SORT = German');

TO_CHAR NLS_DATE_LANGUAGE,
NLS_NUMERIC_CHARACTERS,
NLS_CURRENCY,
NLS_ISO_CURRENCY,
NLS_DUAL_CURRENCY,
NLS_CALENDAR

TO_NCHAR NLS_DATE_LANGUAGE,
NLS_NUMERIC_CHARACTERS,
NLS_CURRENCY,
NLS_ISO_CURRENCY,
NLS_DUAL_CURRENCY,
NLS_CALENDAR

NLS_UPPER NLS_SORT

NLS_LOWER NLS_SORT

NLS_INITCAP NLS_SORT

NLSSORT NLS_SORT

Note: In some languages, some lowercase characters correspond
to more than one uppercase character or some uppercase characters
correspond to more than one lowercase characters. As a result, the
length of the output from the NLS_UPPER, NLS_LOWER, and NLS_
INITCAP functions can differ from the length of the input.

Table 7–5 (Cont.) SQL Functions and Their Valid NLS Parameters

SQL Function Valid NLS Parameters

Locale-Dependent SQL Functions with Optional NLS Parameters

Working in a Global Environment 7-25

Unacceptable NLS Parameters in SQL Functions
The following NLS parameters are not accepted in SQL functions except for NLSSORT:

■ NLS_LANGUAGE

■ NLS_TERRITORY

■ NLS_DATE_FORMAT

The NLS_DATE_FORMAT and NLS_TERRITORY_FORMAT parameters are not accepted
as parameters because they can interfere with required format models. A date format
must be specified if an NLS parameter is in a TO_CHAR or TO_DATE function. As a
result, NLS_DATE_FORMAT and NLS_TERRITORY_FORMAT are not valid NLS
parameters for the TO_CHAR or TO_DATE functions. If you specify NLS_DATE_FORMAT
or NLS_TERRITORY_FORMAT in the TO_CHAR or TO_DATE function, then an error is
returned.

NLS_LANGUAGE can interfere with the session value of NLS_DATE_LANGUAGE. If you
specify NLS_LANGUAGE in the TO_CHAR function, for example, then its value is
ignored if it differs from the session value of NLS_DATE_LANGUAGE.

Locale-Dependent SQL Functions with Optional NLS Parameters

7-26 Oracle Database Express Edition 2 Day Developer Guide

Using SQL Command Line A-1

A
Using SQL Command Line

This section provides an introduction to SQL Command Line (SQL*Plus), an
interactive and batch command-line query tool that is installed with Oracle Database
Express Edition.

This section contains the following topics:

■ Overview of SQL Command Line on page A-1

■ Using SQL Command Line on page A-1

For information about running SQL language statements, see Chapter 3, "Using SQL".

Overview of SQL Command Line
SQL Command Line (SQL*Plus) is a command-line tool for accessing Oracle Database
XE. It enables you to enter and run SQL, PL/SQL, and SQL*Plus commands and
statements to:

■ Query, insert, and update data

■ Execute PL/SQL procedures

■ Examine table and object definitions

■ Develop and run batch scripts

■ Perform database administration

You can use SQL Command Line to generate reports interactively, to generate reports
as batch processes, and to write the results to a text file, to a screen, or to an HTML file
for browsing on the Internet.

Using SQL Command Line
This section describes SQL Command Line (SQL*Plus), a command-line utility to run
SQL and PL/SQL.

See Also:

■ SQL*Plus User's Guide and Reference for complete information
about SQL*Plus

■ Oracle Database SQL Reference for information about using SQL
statements

■ Oracle Database Express Edition 2 Day DBA for information about
connecting to Oracle Database XE with SQL Command Line

Using SQL Command Line

A-2 Oracle Database Express Edition 2 Day Developer Guide

This contains the following topics:

■ Starting and Exiting SQL Command Line on page A-2

■ Displaying Help With SQL Command Line on page A-2

■ Entering and Executing SQL Statements and Commands on page A-3

■ SQL Command Line DESCRIBE Command on page A-3

■ SQL Command Line SET Commands on page A-4

■ Running Scripts From SQL Command Line on page A-4

■ Spooling From SQL Command Line on page A-4

■ Using Variables With SQL Command Line on page A-5

Starting and Exiting SQL Command Line
To start SQL Command Line from the operating-system command prompt, enter the
following:

sqlplus

When prompted, enter the username and password of the user account (schema) that
you want to access in the local database. For example, enter HR for the username and
my_hr_password for the password when prompted.

You can also include the username and password when you start SQL Command Line.
For example:

sqlplus hr/my_hr_password

If you want to connect to a database running on a remote system, you need to include
a connect string when starting SQL Command Line. For example:

sqlplus hr/my_hr_password@host_computer_name

After you have started SQL Command Line, the SQL> prompt displays as follows:

SQL>

At the SQL> prompt, you can enter SQL statements.

When you want to exit SQL Command Line, enter EXIT at the SQL prompt, as
follows:

SQL> EXIT

Displaying Help With SQL Command Line
To display a list of Help topics for SQL Command Line, enter HELP INDEX at the SQL
prompt as follows:

SQL> HELP INDEX

From the list of SQL Command Line Help topics, you can display Help about an
individual topic by entering HELP with a topic name. For example, the following

Note: Before starting SQL Command Line, make sure that the
necessary environmental variables have been set up properly. See
Oracle Database Express Edition 2 Day DBA for information about
setting environmental variables for SQL Command Line.

Using SQL Command Line

Using SQL Command Line A-3

displays Help about the SQL Command Line COLUMN command, which enables you to
format column output:

SQL> HELP COLUMN

Entering and Executing SQL Statements and Commands
To enter and execute SQL statements or commands, enter the statement or command
at the SQL prompt. At the end of a SQL statement, put a semi-colon (;) and then press
the Enter key to execute the statement. For example:

SQL> SELECT * FROM employees;

If the statement does not fit on one line, enter the first line and press the Enter key.
Continue entering lines, and terminate the last line with a semi-colon (;). For example:

SQL> SELECT employee_id, first_name, last_name
2 FROM employees
3 WHERE employee_id >= 105 AND employee_id <= 110;

The output from the previous SELECT statement is similar to:

EMPLOYEE_ID FIRST_NAME LAST_NAME
----------- -------------------- -----------------------

105 David Austin
106 Valli Pataballa
107 Diana Lorentz
108 Nancy Greenberg
109 Daniel Faviet
110 John Chen

6 rows selected.

Note that a terminating semi-colon (;) is optional with SQL Command Line
commands, such as DESCRIBE o r SET, but required with SQL statements.

SQL Command Line DESCRIBE Command
SQL Command Line provides the DESCRIBE command to display a description of a
database object. For example, the following displays the structure of the employees
table. This description is useful when constructing SQL statements that manipulate the
employees table.

SQL> DESCRIBE employees
Name Null? Type
-- -------- ------------
EMPLOYEE_ID NOT NULL NUMBER(6)
FIRST_NAME VARCHAR2(20)
LAST_NAME NOT NULL VARCHAR2(25)
EMAIL NOT NULL VARCHAR2(25)
PHONE_NUMBER VARCHAR2(20)
HIRE_DATE NOT NULL DATE
JOB_ID NOT NULL VARCHAR2(10)
SALARY NUMBER(8,2)
COMMISSION_PCT NUMBER(2,2)
MANAGER_ID NUMBER(6)
DEPARTMENT_ID NUMBER(4)

Using SQL Command Line

A-4 Oracle Database Express Edition 2 Day Developer Guide

SQL Command Line SET Commands
The SQL Command Line SET commands can be used to specify various SQL
Command Line settings, such as the format of the output from SQL SELECT
statements. For example, the following SET commands specify the number of lines for
each page and the number of characters for each line in the output:

SQL> SET PAGESIZE 200
SQL> SET LINESIZE 140

To enable output from PL/SQL blocks with DBMS_OUTPUT.PUT_LINE, use the
following:

SQL> SET SERVEROUTPUT ON

To view all the settings, enter the following at the SQL prompt:

SQL> SHOW ALL

For information about the SQL Command Line SERVEROUTPUT setting to display
output from a PL/SQL program, see "Inputting and Outputting Data with PL/SQL"
on page 4-5.

Running Scripts From SQL Command Line
You can use a text editor to create SQL Command Line script files that contain
SQL*Plus, SQL, and PL/SQL statements. For consistency, use the .sql extension for
the script file name.

A SQL script file is executed with a START or @ command. For example, in a Windows
environment, you can execute a SQL script as follows:

SQL> @c:\my_scripts\my_sql_script.sql

A SQL script file can be executed in a Linux environment as follows:

SQL> START /home/cjones/my_scripts/my_sql_script.sql

You can use SET ECHO ON to cause a script to echo each statement that is executed. You
can use SET TERMOUT OFF to prevent the script output from displaying on the screen.

When running a script, you need to include the full path name unless the script is
located in the directory from which SQL Command Line was started, or the script is
located in the default script location specified by the SQLPATH environment variable.

Spooling From SQL Command Line
The SPOOL command can be used to direct the output from SQL Command Line to a
disk file, which enables you to save the output for future review.

To start spooling the output to an operating system file, you enter the SPOOL
command followed by a file name. For example:

See Also: SQL*Plus User's Guide and Reference for information about
setting up the SQL Command Line environment with a login file

See Also:

■ Oracle Database Express Edition 2 Day DBA for information about
setting environment variables for Oracle Database Express Edition

■ SQL*Plus User's Guide and Reference for information about setting
the SQL Command Line SQLPATH environment variable to
specify the default location of SQL scripts

Using SQL Command Line

Using SQL Command Line A-5

SQL> SPOOL my_log_file.log

If you want to append the output to an existing file:

SQL> SPOOL my_log_file.log APPEND

To stop spooling and close a file, enter the following:

SQL> SPOOL OFF

Using Variables With SQL Command Line
You can create queries that use variables to make SELECT statements more flexible.
You can define the variable before running a SQL statement, or you specify that the
statement prompts for a variable value at the time that the SQL statement is run.

When using a variable in a SQL statement, the variable name must be begin with an
ampersand (&).

This section contains the following topics:

■ Prompting for a Variable Value in a Query on page A-5

■ Reusing a Variable Value in a Query on page A-5

■ Defining a Variable Value for a Query on page A-6

For information about using bind variables in PL/SQL code, see "Using Bind Variables
With PL/SQL" on page 4-27.

Prompting for a Variable Value in a Query
You can use & to identify a variable that you want to define dynamically. In
Example A–1, including the &employee_id variable causes the SQL statement to
prompt for a value when the statement is executed. You can then enter a value for the
employee_id that corresponds to the employee information that you want to display,
such as employee ID 125. Note that you can use any name for the variable, such as
&my_variable.

Example A–1 Prompting for a Variable Value in SQL Command Line

-- prompt for employee_id in a query, you need to enter a valid ID such as 125
SELECT employee_id, last_name, job_id FROM employees
 WHERE employee_id = &employee_id;

When you run the previous SELECT statement, the output is similar to:

Enter value for employee_id: 125
...
EMPLOYEE_ID LAST_NAME JOB_ID
----------- ------------------------- ----------

125 Nayer ST_CLERK

Reusing a Variable Value in a Query
You can use && to identify a variable that you want to define dynamically multiple
times, but only want to prompt the user once. In Example A–2, including the
&&column_name variable causes the SQL statement to prompt for a value when the
statement is executed. The value that is entered is substituted for all remaining
occurrences of &&column_name in the SQL statement.

Using SQL Command Line

A-6 Oracle Database Express Edition 2 Day Developer Guide

Example A–2 Reusing a Variable Value in SQL Command Line

-- prompt for a column name, such as job_id, which is then substituted in the
-- remaining identical substitution variables prefixed with &&
SELECT employee_id, last_name, &&column_name FROM employees
 ORDER BY &&column_name;

Defining a Variable Value for a Query
In Example A–3, the &job_id variable is defined before running the SQL statement
with the DEFINE command, and the defined value is substituted for the variable when
the statement is executed. Because the variable has already been defined, you are not
prompted to enter a value.

Example A–3 Defining a Variable for a Query in SQL Command Line

-- define a variable value for a query as follows
DEFINE job_id = "ST_CLERK"
-- run a query using the defined value for job_id (ST_CLERK)
SELECT employee_id, last_name FROM employees WHERE job_id = '&job_id';

Reserved Words B-1

B
Reserved Words

This section lists the Oracle Database Express Edition (Oracle Database XE) SQL and
PL/SQL reserved words and keywords. You should not use these words to name
program or schema objects, such as constants, variables, cursors, columns, tables, or
indexes.

The V$RESERVED_WORDS data dictionary view provides additional information about
all keywords, including whether the keyword is always reserved or is reserved only
for particular uses. For more information, refer to Oracle Database Reference.

This section contains the following topics:

■ SQL Reserved Words on page B-1

■ PL/SQL Reserved Words on page B-2

SQL Reserved Words
This section lists Oracle Database XE SQL Command Line reserved words. Words
followed by an asterisk (*) are also ANSI reserved words.

Table B–1 lists the SQL reserved words.

Table B–1 SQL Reserved Words

Begins with: Reserved Words

A ACCESS, ADD*, ALL*, ALTER*, AND*, ANY*, AS*, ASC*, AUDIT

B BETWEEN*, BY*

C CHAR*, CHECK*, CLUSTER, COLUMN, COMMENT, COMPRESS, CONNECT*, CREATE*, CURRENT*

D DATE*, DECIMAL*, DEFAULT*, DELETE*, DESC*, DISTINCT*, DROP*

E ELSE*, EXCLUSIVE, EXISTS

F FILE, FLOAT*, FOR*, FROM*

G GRANT*, GROUP*

H HAVING*

I IDENTIFIED, IMMEDIATE*, IN*, INCREMENT, INDEX, INITIAL, INSERT*, INTERSECT*, INTO*, IS*

L LEVEL*, LIKE*, LOCK, LONG

M MAXEXTENTS, MINUS, MLSLABEL, MODE, MODIFY

N NOAUDIT, NOCOMPRESS, NOT*, NOWAIT, NULL*, NUMBER

O OF*, OFFLINE, ON*, ONLINE, OPTION*, OR*, ORDER*

P PCTREE, PRIOR*, PRIVLEGES*, PUBLIC*

R RAW, RENAME, RESOURCE, REVOKE*, ROW, ROWID, ROWNUM, ROWS*

PL/SQL Reserved Words

B-2 Oracle Database Express Edition 2 Day Developer Guide

PL/SQL Reserved Words
The words listed in this section are reserved by PL/SQL. Some of these words are also
reserved by SQL.

These words reserved by PL/SQL are classified as keywords or reserved words. See
Table B–2 and Table B–3. Reserved words can never be used as identifiers. Keywords
can be used as identifiers, but this is not recommended.

Table B–2 lists the PL/SQL reserved words.

Table B–3 lists the PL/SQL keywords.

S SELECT*, SESSION*, SET*, SHARE, SIZE*, SMALLINT*, START, SUCCESSFUL, SYNONYM, SYSDATE

T TABLE*, THEN*, TO*, TRIGGER

U UID, UNION*, UNIQUE*, UPDATE*, USER*

V VALIDATE, VALUES*, VARCHAR*, VARCHAR2, VIEW*

W WHENEVER*, WHERE, WITH*

Table B–2 PL/SQL Reserved Words

Begins with: Reserved Words

A ALL, ALTER, AND, ANY, ARRAY, ARROW, AS, ASC, AT

B BEGIN, BETWEEN, BY

C CASE, CHECK, CLUSTERS, CLUSTER, COLAUTH, COLUMNS, COMPRESS, CONNECT, CRASH, CREATE,
CURRENT

D DECIMAL, DECLARE, DEFAULT, DELETE, DESC, DISTINCT, DROP

E ELSE, END, EXCEPTION, EXCLUSIVE, EXISTS

F FETCH, FORM, FOR, FROM

G GOTO, GRANT, GROUP

H HAVING

I IDENTIFIED, IF, IN, INDEXES, INDEX, INSERT, INTERSECT, INTO, IS

L LIKE, LOCK

M MINUS, MODE

N NOCOMPRESS, NOT, NOWAIT, NULL

O OF, ON, OPTION, OR, ORDER,OVERLAPS

P PRIOR, PROCEDURE, PUBLIC

R RANGE, RECORD, RESOURCE, REVOKE

S SELECT, SHARE, SIZE, SQL, START, SUBTYPE

T TABAUTH, TABLE, THEN, TO, TYPE

U UNION, UNIQUE, UPDATE, USE

V VALUES, VIEW, VIEWS

W WHEN, WHERE, WITH

Table B–1 (Cont.) SQL Reserved Words

Begins with: Reserved Words

PL/SQL Reserved Words

Reserved Words B-3

Table B–3 PL/SQL Keywords

Begins with: Keywords

A A, ADD, AGENT, AGGREGATE, ARRAY, ATTRIBUTE, AUTHID, AVG

B BFILE_BASE, BINARY, BLOB_BASE, BLOCK, BODY, BOTH, BOUND, BULK, BYTE

C C, CALL, CALLING, CASCADE, CHAR, CHAR_BASE, CHARACTER, CHARSETFORM, CHARSETID,
CHARSET, CLOB_BASE, CLOSE, COLLECT, COMMENT, COMMIT, COMMITTED, COMPILED,
CONSTANT, CONSTRUCTOR, CONTEXT, CONVERT, COUNT, CURSOR, CUSTOMDATUM

D DANGLING, DATA, DATE, DATE_BASE, DAY, DEFINE, DETERMINISTIC, DOUBLE, DURATION

E ELEMENT, ELSIF, EMPTY, ESCAPE, EXCEPT, EXCEPTIONS, EXECUTE, EXIT, EXTERNAL

F FINAL, FIXED, FLOAT, FORALL, FORCE, FUNCTION

G GENERAL

H HASH, HEAP, HIDDEN, HOUR

I IMMEDIATE, INCLUDING, INDICATOR, INDICES, INFINITE, INSTANTIABLE, INT, INTERFACE,
INTERVAL, INVALIDATE, ISOLATION

J JAVA

L LANGUAGE, LARGE, LEADING, LENGTH, LEVEL, LIBRARY, LIKE2, LIKE4, LIKEC, LIMIT, LIMITED,
LOCAL, LONG, LOOP

M MAP, MAX, MAXLEN, MEMBER, MERGE, MIN, MINUTE, MOD, MODIFY, MONTH, MULTISET

N NAME, NAN, NATIONAL, NATIVE, NCHAR, NEW, NOCOPY, NUMBER_BASE

O OBJECT, OCICOLL, OCIDATETIME, OCIDATE, OCIDURATION, OCIINTERVAL, OCILOBLOCATOR,
OCINUMBER, OCIRAW, OCIREFCURSOR, OCIREF, OCIROWID, OCISTRING, OCITYPE, ONLY, OPAQUE,
OPEN, OPERATOR, ORACLE, ORADATA, ORGANIZATION, ORLANY, ORLVARY, OTHERS, OUT,
OVERRIDING

P PACKAGE, PARALLEL_ENABLE, PARAMETER, PARAMETERS, PARTITION, PASCAL, PIPE, PIPELINED,
PRAGMA, PRECISION, PRIVATE

R RAISE, RANGE, RAW, READ, RECORD, REF, REFERENCE, REM, REMAINDER, RENAME, RESULT,
RETURN, RETURNING, REVERSE, ROLLBACK, ROW

S SAMPLE, SAVE, SAVEPOINT, SB1, SB2, SB4, SECOND, SEGMENT, SELF, SEPARATE, SEQUENCE,
SERIALIZABLE, SET, SHORT, SIZE_T, SOME, SPARSE, SQLCODE, SQLDATA, SQLNAME, SQLSTATE,
STANDARD, STATIC, STDDEV, STORED, STRING, STRUCT, STYLE, SUBMULTISET, SUBPARTITION,
SUBSTITUTABLE, SUBTYPE, SUM, SYNONYM

T TDO, THE, TIME, TIMESTAMP, TIMEZONE_ABBR, TIMEZONE_HOUR, TIMEZONE_MINUTE,
TIMEZONE_REGION, TRAILING, TRANSAC, TRANSACTIONAL, TRUSTED, TYPE

U UB1, UB2, UB4, UNDER, UNSIGNED, UNTRUSTED, USE, USING

V VALIST, VALUE, VARIABLE, VARIANCE, VARRAY, VARYING, VOID

W WHILE, WORK, WRAPPED, WRITE

Y YEAR

Z ZONE

PL/SQL Reserved Words

B-4 Oracle Database Express Edition 2 Day Developer Guide

Using a PL/SQL Procedure With PHP C-1

C
Using a PL/SQL Procedure With PHP

This section provides an example of the use of a PL/SQL stored procedure with PHP.

This section does not provide detailed information about PHP or its use with Oracle
Database Express Edition. For a brief summary of PHP and links to resources for PHP,
see "PHP" on page 1-9.

This section contains the following topics:

■ PHP and Oracle Database XE on page C-1

■ Creating a PHP Program That Calls a PL/SQL Stored Procedure on page C-1

PHP and Oracle Database XE
PHP is a widely-used, open-source, interpretive, HTML-centric, server-side scripting
language. PHP is especially suited for Web development and can be embedded into
HTML pages. Zend Core for Oracle, developed in partnership with Zend
Technologies, enables application development using PHP with Oracle Database XE.

To run the PHP program in Example C–1 on page C-2, you need to have Oracle
Database XE, Apache 1.3.x or later, and Zend Core for Oracle installed on your
computer.

Creating a PHP Program That Calls a PL/SQL Stored Procedure
Example C–1 shows the PHP code that searches for and displays employee
information based on the first and last name of an employee. The PHP program first
gathers user input for the first and last name of an employee. The text input can be the
full names or substrings of the first and last names of the employee. With valid input,
a connection is made to Oracle Database XE, the get_emp_info procedure is called to
search for the employee records that match the input strings, and then the results are
displayed.

See Also:

■ Oracle Database Express Edition 2 Day Plus PHP Developer Guide for
information about application development using Zend Core for
Oracle and Oracle Database XE

■ PHP Development Center at

http://www.oracle.com/technology/tech/php/index.html

■ Zend Core for Oracle at

http://www.oracle.com/technology/tech/php/zendcore/ind
ex.html

Creating a PHP Program That Calls a PL/SQL Stored Procedure

C-2 Oracle Database Express Edition 2 Day Developer Guide

The PL/SQL get_emp_info procedure is created in Example 5–15 on page 5-22 and
it determines the result set for the cursor variable (REF CURSOR) that is passed to the
PHP program. The package specification in Example 5–13 on page 5-21 defines the
cursor variable (my_refcur_typ) that is declared in the get_emp_info procedure.
A cursor variable can be passed as a parameter to other packages, procedures, and
functions. For information about cursor variables (REF CURSORs) see "Cursor Variables
(REF CURSORs)" on page 4-22. For information about using types in package
specifications, see "Accessing Types in Packages" on page 5-21.

The PHP program in Example C–1 is intended only to be an illustration of the use of a
PL/SQL stored procedure with PHP. It does not include error checking or many other
PHP features.

Save the PHP program in Example C–1 as emp_search.php. Before running the PHP
program in Example C–1, the PL/SQL get_emp_info procedure in Example 5–15 on
page 5-22 must be created by the HR user.

Example C–1 Creating a PHP Program for Use With a PL/SQL Procedure

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
 <title>Search for Employee Information</title>
</head>
<body bgcolor="#EEEEEE">
<h2>Employee Search by First and Last Names</h2>

<?php

function get_input($first = "", $last = "")
{
 echo <<<END
 <form action="emp_search.php" method="post">
 First Name:
 <input type="text" name="first" value="$first">

 Last Name:
 <input type="text" name="last" value="$last">
 <p>
 <input type="submit">
 </form>
END;
}

if(!isset($_REQUEST['first'])) {
 echo "Enter text in both the first and last name fields.

 You can enter the complete name or an initial substring.<p>";
 get_input();
}
else {
 // check whether the input fields are empty before continuing
 if (empty($_REQUEST['first']) or empty($_REQUEST['last'])) {
 echo "You did not enter text in both
 fields, please re-enter the information.<p>";
 get_input($_REQUEST['first'], $_REQUEST['last']);
 }
 else {
 // if text has been entered in both input fields, then

Creating a PHP Program That Calls a PL/SQL Stored Procedure

Using a PL/SQL Procedure With PHP C-3

 // create a database connection to Oracle XE using
 // password hr for user HR with a local connection to the XE database
 $conn = oci_connect('hr', 'hr', '//localhost/XE');

 // execute the function that calls the PL/SQL stored procedure
 $emp = get_employees($conn, $_REQUEST['first'], $_REQUEST['last']);

 // display results
 print_results($emp, 'Employee Information');

 // close the database connection
 oci_close($conn);
 }
}

// this functions calls a PL/SQL procedure that uses a ref cursor to fetch records
function get_employees($conn, $firstname, $lastname)
{
 // execute the call to the stored PL/SQL procedure
 $sql = "BEGIN get_emp_info(:firstname, :lastname, :refcur); END;";
 $stmt = oci_parse($conn, $sql);

 // bind the first and last name variables
 oci_bind_by_name($stmt, ':firstname', $firstname, 20);
 oci_bind_by_name($stmt, ':lastname', $lastname, 25);

 // bind the ref cursor
 $refcur = oci_new_cursor($conn);
 oci_bind_by_name($stmt, ':REFCUR', $refcur, -1, OCI_B_CURSOR);

 // execute the statement
 oci_execute($stmt);

 // treat the ref cursor as a statement resource
 oci_execute($refcur, OCI_DEFAULT);
 oci_fetch_all($refcur, $employeerecords, null, null, OCI_FETCHSTATEMENT_BY_ROW);

 // return the results
 return ($employeerecords);
}

// this function prints information in the returned records
function print_results($returned_records, $report_title)
{
 echo '<h3>'.htmlentities($report_title).'</h3>';
 if (!$returned_records) {
 echo '<p>No Records Found</p>';
 }
 else {
 echo '<table border="1">';
 // print one row for each record retrieved
 // put the fields of each record in separate table cells
 foreach ($returned_records as $row) {
 echo '<tr>';
 foreach ($row as $field) {
 print '<td>'.
 ($field ? htmlentities($field) : ' ').'</td>';
 }
 }
 echo '</table>';

Creating a PHP Program That Calls a PL/SQL Stored Procedure

C-4 Oracle Database Express Edition 2 Day Developer Guide

 }
}

?>

</body>
</html>

After you save the PHP program (emp_search.php) and access the file in a Web
browser, you are prompted to enter a first and last name. After you enter text for the
first and last name, click the Submit Query button.

If you have entered text in both the first and last name fields, the employees table is
searched and the results are displayed using the first version of the get_emp_info
procedure shown in Example 5–15 on page 5-22.

After you have updated the get_emp_info procedure shown in Example 5–15 on
page 5-22, you can run the PHP emp_search.php program again and check the
results. If you have entered text in both the first and last name fields, the employees
table is searched and the results are displayed using the updated procedure.

Using a PL/SQL Procedure With JDBC D-1

D
Using a PL/SQL Procedure With JDBC

This section provides an example of the use of a PL/SQL stored procedure with JDBC.

This section does not provide detailed information about Java and JDBC, or their use
with Oracle Database Express Edition. For a brief summary of JDBC and links to
resources for JDBC, see "Oracle Java Database Connectivity (JDBC)" on page 1-8.

This section contains the following topics:

■ JDBC and Oracle Database XE on page D-1

■ Creating a Java Program That Calls a PL/SQL Procedure on page D-1

JDBC and Oracle Database XE
Oracle Java Database Connectivity (JDBC) is an API that enables Java to send SQL
statements to an object-relational database such as Oracle Database XE.

To run the Java program in Example D–1 on page D-2, you need to have Oracle
Database XE and the full Java 2 Software Development Kit, Standard Edition (J2SE
SDK), installed on your computer. Note that the Oracle Database XE Client is included
in Oracle Database Express Edition.

Creating a Java Program That Calls a PL/SQL Procedure
Example D–1 shows the Java code that searches for and displays employee
information based on the first and last names of an employee. The Java program
accepts user input for the first and last names from command line arguments. The
arguments can be the full names or substrings of the first and last names of the
employee. When the program is executed, a connection is made to Oracle Database

See Also:

■ Oracle Database Express Edition 2 Day Plus Java Developer Guide for
information about using Java to access and modify data in Oracle
Database XE

■ Information about the JDBC API at

http://java.sun.com/products/jdbc/index.jsp

■ Information about the Oracle JDBC Drivers at

http://www.oracle.com/technology/tech/java/sqlj_
jdbc/index.html

■ Information about installing Java at

http://java.sun.com/j2se/index.jsp

Creating a Java Program That Calls a PL/SQL Procedure

D-2 Oracle Database Express Edition 2 Day Developer Guide

XE, the get_emp_info procedure is called to search for the employee records that
match the input strings, and then the results are displayed.

The PL/SQL get_emp_info procedure is created in Example 5–15 on page 5-22. The
procedure determines the result set for the cursor variable (REF CURSOR) that is
passed to the Java program. The package specification in Example 5–13 on page 5-21
defines the cursor variable (my_refcur_typ) that is declared in the get_emp_info
procedure. A cursor variable can be passed as a parameter to other packages,
procedures, and functions. For information about cursor variables (REF CURSORs) see
"Cursor Variables (REF CURSORs)" on page 4-22. For information about using types in
package specifications, see "Accessing Types in Packages" on page 5-21.

The Java program in Example D–1 is intended only to be an illustration of the use of a
PL/SQL stored procedure with JDBC. It does not include error checking or many other
Java features.

Save the Java program in Example D–1 as EmpSearch.java. Before running the Java
program in Example D–1, the PL/SQL get_emp_info procedure in Example 5–15 on
page 5-22 must be created by the HR user.

Example D–1 Creating a Java Program for Use With a PL/SQL Procedure

import java.sql.*;
import oracle.jdbc.pool.OracleDataSource;
import oracle.jdbc.*;

public class EmpSearch
{

 public static void main (String args[]) throws SQLException
 {
 // check whether there are two command-line arguments before proceeding
 if (args.length < 2)
 {
 System.out.println("Enter both a first and last name as command-line arguments.");
 System.out.println("You can enter a complete name or an initial substring.");
 System.out.println("For example: java EmpSearch j doe");
 }
 else
 {
 // connect to a local XE database as user HR
 OracleDataSource ods = new OracleDataSource();
 ods.setURL("jdbc:oracle:thin:hr/hr@localhost:1521/XE");
 Connection conn = ods.getConnection();

 // call the PL/SQL procedures with the three parameters
 // the first two string parameters (1 and 2) are passed to the procedure
 // as command-line arguments
 // the REF CURSOR parameter (3) is returned from the procedure
 String jobquery = "begin get_emp_info(?, ?, ?); end;";
 CallableStatement callStmt = conn.prepareCall(jobquery);
 callStmt.registerOutParameter(3, OracleTypes.CURSOR);
 callStmt.setString(1, args[0]);
 callStmt.setString(2, args[1]);
 callStmt.execute();

 // return the result set
 ResultSet rset = (ResultSet)callStmt.getObject(3);

 // determine the number of columns in each row of the result set

Creating a Java Program That Calls a PL/SQL Procedure

Using a PL/SQL Procedure With JDBC D-3

 ResultSetMetaData rsetMeta = rset.getMetaData();
 int count = rsetMeta.getColumnCount();

 // print the results, all the columns in each row
 while (rset.next()) {
 String rsetRow = "";
 for (int i=1; i<=count; i++){
 rsetRow = rsetRow + " " + rset.getString(i);
 }
 System.out.println(rsetRow);
 }

 }
 }
}

Before you attempt to compile the Java program, make sure the CLASSPATH has been
set. For example, on a Windows computer you could use the following value for
CLASSPATH, if Oracle Database XE is installed in the default location.

.;C:\oraclexe\app\oracle\product\10.2.0\server\jdbc\lib\ojdbc14.jar;C:\oraclexe\app\oracle\
product\10.2.0\server\jlib\orai18n.jar;

Compile the EmpSearch.java Java program. For example, on a Windows computer
you could use one of the following examples, depending on whether the path to
javac has been set.

javac EmpSearch.java
c:\j2sdk1.4.2_04\bin\javac EmpSearch.java

Run the program with valid command-line arguments. For example, on a Windows
computer you could use one of the following examples, depending on whether the
path to java has been set. With the d and gr command-line arguments, the PL/SQL
procedure searches for employees whose first name starts with d and last name starts
with gr.

java EmpSearch d gr
c:\j2sdk1.4.2_04\bin\java EmpSearch d gr

Creating a Java Program That Calls a PL/SQL Procedure

D-4 Oracle Database Express Edition 2 Day Developer Guide

Index-1

Index

Symbols
:= assignment operator, 4-8

A
ACCESS_INTO_NULL exception, 4-29
ADD_MONTHS function, 3-15
adding data to a table with Object Browser, 2-24
AFTER triggers

correlation names and, 6-4
specifying, 6-3

aggregate functions
AVG, 3-17
COUNT, 3-17
DENSE_RANK, 3-17
MAX, 3-17
MIN, 3-17
PERCENT_RANK, 3-17
RANK, 3-17
STDDEV, 3-17
SUM, 3-17
with ALL clause, 3-17
with DISTINCT clause, 3-17
with GROUP BY clause, 3-17
with HAVING clause, 3-17

aliases
tables, 3-10

ALL clause, 3-17
ALTER INDEX statement, 3-25
ALTER TABLE statement, 3-24, 3-25

DISABLE ALL TRIGGERS clause, 6-17
ENABLE ALL TRIGGERS clause, 6-17

ALTER TRIGGER statement
DISABLE clause, 6-16
ENABLE clause, 6-17

anonymous PL/SQL blocks, 4-1
apostrophes, 4-9
Application Builder

calling procedures and functions, 5-11
Oracle Application Express tool, 1-8

application development
basic concepts, 1-3

arrays
PL/SQL, 4-25

assignment operator, 4-8

assignments
IN OUT parameters, 4-18

attributes
%ROWTYPE, 4-12
%TYPE, 4-12
cursors, 4-23

AVG
aggregate function, 3-17

B
BEFORE triggers

correlation names and, 6-4
specifying, 6-3

BEGIN
block structure, 4-4

BFILE datatypes, 2-12
BINARY_DOUBLE

datatypes, 2-10
BINARY_FLOAT

datatypes, 2-10
bind variables

PL/SQL, 4-27
with SQL Commands page, 3-12

BLOB datatypes, 2-12
blocks

anonymous, 4-1
BEGIN, 4-4
DECLARE, 4-4
END, 4-4
EXCEPTION, 4-4
structure, 4-4

Boolean
literals, 4-10

browser-based user interface
development tool, 1-4

C
calendars

parameter, 7-11
calling

stored subprograms, 5-11
subprograms in packages, 5-20

calls
functions, 5-11

Index-2

procedures, 5-11
subprograms, 5-11

CASE expressions
overview, 4-14

CASE function, 3-19
case sensitivity

identifier, 4-7
string literal, 4-9

CASE_NOT_FOUND exception, 4-29
century

date format models, 3-17
character data

storing, 2-7
character literals, 4-9

quoting, 3-7
using in SQL statements, 3-7

character sets
national, 7-20, 7-21

check constraints, 2-14
how to use, 2-15

CLOB datatypes, 2-12
COLLECTION_IS_NULL exception, 4-29
collections

PL/SQL, 4-25
column alias

using with SELECT, 3-6
column constraints, 2-13

NOT NULL, 2-14
columns

accessing in triggers, 6-4
adding to a table with Object Browser, 2-18
constraints, 2-13
datatypes, 2-7
dropping from a table with Object Browser, 2-19
listing in an UPDATE trigger, 6-5
modifying in a table with Object Browser, 2-18
unique key, 2-15

comments
in PL/SQL, 4-6

COMMIT statement, 3-21, 3-22
comparison operators

BETWEEN, 3-6
equality, 3-6
IN, 3-6
LIKE, 3-6
NULL, 3-6

composite keys
foreign, 2-16

conditional predicates
trigger bodies, 6-5

CONSTANT
for declaring constants, 4-6

constants
declaring, 4-6
declaring in PL/SQL, 4-6

constraints
adding to a table with Object Browser, 2-19, 2-20
altering with SQL, 3-24
check, 2-14
column, 2-13

creating with SQL, 3-24
dropping with Object Browser, 2-24
ensuring data integrity, 2-13
indexes for use with, 2-28
modifying with Object Browser, 2-23
NOT NULL, 4-11
table, 2-14
table-level, 2-14
viewing with Object Browser, 2-23

control structures
PL/SQL, 4-13

correlation names, 6-4
NEW, 6-4
OLD, 6-4
when preceded by a colon, 6-5

COUNT
aggregate function, 3-17

countries table
HR user, 2-4

CREATE
with PROCEDURE statement, 5-3, 5-7

CREATE FUNCTION statement, 5-3, 5-10
CREATE INDEX statement, 3-25
CREATE PACKAGE BODY statement, 5-13, 5-16
CREATE PACKAGE statement, 5-13, 5-16
CREATE PROCEDURE statement, 5-3, 5-7
CREATE SEQUENCE statement, 3-26
CREATE SYNONYM statement, 3-27
CREATE TABLE statement, 3-23, 3-26
CREATE TRIGGER statement, 6-1
creating

functions, 5-3, 5-10
packages, 5-13, 5-16
procedures, 5-3, 5-7

creating a constraint
using SQL statement, 3-24

creating a table
using SQL statement, 3-23, 3-26
with Object Browser, 2-16

creating an index
SQL statement, 3-25

creating indexes with Object Browser, 2-29
currencies

formats, 7-14
CURSOR_ALREADY_OPEN exception, 4-29
cursors

attributes, 4-23
definition, 4-19
explicit, 4-19
FOUND attribute, 4-23
implicit, 4-19
ISOPEN attribute, 4-23
NOT, 4-23
REF CURSOR, 4-22, 5-21
ROWCOUNT attribute, 4-23
variables, 4-22

D
data definition language (DDL)

Index-3

SQL statements, 3-22
data integrity rules

as table-level constraints, 2-14
data manipulation language

described, 3-20
data structures

PL/SQL, 4-24
database home page

available tools, 1-4
logging in, 1-4

database objects
displaying, 2-2
managing, 2-1
naming, 2-2

database resident program units, 5-1
database triggers, 6-1
datatypes

BINARY_DOUBLE, 2-10
BINARY_FLOAT, 2-10
CHAR, 2-7
character, 2-7
floating-point number, 2-10
in table columns, 2-7
introduction, 1-3
large objects, 2-12
LOBs, 2-12
NCHAR, 2-7
NUMBER, 2-9
numeric, 2-9
NVARCHAR2, 2-7
overview, 2-7
VARCHAR2, 2-7

date and time data
storing, 2-10

date and time parameters, 7-8
DATE datatype, 2-11
date formats, 7-8
dates

ISO standard, 7-11
NLS_DATE_LANGUAGE parameter, 7-9

datetime
literals, 4-10

days
format element, 7-10

DBMS_OUTPUT package
displaying output, 4-5
displaying output from PL/SQL, 5-27
procedures for displaying output in PL/SQL, 4-5
using PUT_LINE to display output, 4-11

DBMS_RANDOM package, 5-27
declarations

constants, 4-6
exceptions in PL/SQL, 4-30
PL/SQL %ROWTYPE and %TYPE, 4-12
PL/SQL subprograms, 4-17
using NOT NULL constraint, 4-11

declarative part
of PL/SQL block, 4-4

DECLARE
block structure, 4-4

DECODE function, 3-19
DELETE statement, 3-20, 3-21

column values and triggers, 6-4
DENSE_RANK

aggregate function, 3-17
departments table

HR user, 2-3
dependencies

in stored triggers, 6-18
schema objects

trigger management, 6-6
DESCRIBE command

SQL Command Line, A-3
design considerations

Oracle Database Express Edition, 2-1
detail pane

Object Browser, 2-2
developing applications

overview with Oracle Database Express
Edition, 1-1

disabled trigger
definition, 6-5

disabling
triggers, 6-5, 6-16

displaying a table, 2-2
displaying database objects, 2-2
displaying output

from PL/SQL, 4-11
setting SERVEROUTPUT, 4-5, 5-27
using DBMS_OUTPUT.PUT_LINE, 4-11

displaying PL/SQL output
with DBMS_OUTPUT, 4-5

DISTINCT clause, 3-17
distributed databases

triggers and, 6-6
dot notation, 4-12
DROP INDEX statement, 3-25
DROP SEQUENCE statement, 3-26
DROP SYNONYM statement, 3-27
DROP TABLE statement, 3-25
DROP TRIGGER statement, 6-16
dropping

indexes, 2-29
triggers, 6-16

dropping a sequence
using SQL statement, 3-26

dropping a synonym
using SQL statement, 3-27

dropping a table
using SQL statement, 3-25

dropping a table with Object Browser, 2-26
DUAL

dummy table, 3-13
dummy table

DUAL, 3-13
DUP_VAL_ON_INDEX exception, 4-29
dynamic SQL, 4-27

Index-4

E
emp_details_view view

HR user, 2-5
employees table

HR user, 2-3
enabled trigger

definition, 6-5
enabling

triggers, 6-5, 6-17
END

block structure, 4-4
ensuring data integrity

with constraints, 2-13
error handling

PL/SQL, 4-28
EXCEPTION

block structure, 4-4
exception handlers

PL/SQL, 4-28
exception-handling part

of PL/SQL block, 4-4
exceptions

advantages of PL/SQL, 4-30
declaring in PL/SQL, 4-30
during trigger execution, 6-5
list of predefined in PL/SQL, 4-29
predefined in PL/SQL, 4-29
scope rules in PL/SQL, 4-31

executable part
of PL/SQL block, 4-4

EXIT-WHEN statement
overview, 4-16

EXTRACT function, 3-15

F
FALSE value, 4-10
file I/O, 5-30
floating-point number

datatypes, 2-10
floating-point numbers, 2-9
FOR EACH ROW clause, 6-3
foreign key

adding with Object Browser, 2-22
referential integrity between tables, 2-16

format elements
day, 7-10
month, 7-10

format models, 7-13
C number, 7-15

formats
currency, 7-14
date, 7-8
numeric, 7-12
time, 7-10

FOUND
cursor attribute, 4-23

functions, 4-2
calling, 5-11
calling from Application Builder, 5-11

creating, 5-3, 5-10
execute, 5-2
local, 4-17
NULL value, 3-18
overview, 5-1
SQL aggregate, 3-17
SQL arithmetic operators, 3-13
SQL character, 3-14
SQL conditional, 3-19
SQL conversion, 3-16
SQL date, 3-15
SQL group, 3-17
SQL numeric, 3-14
stored functions, 4-2

G
globalization support

altering NLS parameter settings, 7-4
calendar definitions, 7-11
date and time parameter settings, 7-8
default values for NLS parameters in SQL

functions, 7-23
features, 7-2
language and territory parameter settings, 7-5
linguistic sorting and searching, 7-15
locale, 7-4
monetary parameter settings, 7-14
National Language Support (NLS) features, 7-1
NLS_LANG parameter setting, 7-4
numeric and list parameter settings, 7-12
overview, 7-1
programming with unicode, 7-19
setting up the environment, 7-3
specifying values for NLS parameters in SQL

functions, 7-23
unacceptable NLS parameters in SQL

functions, 7-25
GOTO statement

overview, 4-17
GROUP BY clause, 3-17

H
HAVING clause, 3-17
HELP command

SQL Command Line, A-2
HR

described, 1-5
sample schema, 1-5
user account, 1-5

HR user
countries table, 2-4
departments table, 2-3
emp_details_view view, 2-5
employees table, 2-3
job_history table, 2-4
jobs table, 2-4
locations table, 2-4
locked account, 1-4

Index-5

logging in, 1-4, 2-2
regions table, 2-4

HTP package, 5-28

I
identifiers

maximum length, 4-8
IF-THEN-ELSE statement

overview, 4-13
indexes

altering with SQL, 3-25
ascending, 2-27
column, 2-27
concatenated, 2-27
creating with Object Browser, 2-29
creating with SQL, 3-25
descending, 2-27
displaying with Object Browser, 2-30
drop if not required, 2-29
dropping, 2-29
dropping with Object Browser, 2-31
for use with constraints, 2-28
function-based, 2-27
guidelines, 2-28
limit the number, 2-29
managing with Object Browser, 2-26
normal type, 2-27
single column, 2-27
text type, 2-27
types, 2-27

INITCAP function, 3-14
initialization

using DEFAULT, 4-11
inner joins, 3-10
INSERT statement, 3-20

column values and triggers, 6-4
INSTEAD OF triggers, 6-4, 6-12
integrity constraints

CHECK, 2-15
triggers vs., 6-6

INTERVAL DAY TO SECOND datatype, 2-11
INTERVAL YEAR TO MONTH datatype, 2-11
introduction

OCCI, 1-6
OCI, 1-6
Open Database Connectivity (ODBC), 1-6
Oracle Application Express, 1-8
Oracle Data Provider for .NET, 1-7
Oracle Database Express Edition, 1-2
Oracle Database Extensions for .NET, 1-7
Oracle Developer Tools for Visual Studio, 1-8
Oracle JDBC, 1-8, D-1
Oracle Provider for OLE DB, 1-7
PHP, 1-9
PL/SQL, 1-3
SQL, 1-2

INVALID_CURSOR exception, 4-29
INVALID_NUMBER exception, 4-29
ISO standard date format, 7-11

ISOPEN
cursor attribute, 4-23

J
Java

calling procedures and functions, 5-11
JDBC

introduction, 1-8, D-1
using with PL/SQL, D-1

job_history table
HR user, 2-4

jobs table
HR user, 2-4

joins
displaying data from multiple tables with

SELECT, 3-10
inner, 3-10
outer, 3-10
self, 3-11

K
keywords

in PL/SQL, B-2
list of PL/SQL, B-2
use in PL/SQL, 4-8

L
language support, 7-2
large object datatypes, 2-12
LAST_DAY function, 3-15
LENGTH function, 3-14
length semantics, 7-18
linguistic sorts

parameters, 7-15
list parameter, 7-12
literals

Boolean, 4-10
character, 4-9
datetime, 4-10
numeric, 4-8
string, 4-9
types of PL/SQL, 4-8

LOB datatypes, 2-12
local subprograms, 5-2
locale

globalization support, 7-4
locations table

HR user, 2-4
logging into database home page, 1-4
LOGIN_DENIED exception, 4-29
LOOP statement

overview, 4-15
LOWER function, 3-14
LTRIM function, 3-14

M
managing database objects

Index-6

Object Browser, 2-2
overview, 2-1

managing indexes
with Object Browser, 2-26

managing tables
with Object Browser, 2-12

MAX
aggregate function, 3-17

maximum size
identifier, 4-8

MIN
aggregate function, 3-17

MOD function, 3-14
modifying a constraint

using SQL statement, 3-24
modifying a table

using SQL statement, 3-24, 3-25
modifying an index

SQL statement, 3-25
modifying data in a table with Object Browser, 2-25
modularity, 5-14
monetary parameters, 7-14
months

format element, 7-10
MONTHS_BETWEEN function, 3-15
multi-line comments, 4-6

N
national character literals

quoting, 3-8
national character set, 7-20
national character sets, 7-21
National Language Support (NLS)

features, 7-1
globalization support, 7-1

NCHAR datatype, 2-7, 7-20
NCHR SQL function, 7-21
NCLOB datatypes, 2-12
nested tables

PL/SQL, 4-25
NEW correlation name, 6-4
NLS parameters

default values in SQL functions, 7-23
settings, 7-4
specifying in SQL functions, 7-23
unacceptable in SQL functions, 7-25

NLS_CALENDAR parameter, 7-12
NLS_COMP parameter, 7-17
NLS_CURRENCY parameter, 7-14
NLS_DATE_FORMAT parameter, 7-8
NLS_DATE_LANGUAGE parameter, 7-9
NLS_DUAL_CURRENCY parameter, 7-15
NLS_INITCAP SQL function, 7-22
NLS_ISO_CURRENCY parameter, 7-15
NLS_LANG parameter, 7-4

choosing a locale, 7-4
NLS_LANGUAGE parameter, 7-6
NLS_LOWER SQL function, 7-22
NLS_NUMERIC_CHARACTERS parameter, 7-13

NLS_SORT parameter, 7-16
NLS_TERRITORY parameter, 7-7
NLS_TIMESTAMP_FORMAT parameter

parameters
NLS_TIMESTAMP_FORMAT, 7-10

NLS_UPPER SQL function, 7-22
NLSSORT SQL function, 7-22
NO_DATA_FOUND exception, 4-29
NOT NULL constraint

column constraint, 2-14
using in variable declaration, 4-11

NOT_LOGGED_ON exception, 4-29
notation

positional versus named, 5-11
NOTFOUND

cursor attribute, 4-23
NUMBER datatype, 2-9

integrity checking on input, 2-10
numeric datatypes, 2-9
numeric formats, 7-12
numeric literals, 4-8
numeric parameters, 7-12
NVARCHAR2 datatype, 2-7, 7-21
NVL function, 3-18
NVL2 function, 3-18

O
Object Browser

detail pane, 2-2
managing database objects, 2-2
object details, 2-2
object list, 2-2
object selection pane, 2-2

object details
Object Browser, 2-2

object list
Object Browser, 2-2

Object Reports
viewing database objects, 2-6

object selection pane
Object Browser, 2-2

OCCI
introduction, 1-6

OCI
introduction, 1-6

OLD correlation name, 6-4
Open Database Connectivity (ODBC)

introduction, 1-6
Oracle Application Express

Application Builder tool, 1-8
introduction, 1-8

Oracle Data Provider for .NET
introduction, 1-7

Oracle Database Express Edition
design considerations, 2-1
developing applications, 1-1
introduction, 1-2
language distributions, 7-2
with PHP, C-1

Index-7

Oracle Database Extensions for .NET
introduction, 1-7

Oracle Developer Tools for Visual Studio
introduction, 1-8

Oracle JDBC
introduction, 1-8, D-1

Oracle Provider for OLE DB
introduction, 1-7

ORDER BY clause
using with SELECT, 3-9

outer joins, 3-10
overview

datatypes, 2-7
developing applications with Oracle Database

Express Edition, 1-1
functions, 5-1
globalization support, 7-1
managing database objects, 2-1
packages, 5-1
PL/SQL, 4-1
procedures, 5-1
SQL, 3-1
SQL Command Line, A-1
subprograms, 5-1
triggers, 6-1

P
package

writing with PL/SQL, 5-14
packaged subprograms, 5-2
packages, 4-2

accessing types, 5-21
accessing variables, 5-20
body, 5-2
calling subprograms in, 5-20
creating, 5-13, 5-16
creating with Object Browser, 5-15
creating with SQL Commands, 5-14
dropping, 5-19
editing, 5-18
guidelines for writing, 5-14
hidden declarations, 5-2
overview, 5-1
overview of Oracle supplied, 5-23
product-specific, 5-23
specification, 5-2
stored packages, 4-2
types, 5-21
understanding, 5-2
using with JDBC, D-1
using with PHP, C-1
variables, 5-20
viewing with Object Browser, 5-16
visibility of contents, 5-2

parameters
calendar, 7-11
linguistic sorts, 7-15
monetary, 7-14
NLS_CALENDAR, 7-12

NLS_COMP, 7-17
NLS_CURRENCY, 7-14
NLS_DATE_FORMAT, 7-8
NLS_DATE_LANGUAGE, 7-9
NLS_DUAL_CURRENCY, 7-15
NLS_ISO_CURRENCY, 7-15
NLS_LANG, 7-4
NLS_LANGUAGE, 7-6
NLS_NUMERIC_CHARACTERS, 7-13
NLS_SORT, 7-16
NLS_TERRITORY, 7-7
numeric, 7-12
time and date, 7-8
time zone, 7-10

PERCENT_RANK
aggregate function, 3-17

PHP
calling procedures and functions, 5-11
introduction, 1-9
using with PL/SQL, C-1
with Oracle Database Express Edition, C-1

PL/SQL, 4-1
%ROWTYPE attribute, 4-12
%TYPE attribute, 4-12
anonymous blocks, 4-1
arrays, 4-25
assigning values with SELECT INTO, 4-11
assignment operator, 4-8
bind variables, 4-27
block structure, 4-4
collections, 4-25
comments, 4-6
control structures, 4-13
cursor, 4-19
data structures, 4-24
declarations using DEFAULT, 4-11
declarations using NOT NULL, 4-11
declaring constants, 4-6
declaring variables, 4-6
DEFAULT keyword for assignments, 4-11
displaying output, 4-11, 5-27
entering and executing code, 4-2
entering code in SQL Commands, 4-2
error handling, 4-28
exception handling, 4-28
identifiers, 4-7
input data, 4-5
introduction, 1-3
keywords, B-2
literals, 4-8
local functions, 4-17
local procedures, 4-17
local subprograms, 4-17
nested tables, 4-25
output data, 4-5
overview of, 4-1
program units, 4-1
programming with unicode, 7-19
records, 4-24
reserved words, B-2

Index-8

SELECT INTO, 4-11
stored functions, 4-2
stored packages, 4-2
stored procedures, 4-2
subprograms

calling, 5-11
trigger bodies, 6-4
triggers, 4-2
using dynamic SQL, 4-27
using features, 4-3
using with JDBC, D-1
using with PHP, C-1
variable assignments, 4-8
writing reusable code, 5-14

primary key
adding with Object Browser, 2-21
for a table, 2-15

PRIMARY KEY constraints
multiple columns in, 2-16
UNIQUE key constraint vs., 2-15

privileges
dropping triggers, 6-16
needed on triggers, 6-7
recompiling triggers, 6-18
triggers, 6-7

PROCEDURE
with CREATE statement, 5-3, 5-7

procedures, 4-2
called by triggers, 6-6
calling, 5-11
calling from Application Builder, 5-11
calling from Java, 5-11
calling from PHP, 5-11
creating, 5-3, 5-7
execute, 5-2
local, 4-17
overview, 5-1
stored procedures, 4-2
using with JDBC, D-1
using with PHP, C-1

program units, 4-1, 5-14
pseudocolumns

ROWNUM, 3-13
SYSDATE, 3-13
USER, 3-13
using in SQL statements, 3-13

PUT_LINE
displaying PL/SQL output with, 4-11

Q
queries

in DML, 3-20
quoting character literals, 3-7

R
raising exceptions

triggers, 6-5
RANK

aggregate function, 3-17
records

definition, 4-12
PL/SQL, 4-24

REF CURSOR
cursor variable, 4-22, 5-21
defined in package, 5-21
strong type, 4-22
SYS_REFCURSOR, 4-22
using strongly-typed, 5-22
using weakly-typed, 5-22
weak type, 4-22

REGEXP_INSTR
regular expression function, 3-8

REGEXP_LIKE
regular expression condition, 3-8

REGEXP_REPLACE
regular expression function, 3-8

REGEXP_SUBSTR
regular expression function, 3-8

regions table
HR user, 2-4

regular expressions
functions and conditions, 3-8
using with SELECT, 3-8
with REGEXP_INSTR, 3-8
with REGEXP_LIKE, 3-8
with REGEXP_REPLACE, 3-8
with REGEXP_SUBSTR, 3-8

removing a row in a table with Object Browser, 2-26
REPLACE function, 3-14
reserved words

list of PL/SQL, B-2
list of SQL, B-1
PL/SQL, B-2
SQL, 3-2
syntactic meaning in PL/SQL, 4-8

restrictions
system triggers, 6-7

ROLLBACK statement, 3-21, 3-22
ROUND function, 3-14
row triggers

defining, 6-3
timing, 6-3
UPDATE statements and, 6-5

ROWCOUNT
cursor attributes, 4-23

ROWNUM
pseudocolumn, 3-13

ROWTYPE attribute
declaring, 4-12

ROWTYPE_MISMATCH exception, 4-30
RPAD function, 3-14
RTRIM function, 3-14

S
schema objects

accessing, 2-1
description, 2-1

Index-9

tables, 2-12
schemas

description, 2-1
scientific notation, 4-8
scope

exceptions in PL/SQL, 4-31
Script Editor

executing SQL statements, 3-3
SELECT INTO

PL/SQL, 4-11
returning more than one row error, 4-30
TOO_MANY_ROWS exception, 4-30

SELECT statements, 3-5
self-joins, 3-11
sequences

creating with Object Browser, 2-34
creating with SQL, 3-26
description, 2-34
displaying with Object Browser, 2-35
dropping with Object Browser, 2-35
dropping with SQL, 3-26
managing with Object Browser, 2-34
using in SQL statements, 3-26

SERVEROUTPUT
displaying output from PL/SQL, 4-5
setting ON to display output, 5-27

SET command
for SQL Command Line settings, A-4

single-line comments, 4-6
sorting

specifying nondefault linguistic sorts, 7-16, 7-17
source types

description, 5-1
managing, 5-1

SPOOL command
SQL Command Line, A-4

SQL, 1-2
aggregate functions, 3-17
arithmetic operators, 3-13
character functions, 3-14
character literals in statements, 3-7
column alias, 3-6
committing changes with COMMIT, 3-22
comparison operators, 3-6
conditional functions, 3-19
conversion functions, 3-16
creating a constraint, 3-24
creating a table, 3-23, 3-26
creating an index, 3-25
data definition language (DDL), 3-22
data manipulation language (DML), 3-20
date functions, 3-15
deleting rows in a table with DELETE, 3-21
displaying data from multiple tables, 3-10
dropping a sequence, 3-26
dropping a synonym, 3-27
dropping a table, 3-25
dynamic, 4-27
executing statements, 3-2
executing statements in Script Editor, 3-3

executing statements in SQL Commands, 3-2
functions, 3-12
group functions, 3-17
inserting rows in a table with INSERT, 3-20
introduction of, 1-2
joining tables in SELECT, 3-10
modifying a constraint, 3-24
modifying a table, 3-24, 3-25
modifying an index, 3-25
NULL Value functions, 3-18
numeric functions, 3-14
ORDER BY clause in SELECT, 3-9
overview of, 3-1
PL/SQL and, 4-1
programming with unicode, 7-19
pseudocolumns, 3-12, 3-13
querying data, 3-5
regular expression conditions, 3-8
regular expression functions, 3-8
regular expressions in SELECT, 3-8
reserved words, 3-2, B-1
retrieving data from tables, 3-5
SELECT statement, 3-5
sequences, 3-12, 3-26
statement types, 3-2
transaction control statements, 3-21
types of statements, 3-2
undoing changes with ROLLBACK, 3-22
updating data in a table with UPDATE, 3-20
using with Oracle Database Express Edition, 3-1
WHERE clause in SELECT, 3-6

SQL Command Line
defining a variable, A-6
DESCRIBE command, A-3
displaying help, A-2
entering commands and statements, A-3
executing commands and statements, A-3
exiting, A-2
HELP command, A-2
overview, A-1
prompting for a variable, A-5
reusing a variable value, A-5
running SQL scripts, A-4
SET command, A-4
settings, A-4
SPOOL command, A-4
spooling output, A-4
SQL*Plus, A-1
starting from the operating system command

prompt, A-2
using variables, A-5

SQL Commands
executing SQL statements, 3-2

SQL Commands page
bind variables, 3-12

SQL functions
default values for NLS parameters, 7-23
NCHR, 7-21
NLS_INITCAP, 7-22
NLS_LOWER, 7-22

Index-10

NLS_UPPER, 7-22
NLSSORT, 7-22
specifying NLS parameters, 7-23
TO_CHAR, 7-22
TO_DATE, 7-22
TO_NUMBER, 7-22
unacceptable NLS parameters, 7-25
UNISTR, 7-21

SQL statements
categories, 3-2
in trigger bodies, 6-4, 6-6
not allowed in triggers, 6-6

standalone subprograms, 5-2
execute, 5-2

statement triggers
conditional code for statements, 6-5
specifying SQL statement, 6-2
timing, 6-3
UPDATE statements and, 6-5
valid SQL statements, 6-6

STDDEV
aggregate function, 3-17

stored functions, 4-2
stored packages, 4-2
stored procedures, 4-2
stored subprograms, 5-2

in Oracle database, 5-2
storing, 2-9
string literals, 4-9

Unicode, 7-21
Structured Query Language (SQL), 1-2, 3-1
subprograms

calling in packages, 5-20
calling with parameters, 5-11
CREATE FUNCTION, 5-10
CREATE PROCEDURE, 5-7
creating with Object Browser, 5-5
creating with SQL Commands, 5-4
declaring PL/SQL, 4-17
dropping, 5-13
editing, 5-12
functions, 5-2
local, 5-2
mixed notation parameters, 5-11
named parameters, 5-11
overview, 5-1
packaged, 5-2
positional parameters, 5-11
procedures, 5-2
standalone, 5-2
stored, 5-2
viewing with Object Browser, 5-6

SUBSCRIPT_BEYOND_COUNT exception, 4-30
SUBSCRIPT_OUTSIDE_LIMIT exception, 4-30
SUBSTR function, 3-14
SUM

aggregate function, 3-17
synonyms

creating with Object Browser, 2-36
creating with SQL, 3-27

description, 2-35
displaying with Object Browser, 2-36
dropping with Object Browser, 2-36
dropping with SQL, 3-27
managing with Object Browser, 2-35

SYS_REFCURSOR
predefined REF CURSOR, 4-22

SYSDATE
pseudocolumn, 3-13

SYSTIMESTAMP function, 3-15

T
table-level constraints, 2-14
tables

adding a column with Object Browser, 2-18
adding a column with SQL, 3-24
adding a foreign key with Object Browser, 2-22
adding a new constraint with Object

Browser, 2-19, 2-20
adding a primary key with Object Browser, 2-21
adding data with Object Browser, 2-24
aliases, 3-10
altering with SQL, 3-24
constraints, 2-14
creating with Object Browser, 2-16
creating with SQL, 3-23
displaying, 2-2
dropping a column with Object Browser, 2-19
dropping with Object Browser, 2-26
dropping with SQL, 3-25
managing with Object Browser, 2-12
modifying a column with Object Browser, 2-18
modifying data with Object Browser, 2-25
primary key, 2-15
removing a row with Object Browser, 2-26
renaming with SQL, 3-25
viewing data, 2-5

territory definition, 7-7
territory support, 7-2
time and date data

storing, 2-10
time and date parameters, 7-8
time zone

parameters, 7-10
TIMESTAMP datatype, 2-11
TIMESTAMP WITH LOCAL TIME ZONE

datatype, 2-11
TIMESTAMP WITH TIME ZONE datatype, 2-11
TO_CHAR SQL function, 3-16, 7-22

default date format, 7-8
group separator, 7-13
language for dates, 7-9
spelling of days and months, 7-9

TO_DATE SQL function, 3-16, 7-22
default date format, 7-8
language for dates, 7-9
spelling of days and months, 7-9

TO_NUMBER SQL function, 3-16, 7-22
TOO_MANY_ROWS exception, 4-30

Index-11

transaction control statements, 3-21
transactions

transaction control statements, 3-21
trigger

disabled
definition, 6-5

enabled
definition, 6-5

update_job_history, 6-11
triggers

accessing column values, 6-4
AFTER, 6-3, 6-4
AFTER option, 6-3
as a stored PL/SQL subprogram, 6-1
BEFORE, 6-3, 6-4
BEFORE option, 6-3
body, 6-6
column list in UPDATE, 6-5
compiled, 6-17
compiling, 6-17
conditional predicates, 6-5
controlling when fired, 6-3
correlation names, 6-4
creating, 6-1, 6-6
creating LOGON and LOGOFF, 6-15
creating with AFTER and FOR EACH ROW, 6-11
creating with an exception handler, 6-13
creating with BEFORE and WHEN, 6-12
creating with Object Browser, 6-9
creating with SQL Commands, 6-8
dependencies, 6-18
designing, 6-5
detecting the operation that fired a trigger, 6-5
disabling, 6-5, 6-16
dropping, 6-16
enabling, 6-5, 6-17
error conditions and exceptions, 6-5
errors, 6-5, 6-17
events, 6-2
exceptions, 6-5
fired multiple times with BEFORE option, 6-3
firing once for each update, 6-14
FOR EACH ROW clause, 6-3
FOR EACH ROW option, 6-3
guidelines for design, 6-6
illegal SQL statements, 6-6
INSTEAD OF, 6-4, 6-12
integrity constraints vs., 6-6
managing, 6-7
modifying, 6-16
modifying views, 6-4, 6-12
naming, 6-2
NEW column value, 6-4
OLD column value, 6-4
overview, 6-1
privileges, 6-7

to drop, 6-16
privileges needed, 6-7
procedures and, 6-6
recompiling, 6-18

remote dependencies and, 6-6
restrictions, 6-4, 6-6
row, 6-3
stored, 6-17
triggering statement, 6-2
types, 6-2
viewing with Object Browser, 6-10
WHEN clause, 6-4
when fired, 6-2

TRIM function, 3-14
TRUE value, 4-10
TRUNC function, 3-14
TYPE attribute

declaring, 4-12
types

accessing in packages, 5-21

U
Unicode

programming, 7-3
programming with SQL and PL/SQL, 7-19
string literals, 7-21

unique key
on a column, 2-15

UNIQUE key constraints
PRIMARY KEY constraint vs., 2-15

UNISTR SQL function, 7-21
UPDATE statement, 3-20

column values and triggers, 6-4
triggers and, 6-5

update_job_history trigger, 6-11
UPPER function, 3-14
USER

pseudocolumn, 3-13
UTL_FILE package, 5-30

V
V$RESERVED_WORDS view

listing of reserved words and keywords, B-1
VALUE_ERROR exception, 4-30
VARCHAR2 datatype, 2-7
variables

accessing in packages, 5-20
bind, 4-27
cursor, 4-22
declaring in PL/SQL, 4-6
passing as IN OUT parameter, 4-18
using with SQL Command Line, A-5

viewing table data, 2-5
views

creating, 2-32
creating with SQL, 3-26
description, 2-31
displaying with Object Browser, 2-33
dropping with Object Browser, 2-33
dropping with SQL, 3-26
managing with Object Browser, 2-31

visibility

Index-12

of package contents, 5-2

W
WHEN clause, 6-4

cannot contain PL/SQL expressions, 6-4
correlation names, 6-5
examples, 6-12

WHERE clause
using with SELECT, 3-6

WHILE-LOOP statement
overview, 4-16

words
reserved in PL/SQL, B-2
reserved in SQL, B-1

Z
ZERO_DIVIDE exception, 4-30

	Contents
	List of Examples
	Preface
	Documentation Topics
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	1 Overview of Development
	Overview of Developing Applications With Oracle Database XE
	Oracle Database Express Edition
	SQL
	PL/SQL
	Database Objects
	Basic Application Development Concepts
	Development Tools
	Logging in to the Database Home Page

	Sample HR Account

	Other Development Environments
	Oracle Call Interface and Oracle C++ Call Interface
	Open Database Connectivity
	Oracle Provider for OLE DB
	Oracle Data Provider for .NET
	Oracle Database Extensions for .NET
	Oracle Developer Tools for Visual Studio .NET
	Oracle Application Express
	Oracle Java Database Connectivity (JDBC)
	PHP

	2 Managing Database Objects
	Overview of Managing Objects
	Database Objects for Your Application
	Managing Database Objects With Object Browser
	Viewing Data in Tables With Object Browser
	Viewing Information With Object Reports

	Using Datatypes
	Storing Character Data
	What Are the Character Datatypes?
	Choosing Between the Character Datatypes

	Storing Numeric Data
	What Are the Numeric Datatypes?
	Using the NUMBER Datatype
	Using Floating-Point Number Formats

	Storing Date and Time Data
	Using DATE and TIMESTAMP Datatypes

	Storing Large Objects

	Managing Tables
	Ensuring Data Integrity in Tables With Constraints
	Column Default Value
	NOT NULL Constraint
	Check Constraint
	Unique Constraint
	Primary Key Constraint
	Foreign Key Constraint

	Creating a Table
	Adding a Column To a Table
	Modifying a Column In a Table
	Dropping a Column From a Table
	Adding a Check Constraint
	Adding a Unique Constraint
	Adding a Primary Key Constraint
	Adding a Foreign Key Constraint
	Viewing Existing Constraints
	Disabling and Enabling a Constraint
	Dropping a Constraint
	Adding Data to a Table
	Modifying Data in a Table
	Removing a Row in a Table
	Dropping a Table

	Managing Indexes
	Index Types
	Indexes for Use with Constraints
	Guidelines for Creating Indexes
	Index the Correct Tables and Columns
	Limit the Number of Indexes for Each Table
	Drop Indexes That Are No Longer Required

	Creating an Index
	Displaying an Index for a Table
	Dropping an Index

	Managing Views
	Creating a View
	Displaying a View
	Dropping a View

	Managing Sequences
	Creating a Sequence
	Displaying a Sequence
	Dropping a Sequence

	Managing Synonyms
	Creating a Synonym
	Displaying a Synonym
	Dropping a Synonym

	3 Using SQL
	Overview of SQL
	Running SQL Statements
	Running SQL Statements on the SQL Commands Page
	Running SQL Statements in the Script Editor Page

	Retrieving Data With Queries
	Displaying Data Using the SELECT Statement
	Using a Column Alias to Change Headings When Selecting Data
	Restricting Data Using the WHERE Clause
	Using Character Literals in SQL Statements

	Using Regular Expressions When Selecting Data
	Sorting Data Using the ORDER BY Clause
	Displaying Data From Multiple Tables
	Using Bind Variables With the SQL Commands Page

	Using Pseudocolumns, Sequences, and SQL Functions
	Using ROWNUM, SYSDATE, and USER Pseudocolumns With SQL
	Using Arithmetic Operators
	Using Numeric Functions
	Using Character Functions
	Using Date Functions
	Using Conversion Functions
	Using Aggregate Functions
	Using NULL Value Functions
	Using Conditional Functions

	Manipulating Data With SQL Statements
	Adding Data With the INSERT Statement
	Updating Data With the UPDATE Statement
	Deleting Data With the DELETE Statement

	Using Transaction Control Statements
	Committing Transaction Changes
	Rolling Back a Transaction

	Using Data Definition Language Statements to Manage Database Objects
	Creating a Table With SQL
	Adding, Altering, and Dropping a Table Column With SQL
	Creating and Altering a Constraint With SQL
	Renaming a Table With SQL
	Dropping a Table With SQL
	Creating, Altering, and Dropping an Index With SQL
	Creating and Dropping a View With SQL
	Creating and Dropping a Sequence With SQL
	Creating and Dropping a Synonym With SQL

	4 Using PL/SQL
	Overview of PL/SQL
	Entering and Running PL/SQL Code
	Running PL/SQL Code in the SQL Commands Page

	Using the Main Features of PL/SQL
	Using the PL/SQL Block Structure
	Inputting and Outputting Data with PL/SQL
	Using Comments
	Declaring Variables and Constants
	Using Identifiers in PL/SQL
	Assigning Values to a Variable With the Assignment Operator
	Using Literals
	Declaring Variables With the DEFAULT Keyword or NOT NULL Constraint
	Assigning Values to a Variable With the PL/SQL SELECT INTO Statement
	Using %TYPE and %ROWTYPE Attributes to Declare Identical Datatypes
	Using the %TYPE Attribute to Declare Variables
	Using the %ROWTYPE Attribute to Declare Variables

	Using PL/SQL Control Structures
	Conditional Control With IF-THEN
	Conditional Control With the CASE Statement
	Iterative Control With LOOPs
	Sequential Control With GOTO

	Using Local PL/SQL Procedures and Functions in PL/SQL Blocks
	Using Cursors and Cursor Variables To Retrieve Data
	Explicit Cursors
	Cursor Variables (REF CURSORs)
	Cursor Attributes

	Working With PL/SQL Data Structures
	Using Record Types
	Using Collections

	Using Bind Variables With PL/SQL
	Using Dynamic SQL in PL/SQL

	Handling PL/SQL Errors
	Summary of Predefined PL/SQL Exceptions
	Using the Exception Handler
	Declaring PL/SQL Exceptions
	Scope Rules for PL/SQL Exceptions
	Continuing After an Exception Is Raised

	5 Using Procedures, Functions, and Packages
	Overview of Procedures, Functions, and Packages
	Stored Procedures and Functions
	Packages

	Managing Stored Procedures and Functions
	Creating a Procedure or Function With the SQL Commands Page
	Creating a Procedure or Function With the Object Browser Page
	Viewing Procedures or Functions With the Object Browser Page
	Creating Stored Procedures With SQL CREATE PROCEDURE
	Creating a Stored Procedure That Uses Parameters
	Creating a Stored Procedure With the AUTHID Clause
	Creating Stored Functions With the SQL CREATE FUNCTION Statement
	Calling Stored Procedures or Functions
	Editing Procedures or Functions
	Dropping a Procedure or Function

	Managing Packages
	Writing Packages With PL/SQL Code
	Guidelines for Writing Packages

	Creating Packages in the SQL Commands Page
	Creating Packages With the Object Browser Page
	Viewing Packages With the Object Browser Page
	Creating Packages With the SQL CREATE PACKAGE Statement
	Editing Packages
	Dropping Packages
	Calling Procedures and Functions in Packages
	Accessing Variables in Packages
	Accessing Types in Packages

	Oracle Provided Packages
	List of Oracle Database XE Packages
	Overview of Some Useful Packages
	DBMS_OUTPUT Package
	DBMS_RANDOM Package
	HTP Package
	UTL_FILE Package

	6 Using Triggers
	Overview of Triggers
	Types of Triggers
	Naming Triggers
	When Is a Trigger Fired?
	Controlling When a Trigger Is Fired
	Firing Triggers With the BEORE and AFTER Options
	Firing Triggers With the FOR EACH ROW Option
	Firing Triggers Based on Conditions (WHEN Clause)
	Firing Triggers With the INSTEAD OF Option

	Accessing Column Values in Row Triggers
	Detecting the DML Operation That Fired a Trigger
	Enabled and Disabled Trigger Modes
	Error Conditions and Exceptions in the Trigger Body

	Designing Triggers
	Guidelines For Triggers
	Restrictions For Creating Triggers
	Privileges Needed to Work with Triggers

	Managing Triggers in the Database
	Creating a Trigger With the SQL Commands Page
	Creating a Trigger With the Object Browser Page
	Viewing a Trigger With Object Browser
	Creating a Trigger With the AFTER and FOR EACH ROW Option
	Creating a Trigger With the BEFORE Option and WHEN Clause
	Creating a Trigger With the INSTEAD OF Option
	Creating a Trigger With an Exception Handler
	Creating a Trigger That Fires Once For Each Update
	Creating LOGON and LOGOFF Triggers
	Modifying Triggers
	Dropping Triggers
	Disabling Triggers
	Enabling Triggers
	Compiling Triggers
	Trigger Errors
	Dependencies for Triggers
	Recompiling Triggers

	7 Working in a Global Environment
	Overview of Globalization Support
	Globalization Support Features
	Running the Examples

	Setting Up the Globalization Support Environment
	Choosing a Locale with the NLS_LANG Environment Variable
	Setting NLS Parameters
	Language and Territory Parameters
	NLS_LANGUAGE Parameter
	NLS_TERRITORY Parameter

	Date and Time Parameters
	Date Formats
	Time Formats

	Calendar Definitions
	Calendar Formats
	NLS_CALENDAR Parameter

	Numeric and List Parameters
	Numeric Formats
	NLS_NUMERIC_CHARACTERS Parameter

	Monetary Parameters
	Currency Formats
	NLS_CURRENCY Parameter
	NLS_ISO_CURRENCY Parameter
	NLS_DUAL_CURRENCY Parameter

	Linguistic Sorting and Searching
	NLS_SORT Parameter
	NLS_COMP Parameter
	Case-Insensitive and Accent-Insensitive Searching

	Length Semantics
	NLS_LENGTH_SEMANTICS Parameter

	SQL and PL/SQL Programming with Unicode
	Overview of Unicode
	SQL NCHAR Datatypes
	NCHAR Datatype
	NVARCHAR2 Datatype

	Unicode String Literals
	NCHAR Literal Replacement

	Locale-Dependent SQL Functions with Optional NLS Parameters
	Default Values for NLS Parameters in SQL Functions
	Specifying NLS Parameters in SQL Functions
	Unacceptable NLS Parameters in SQL Functions

	A Using SQL Command Line
	Overview of SQL Command Line
	Using SQL Command Line
	Starting and Exiting SQL Command Line
	Displaying Help With SQL Command Line
	Entering and Executing SQL Statements and Commands
	SQL Command Line DESCRIBE Command
	SQL Command Line SET Commands
	Running Scripts From SQL Command Line
	Spooling From SQL Command Line
	Using Variables With SQL Command Line
	Prompting for a Variable Value in a Query
	Reusing a Variable Value in a Query
	Defining a Variable Value for a Query

	B Reserved Words
	SQL Reserved Words
	PL/SQL Reserved Words

	C Using a PL/SQL Procedure With PHP
	PHP and Oracle Database XE
	Creating a PHP Program That Calls a PL/SQL Stored Procedure

	D Using a PL/SQL Procedure With JDBC
	JDBC and Oracle Database XE
	Creating a Java Program That Calls a PL/SQL Procedure

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

