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Abstract—Smart Materials (SMat) promise to open new op-
portunities in the area of Intelligent Environments (IE), whether
as part of dedicated smart devices or as the fabric constituting
everyday appliances and building infrastructure. Through the use
of ontologies both IE engineers and the IEs themselves can be
aware of, and predict, how novel configurable and changing mate-
rials react under different conditions. In contrast to conventional
Smart Objects, however, as computational software/hardware-
systems, lending themselves to the object-oriented perspective
of conventional ontology specification languages, SMat and IE
in the wider sense require a perspective focussing on extended
spaces and numerical domains. Both are known to be prob-
lematic in terms of usability and computational complexity for
the traditional object-oriented languages, with even very basic
notions already leading into undecidability. Context Logic (CL),
in contrast, is a formalism specialized for these domains. This
paper demonstrates how terminology from this area involving
extended spaces and numerical domains can be modeled in CL.

Index Terms—ontology, smart materials, OBDA, context logic,
spatial granularity

I. INTRODUCTION

Smart Materials (SMat) promise to open new opportunities
in the area of Intelligent Environments (IE). Future materials
offering sensor and actuator functionality are not only em-
beddable in dedicated smart devices and wearables but can
become a fabric for everyday appliances or building materials
[1], [2]. A key obstacle to realizing this vision is the commu-
nication and knowledge gap between engineers and systems
in the SMat and IE domains. Ontologies have been proposed
as a general bridging technology [3]. However, knowledge
about advanced materials comes in a number of formats not
easily incorporated into ontologies [4]–[7]. A particularly
challenging class of knowledge about materials can be called
function-related knowledge, descriptions of how a material’s
parameters change in dependence on other parameters being
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changed. Such knowledge can be stored, e.g., as CSV files
with recorded experimental data or simulation data, or as
complex equations given, e.g., in matrix format or in terms
of a partial differential equation. The ontological task at hand,
in particular, towards reliable IE [8] is to facilitate querying
and leveraging such information both by IE engineers and the
systems themselves, so as to, e.g., be able to predict, protect
from, and react to, critical system states, such as a forgotten
oven in an Ambient Assisted Living scenario.

Within the field of knowledge representation, function-
related knowledge has been discussed particularly with respect
to processes and change over time [9]–[13]. Formally and tech-
nically, this type of information is available, e.g., in time series
data and time-dependent parameterized equations describing
physical properties of materials under given environmental
circumstances. Especially, changes in space or location with
respect to the geographic domain have received considerable
attention [14]. For the well-studied case of motion of a rigid
object but also more generally, one can distinguish two main
approaches: a) an object-oriented approach, in which a three-
dimensional object is described as undergoing a change of
location, i.e., as having a different location property at different
times [9]; and b) a four-dimensionalist (generalized: multi-
dimensionalist) approach, in which not a three-dimensional
object is considered at given times, but its four-dimensional
trace, i.e., a four-dimensional region (for the philosophical
perspective cf. [15]). This field-based view is vital for rep-
resenting knowledge in the physical sciences [13], [16].

The latter approach views functions mathematically as a
special type of relation, and relations again as subsets or
regions in a multi-dimensional coordinate space. It has a
number of advantages, in particular, in terms of generality,
e.g.: we need not distinguish between essential and accidental
properties, can conceptually rotate, project, or slice a given
point set as desired and handle conceptual granularity. On the
side of knowledge representation and ontology engineering



experts, in contrast, the object-based view, as used, e.g.,
in OWL, the ontology standard of the Semantic Web, is
more common. OWL and its underlying formal framework of
Description Logics (DL) [17] rely on a class/concept-oriented
framework emphasizing the strict separation into objects, their
properties, and classes. DL’s underlying semantics relying
on sets of discrete objects for class semantics and pairs of
discrete objects for property semantics, renders representing
continuous domains such as regions and value ranges difficult.
These domains – called “concrete” domains in the DL area –
have been proven intractable within the framework [4]–[7].

A related aspect is the integration of knowledge from
relational databases (RDBs). An approach proposed to handle
this issue with OWL is ontology-based data access (OBDA)
[18]. OBDA operates on external data sources within the RDB
paradigm by translating ontological queries, e.g., in SPARQL,
into SQL queries. Logically, OBDA is supported by being
based on rewriting queries in the first-order logical (FOL)
framework underlying SQL. In order to enable rewriting into
FOL, the logic used to represent the terminology is restricted
to the family of lightweight logics DL-Lite [19]. This family,
in turn, is the basis for the W3C recommended profile OWL
2 QL1, which is a strict fragment of full OWL 2.

These restrictions limit the usefulness towards a more
general Semantic Web, especially for the physical sciences.
For this purpose, it would be desirable to leverage a logical
language for which the field-based perspective is a first class
citizen, i.e., that does not require translation. A promising
candidate language is Context Logic (CL). Developed specif-
ically for handling sensory and spatiotemporal continuous
domains with a multi-dimensionalist perspective and based
on a mereological rather than set-theoretical semantics [20]–
[24], CL makes describing function-related knowledge and
spatiotemporal entities easy while also providing basic support
for specifying subclass hierarchies. A Hilbert-style granular
mereogeometry [25] showed that the language’s specific mere-
ological perspective allows it to specify a geometry with the
same representational flexibility in dimensional variation as
known from topology, allowing it to serve as a facilitator
for bringing function-related knowledge into the Semantic
Web. This paper demonstrates for examples from a concrete
knowledge base consisting of a textually given ontology,
currently partially encoded in DL, accompanied by, inter alia,
CSV files containing characteristic curve data, how knowledge
about smart materials can be encoded in CL.

The rest of the article is structured as follows. We start
by sketching the knowledge base and data set focussing on
two representative examples (Section II) and presenting the
syntax and semantics of CL (Section III). We show how the
knowledge would be represented in CL (Section IV) and dis-
cuss example queries and their processing within the general
reasoning infrastructure. The paper closes with a discussion
of open questions and future work (Section V). A decidable

1\https://www.w3.org/TR/owl2-profiles/#OWL 2 QL

reasoner for the central fragment of the language is outlined
in the appendix.

II. USE CASE

While a detailed exposition of the dielectric elastomer use
case is beyond the scope of this paper, it is worth remarking
that the material sciences examples below are part of a larger
use case comprising of, so far: 253 axioms generated from
linguistically provided expert domain knowledge and a range
of external data sources, including tabular information, such
as CSV-files specifying, e.g., characteristic curves, as well as
scripts and formulae capable of generating tabular information
given input parameters.

We focus on two particular examples.

Example 1. A crucial procedure in material science is the
tensile test. For one of the smart materials in the project,
this knowledge is provided as a CSV-file of two recorded
measurement parameters, from which three further parameters
are computed via external scripts.

The crucial challenge in this example is the embedding
of numerical data from CSV-files and external scripts. A
conventional OBDA-environment requires adherence to the
OWL2QL restrictions, and numerical data (concrete domains)
are beyond the expressiveness of this language.

A second restriction of OWL2QL is, that it does not permit
concepts involving an existential quantification that contains
concept-restrictions containing themselves an existential quan-
tification. This capability is necessary in the second example
of a dielectric elastomer stack-transducer [26], [27]:

Example 2. A multilayered dielectric elastomer stack-
transducer (DETs) is a layering of several DE transducers.
Transducers based on dielectric elastomers (DEs) consist of
a polymer as dielectric between two compliant electrodes and
can convert electrical into mechanical energy and vice versa.

The second example is problematic for OWL2QL because it
would require a DET to be specified as a layering of complex
parts. This is similar to a standard counterexample not covered
in OWL2QL of a grandparent, which is someone who has a
child that is a parent, with parent, as a person who has a child,
being itself a concept involving quantification.2

III. CONTEXT LOGIC

Context Logics are a cognitively motivated family of lan-
guages. This focus was originally chosen in order to overcome
usability issues of DLs in the area of ontology-based context-
aware environments. In this IE-scenario, system administrators
should on a day to day basis be capable of adjusting IE-system
behaviors through logical statements but require little or no
expertise in ontology languages. The key idea was that by
being close to the fundamental structures of human cognition
and language, a logical language hierarchy could be designed
so that fragments with lower computational complexity are

2For further details on DLs cf. [17], a more detailed discussion is beyond
the scope of this article.



components within the languages of higher complexity. The
aim was to facilitate fast reasoning for cognitively, linguisti-
cally, and logically simple statements, while clearly guarding
statements potentially leading to longer reasoning times in
an intuitively accessible manner. If what is difficult for the
reasoner is difficult for the human user, it is easier for the
user to intuit the machine’s behavior.

In terms of their underlying theory, the CL languages are,
on the one hand, based on the evolutionary hierarchy of
levels of detachment of reference in cognition and language
proposed by Gärdenfors [28], [29]. On the other hand, they
are motivated by the mereological approach to representing
knowledge about the world [11], [15], [20], [30]–[32]. A
key characteristic of the language family is that they form a
hierarchy that follows the evolutionary cognitive hierarchy in
both syntactic structure and computational complexity for the
reasoning task. Its highest layer, called layer-1 or first order
context logic (CL1) is syntactically identical to a standard
mereological first-order logic (FOL) framework. In terms of
the wider landscape in formal semantics of logical languages,
CL has recently been found to be most closely related to Fuzzy
Logics as being based on formal lattice semantics as well as
featuring a related analogous semantics [33]–[36].

A main novelty of CL, in contrast to FOL, lies in its
capability to further analyze the basic predicate expressions
of FOL in terms of a more primitive language: atomic CL
(CLA, [35], [37]–[40]). CLA is similar in syntax and reasoning
complexity to propositional logic or monadic first order logic
and corresponds linguistically to simple predication sentences.
In between the two languages lies the quantifier-free, layer-0,
propositional, or 0th order context logic (CL0, [33], [41]),
which allows the specification of alternatives.

A. Syntax

CL is syntactically a two-layered language with a term layer
and a formula layer. On the first layer, context terms TC are
defined over a set of variables VC :

TY1 Any context variable v ∈ VC and the special symbols >
and ⊥ are atomic context terms.

TY2 If c is a context term, then its complement (∼c) is a
context term.

TY3 If c and d are context terms then the intersection (cu d)
and sum (c t d) are context terms.

On the second layer, context formulae FC are defined as
follows:

FY1 If c and d are context terms then [c v d] is an atomic
context formula.

FY2 If φ is a context formula and c is a context term, then
(¬φ) and c : φ are context formulae.

FY3 If φ and ψ are context formulae then (φ ∧ ψ), (φ ∨ ψ),
(φ→ ψ), and (φ↔ ψ) are context formulae.

FY4 If x ∈ VC is a context variable and φ is a context formula,
then ∀x : φ and ∃x : φ are context formulae.

In the following, we leave out brackets as far as possible
applying the precedence: ∼,u,t for term operators and

¬,∧,∨,→,↔ for formula operators. The scope of quantifiers
is to be read as maximal, i.e., until the first bracket closes
that was opened before the quantifier, or until the end of the
formula. Square brackets around atomic formulae are used for
easier visual separation between term layer and formula layer.
We denote the subset of variables of VC occurring in a given
formula φ as VC(φ).

A strict hierarchy of three fragments can be distinguished
alone on the basis of the formula operators allowed. We thus
obtain the CL hierarchy:
CLA Atomic CL comprises of all formulae that can be con-

structed with FY1, contextualization in FY2, and ∧ in
FY3.

CL0 Level-0 CL comprises of all formulae that can be con-
structed with FY1-FY3.

CL1 Level-1 CL comprises of all formulae that can be con-
structed with FY1-FY4.

B. Semantics

Different variant semantics have been proposed including a
possible world semantics [41], and a semantics in terms of
a labelled deductive system [42]. The different approaches
slightly differ in the resulting semantics, but all employ a
lattice structure for specifying the meanings of context terms,
assigning a partial order to give a semantics to v. We here
provide a categorical semantics that unites these different
perspectives under the umbrella of topology.

We characterize assignment as a functor category A =
[VC ,O], where O is a topology over a space U with �
symbolizing the maps between the objects of O. VC is the
set of context variables. With an intended lattice semantics
in mind [33], � is the lattice partial order, i.e., transitive,
reflexive, and antisymmetric, with sum (⊕) and meet (�) the
lattice operators, with bounds U and ∅ added for convenience.

The semantics needs to include an interpretation for com-
plex context terms in TC . Since this interpretation depends
solely on the assignments a ∈ A for the variables in t ∈ TC ,
we leverage the canonical extension C ⊆ [TC ,O] from A. For
any a ∈ A, the derived c ∈ C have the following properties:
TS1 For all v ∈ VC : c(v) = a(v), and c(>) = U , c(⊥) = ∅.
TS2 For any γ ∈ TC : c(∼γ) =

⊕
o∈O,(o�c(γ))=∅ o.

TS3 If c(γ1) = o1 and c(γ2) = o2, then c(γ1uγ2) = o1�o2

and c(γ1 t γ2) = o1 ⊕ o2.
We can see that if O is the special case of a Boolean algebra,
we receive the usual propositional logic semantics. At the
same time, we can then interpret the result with respect to
the Boolean algebra topology as the set-theoretic variant of
propositional logic.

With an interpretation for context terms, we obtain a se-
mantics for CL0, context logics without quantification, as
M⊆ O× C × LC . We can proceed with formulae as:
FS1 For any context terms α1, α2 ∈ TC :

a) m = (o, c, α1 v α2) ∈ M iff o � c(α1)� c(α2) is
a map in O.

FS2 For any formula φ and context term α:



a) m = (o, c,¬φ) ∈M iff m′ = (o, c, φ) /∈M
b) m = (o, c, α : φ) ∈M iff m′ = (o�c(α), c, φ) ∈M

FS3 For formulae φ and ψ:
a) m = (o, c, φ ∧ ψ) ∈ M iff m1 = (o, c, φ) ∈ M and
m2 = (o, c, ψ) ∈M

b) m = (o, c, φ ∨ ψ) ∈ M iff m1 = (o, c, φ) ∈ M or
m2 = (o, c, ψ) ∈M

c) m = (o, c, φ → ψ) ∈ M iff m1 = (o, c, φ) /∈ M or
m2 = (o, c, ψ) ∈M

A problem with logical systems allowing arbitrary sums
and intersections is that we may want to be able to talk
about such entities without taking them under consideration
when quantifying. We can meaningfully say, for instance, that
“Pegasus is a horse with wings” without wanting to commit
to “there is a horse with wings.” On the contrary, we may
want to add explicitly: “but horses with wings do not exists.”
A simple way to do this is to restrict quantification to a subset
of entities of O. For adding quantification, we therefore need
a means to separate valuation functions E to entities to which
we want to ontologically commit and quantify over from the
valuation functions in C by using only a subset E ⊆ C for
quantification. Quantification can thus be restricted to certain
entities. Accordingly, a model of CL1 is characterized by
interpreting quantifiers with respect to E .

FS4 m = (o, c,∃x : φ) ∈M iff there is a c′ ∈ E that agrees
with c in all regards except potentially for c(x) so that
(o, c′, φ) ∈M holds.

FS5 m = (o, c,∀x : φ) ∈ M iff for all c′ ∈ E that agree
with c in all regards except potentially for c(x) holds
(o, c′, φ) ∈M.

The logic of atomic context logic formulae (CLA) corre-
sponds to propositional logic. A main benefit of CL is the
ability to use the contextualization syntax without, e.g., having
to assume distinct world indices as in Hybrid Logics [43]. But
from a point of view of expressiveness, contextualization does
not extend the language beyond what FS1 already provides
(for the proof cf. [36], [38]) since

γ : [α v β] ≡ [α u γ v β]

and for complex φ, contextualization in c : φ distributes down
to the atomic formula level independent of logical operator
or quantification. Consequently, contextualization could be
defined syntactically.

C. Decidable Fragments

Two fragments of CL, atomic CL (CLA) and propositional
CL (CL0) are known to be decidable (cf. Section A and [41]),
and many representation and reasoning tasks can be performed
in CL0. The key difference between CLA and CL0 from a
mereological perspective, is that CL0 has logical negation
(¬) and thus allows the specification of overlap (©) between
entities

[a© b]
def⇔ ¬[a u b v ⊥] (1)

with further derivable relations non-empty part of ( ·v) and
proper part of (@)

[a ·v b] def⇔ [a v b] ∧ [a© b], (2)

[a @ b]
def⇔ [a v b] ∧ ¬[b v a]. (3)

Overlap allows an ontology engineer to specify arbitrary
finite graphs in CL0 by describing the connection between
entities using overlap and a connecting element that allows
separate entities to be connected. Generally speaking, we can
describe any given finite graph as usual as consisting of
nodes connected by edges, where edges can be – to a user
invisible – abstract anonymous entities, in directed graphs with
edges as pairs, with a distinct first and second part. However,
edges and their distinct parts can also be meaningful and may
linguistically be referred to.

f0

mother father

daughter

son

williamwanda

luise

f1

father mother

daughter
son

nicolenorbert

carmen
david

so
n

michael

Fig. 1. An individual, Norbert, as a member of two generations of the Smith
family: [f0 v smith]∧[f0unorbert v son]∧¬[f0unorbert v ⊥]∧[f1 v
smith] ∧ [f1 u norbert v father] ∧ ¬[f1 u norbert v ⊥].

Figure 1 shows such an example. It shows two generations
of the Smith family characterized mereologically via linguisti-
cally plausible edge constructions f0 and f1 belonging to the
social domain. We see that these edges correspond to core
families, i.e., meaningful entities and minimal sub-families
of the Smith family. The larger family would be the graph
consisting of the sum of the components fi. We can specify a
number of derived concepts like parent and child with CLA
alone to add more structure to the description of edges.

[parent = mother t father] (4)
[child = son t daughter] (5)

At the first glance, specifying secondary relations, such as
grandmother of or father of seems to need quantification, i.e.,
CL1. This would require leaving the decidable fragment CL0:

father(x, y)
def⇔ ∃e : [x u e ·v father] ∧

[y u e ·v child]

(6)

grandmother(x, y)
def⇔

∃e0 : [x u e0 ·vmother] ∧
∃p : [p u e0 ·v child] ∧
∃e1 : [p u e1 ·v parent] ∧ [y u e1 ·v child]

(7)



Formally, this construction is a tuple generator, with which
arbitrary relations can be constructed. Note, however, that
when used as schemata, with schema variables filled by known
context variables, we can simply instantiate the existentially
quantified entities e, e0, e1, p with newly introduced context
variables in the manner of the fundamental Skolemization
procedure. All of the formulae above contain, apart from the
schema variables on the left hand side of the definition, only
existentially quantified variables on the right hand side. Ap-
plying the definition from left to right is, thus, unproblematic.

From the point of view of conventional ontology design, this
capability is crucial as it allows the specification of assertional
knowledge about entities, thus, contributing to bridging the gap
between the object-oriented and mereological perspective. We
can, thus, in particular, specify the instance-of relation between
an object o and a class c:

∃e : [e v isi ] ∧ [o u e ·v a1] ∧ [c u e ·v a2]. (8)

Generalizing, we can write any type of relational con-
structions in the conventional manner of standard FOL via
such Context Logic schemata. We can, moreover, distinguish
between partial orders and more general relations. We would
describe a variant of the temporal interval relation starts [44]
widely employed in IE reasoning as a preorder constructed
from two fundamental preorders c and t providing different
aspects of temporal ordering [36] with the quantifier-free
schema (9). The above is instance of can be generalized with
the CL1-schema (10). The construction also allows arbitrary
arity as would be needed, e.g., for between (11):

starts(α, β)
def⇔ c : [α v β] ∧ t : [α v β], (9)

isi(α, β)
def⇔ ∃e : [e v isi]

∧ [α u e ·v a1] ∧ [β u e ·v a2],
(10)

btw(α, β, γ)
def⇔ ∃e : [e v btw]

∧ [α u e ·v a1] ∧ [β u e ·v a2] ∧ [γ u e ·v a3].
(11)

In ontologies, we can leverage an abbreviation syntax with
square and round brackets to indicate the two types of rela-
tional constructs, with square brackets indicating a relation is a
partial order, thus further shortening definitions in ontologies:

x[α, β]
def⇔ x : [α v β]. (12)

We thus have derived the conventional syntax of predicate
expressions demonstrating that these can be considered inter-
nally complex constructions with CL. We gain the advantage
of reducing the number of axioms required for basic and
compound preorder relations, such as the above starts. Such
derived preorders, thus, automatically gain their powerful
transitive reasoning properties in CL without requiring any
axioms.

IV. REPRESENTING THE EXAMPLES

We can now show how the knowledge from the use case
examples can be conceptualized and represented in CL. We
start with the numerical values of example 1.

A. Numerical Values with Units

Given knowledge about numerical values, we can charac-
terize function values via u as regions. Our notion is the
same as in a 2D numerical graph (Figure 2). The depiction
of a specific f(x)-value can be understood as the intersection
between two regions. While in functional analysis graphs are

-5 -4 -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

1

2

3

Fig. 2. A mereological conceptualization of points on a graph

usually drawn for two or three numerical dimensions, the same
idea is used as well in bar charts and grouped bar charts, with
less restrictions on data types proving general applicability.
For material science, functional graphs are key components of
knowledge. Characteristic curves, such as shown in Figure 3,
describe a material’s behavior as input values or environmental
conditions change.

Fig. 3. Example of a characteristic curve showing magnetic field strength
plotted against magnetic polarization for a sample, as extracted and visualized
by our system.

B. Spatial Relations and Granularity

In the second example, we need to specify a DET as a
layering of complex DEs, a case that resembles the above
grandparent example. We saw above that this example has
ontologically two interesting aspects: first, the formal specifi-
cation via edge connections and second the fact that examples
were apparently in the more complex fragment CL1, but
unproblematic in practical application.

For the former aspect, we see that the spatial mereological
approach is particularly intuitive with respect to the material



science domain. Whereas the family connection was an ab-
stract construction, physical relations require local interaction:
in our example 2, domain experts have concrete answers for
the question as to what binds certain objects together, locally.
The abstract notion of granularity employed in knowledge
representation frameworks with size-based granularity [45]
provides a means to formally represent the various physical
types of local spatial interaction between materials. Thus to
qualitatively specify the relation between layers of films in
a CL ontology, we can simply leverage knowledge about the
material connection by which components are attached to each
other in physical reality and obtain a qualitative but accurate
characterization.

B

A

Fig. 4. A notion of separable adjacency in size-based granularity [45]: A
and B are separate objects but both overlap some spatial locations of (for a
context of given physical interaction principles) irrelevant extension.

The notion of irrelevant extension in Figure 4 is a notion of
size-based granularity. The actual size range of what is irrel-
evant extension, i.e., what proximity is meant as constituting
the physical relation, is a crucial component of the material
description. A physical material connection, e.g.: a covalent
bond connecting materials on the level of molecular orbitals is
stronger than a hook-and-loop fastener at the millimeter level;
a polymer dispersion adhesive operating at the molecular level
can provide adhesive strength at the intermediate level. The
actual physical reality of a given case determines which type
of situation is given.

Without an axiomatic characterization of the natural num-
bers, such as the Peano axioms, well-known to lead to unde-
cidability, we cannot describe a stack or a DET, in general.
We can, however, describe an n-film DET, for which we know
the number of films n, via an inductive characterization:

subclass : [ts1 = t film] (13)

isi(x, tsn+1)
def⇔ ∃y, z : isi(y, tsn) ∧

isi(z, t film) ∧ pcnc(y, z)
(14)

where isi is the relation instance of defined above, and pcnc is
a notion of planar connectedness [25], [45]. Given that each
occurrence of a relation symbol (here: isi and pcnc) expands
into another existential quantification, the schema involves
three more existentially quantified variables, i.e., a sum of five
existential quantifiers. The schema itself has a schema variable
x, which in FOL or CL1 could be understood as universally
quantified. For any given x, however, we can generate its
complete graph of components simply by introducing new
context variables for any of the five existentially quantified
variables, in a manner similar to the Skolemization procedure

in FOL reasoning. For any given x specified as isi(x, tsn+1),
i.e., in application from left to right, all subsequent reasoning
thus remains in CL0. When querying whether a given entity
is a DET, moreover, we can understand the existentially
quantified variables as query variables.

V. CONCLUSIONS

Smart Materials open a range of new opportunities for
future Intelligent Environments. Specifying their behavior
under different environmental conditions with ontologies is
as with more classical sensor-actuator systems, vital to their
predictable and safe application. We suggested the usage of the
mereologically founded Context Logic as bringing numerous
advantages over traditional object-oriented languages widely
used in ontology engineering. While object-oriented languages
suggest a worldview of objects, classes, and slot-filler roles,
CL offers an inherently spatial perspective suitable to describe
multidimensional fields, spaces, and space-time frameworks at
different levels of granularity. We demonstrated for the repre-
sentative examples of a characteristic curve and the definition
of dielectric elastomer stack-transducers, how reasoning tasks
not covered by current OBDA approaches can be handled in
CL. A range of further questions regard the connection to
object-oriented frameworks. Here, future works should, inter
alia, focus on further facilitating interoperability with DL.
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APPENDIX

We define a simple tableaux reasoning mechanism for CL0
based upon the characterization of a reasoning mechanism
for a similar language [41] and sketch proofs of soundness
and completeness. A detailed discussion of practical issues is
beyond the scope of this article.

Informally, a tableau reasoner works by expanding sets of
formulae, called tableaux, according to semantically founded
rules, either until no further expansion is possible, that is, the
tableaux are saturated, or until a contradiction that cannot
be avoided is found. In the latter case, the algorithm yields
“unsatisfiable”; otherwise, the algorithm answers “satisfiable,”
and the resultant set of tableaux can be interpreted as a model
fulfilling the asked question. The reasoning mechanism can be
defined as follows.

a) Definition: a CL-tableau t is a set of formulae t =
Γ ∪ ∆ over a finite set of context variables Σ ⊆ VC , where
the set Γ contains the positive formulae, that is those formulae
whose outer operator is not ¬, whereas ∆ contains the negative
formulae, that is, those formulae whose outer operator is ¬.
A tableau is saturated iff it has the following properties for
complex formulae:

φ ∧ ψ ∈ Γ then φ ∈ Γ and ψ ∈ Γ (T1)
¬(φ ∧ ψ) ∈ ∆ then ¬φ ∈ ∆ or ¬ψ ∈ ∆ (T2)

φ ∨ ψ ∈ Γ then φ ∈ Γ or ψ ∈ Γ (T3)
¬(φ ∨ ψ) ∈ ∆ then ¬φ ∈ ∆ and ¬ψ ∈ ∆ (T4)

φ→ ψ ∈ Γ then ¬φ ∈ ∆ or ψ ∈ Γ (T5)
¬(φ→ ψ) ∈ ∆ then φ ∈ Γ and ¬ψ ∈ ∆ (T6)

¬¬φ ∈ ∆ then φ ∈ Γ (T7)

and complex context terms:

[c v d] ∈ Γ then ¬[> v c] ∈ ∆ or [> v d] ∈ Γ (T8)
[> v ∼c] ∈ Γ then [c v ⊥] ∈ Γ (T9)
¬[> v ∼c] ∈ ∆ then ¬[c v ⊥] ∈ ∆ (T10)

[> v c u d] ∈ Γ then [> v c] ∈ Γ and [> v d] ∈ Γ (T11)
¬[> v c u d] ∈ ∆ then ¬[> v c] ∈ ∆ or ¬[> v d] ∈ ∆

(T12)
[> v c t d] ∈ Γ then ¬[c v ⊥] ∈ ∆ or ¬[d v ⊥] ∈ ∆

(T13)



A tableau is called disjoint iff there is no formula φ ∈ Γ,
so that ¬φ ∈ ∆. The saturation rules alone do not yield a
complete reasoning mechanism for context logics, as two cases
are not yet covered.

b) Definition:: a Hintikka system in Context Logics is
a pair H = (T, P ) where P is a reflexive, transitive, and
antisymmetric relation over T , a non-empty set of disjoint,
saturated tableaux fulfilling the following three properties. For
tableaux t = Γ ∪∆, t′ = Γ′ ∪∆′ with t, t′ ∈ T and P (t, t′)
holds that

for all atomic formulae φ: φ ∈ Γ implies φ ∈ Γ′. (H1)

For any tableau t = Γ ∪ ∆ with ¬[c v d] ∈ ∆, there is a
tableau t′ = Γ′ ∪∆′ with P (t, t′) such that

[> v c] ∈ Γ′ and ¬[> v d] ∈ ∆′. (H2)

For any tableau t = Γ ∪∆ with ¬[> v c t d] ∈ ∆, there is a
tableau t′ = Γ′ ∪∆′ with P (t, t′) such that

[c v ⊥] ∈ Γ′ and [d v ⊥] ∈ Γ′. (H3)

H = (T, S) is a CL-Hintikka system for a tableau t = Γ∪∆
if there is a tableau t′ = Γ′ ∪∆′ in T such that Γ ⊆ Γ′ and
∆ ⊆ ∆′.

The question whether a query sentence κ follows from
a context knowledge base CKB can be formulated as the
question whether the tableau t = CKB∪{¬κ} has a Hintikka
system.

c) Proof (⇒, soundness): We follow the convention and
write (M,o) |= φ to abbreviate (o, c, φ) ∈M for some c. We
provide a 1:1-mapping that establishes the connection between
models M ⊆ O × C × L and Hintikka systems H = (T, P ):

T = {Γx ∪∆x | ∀φ ∈ LΣ : φ ∈ Γx iff (M,x) |= φ,

and ¬φ ∈ ∆x iff (M,x) 6|= φ}
(16)

P ((Γx ∪∆x), (Γy ∪∆y)) iff x� y (17)

We show that (T, P ) actually is a Hintikka system, i.e.,
that the tableaux (Γx ∪∆x) ∈ T thus defined are disjoint and
saturated and that the conditions (H1)-(H3) hold. Disjointness
follows from the fact that, for any x ∈ O and any formula
φ ∈ LΣ, either (M,x) |= φ and φ ∈ Γx, or (M,x) 6|= φ and
¬φ ∈ ∆x.

That each t is saturated can be seen by checking the
correspondence between each of the saturation rules and the
definition of the semantics. The case of [c v d] ∈ Γx (T8),
in particular, demands that ¬[> v c] ∈ ∆x or [> v d] ∈ Γx.
This is given, since the corresponding semantics ensures that
(M,x) |= [c v d] iff for all y with x� y, (M,y) 6|= [> v c]
or (M,y) |= [T v d]. Since x � x (reflexivity of �) this
also holds for x and thus we also have either ¬[> v c] ∈ ∆x,
or [> v d] ∈ Γx. Similarly, we can directly show saturation
for [> v c] and [> v cu d], whether they are in Γ or negated
in ∆, and saturation for the case [> v c t d] ∈ Γ, as well
as saturation for formulae constructed using the propositional
logic connectives.

Also, the rules (H1)-(H3) hold for H . The first rule follows
from the semantics of [c v d] together with the transitivity
of �: if [c v d] ∈ Γx and thus (M,x) |= [c v d], then for
all y with x � y: (M,y) 6|= [> v c] or (M,y) |= [> v d].
Since x� y and y� y′ entails x� y′ for all y′, it follows
that also (M,y′) 6|= [> v c] or (M,y′) |= [> v d] and thus
(M,y) |= [c v d] and [c v d] ∈ Γy . For the second rule,
assume (Γx ∪ ∆x) ∈ T with ¬[c v d] ∈ ∆x. In this case,
(M,x) 6|= [c v d] holds. Then we know that there is y ∈ O
with x � y and (M,y) |= [> v c] and (M,y) 6|= [> v d];
and accordingly, there must be a tableau (Γy ∪∆y) ∈ T with
P ((Γx∪∆x), (Γy ∪∆y)), [> v c] ∈ Γy , and ¬[> v d] ∈ ∆y .
For the third rule, we analogously assume (Γx∪∆x) ∈ T with
¬[> v c t d] ∈ ∆x. This entails that (M,x) 6|= [> v c t d]
and thus that there is y ∈ O with x � y and (M,y) |=
[c v ⊥] and (M,y) |= [d v ⊥]. The corresponding tableau
(Γy ∪ ∆y) ∈ T with P ((Γx ∪ ∆x), (Γy ∪ ∆y)) fulfills the
requirement [c v >] ∈ Γy and [d v >] ∈ Γy .

d) Proof (⇐, weak completeness): we show that the
procedure indicated by the rules terminates after finitely many
steps, with the model as indicated above, by induction on the
number of occurrences of context variables varN : LC → N
in a formula as a measure of formula complexity. The basis of
the induction are the formulae φ = [> v α] with varN = 1
for context variables α or varN = 0 for constants > and ⊥. In
this case, there is nothing to do and the procedure terminates.
That the two properties hold in this case immediately follows
as t � a(α) entails (M, t) |= [> v α]. Similarly, for the
negated formula ¬φ. For formulae φ of the shapes [c v d]
and [> v c t d], [> v c u d] with arbitrarily complex context
terms c, d, the procedure follows the structure of the context
terms, with varN (φ) = varN (c) + varN (d). We assume the
property holds for all n < varN (φ).

For [c v d], first suppose [c v d] ∈ Γ for a tableau t =
Γ ∪ ∆. By the saturation rules, ¬[> v c] ∈ ∆ or [> v
d] ∈ Γ. And by the first rule, this property holds also for all
tableau t′ = Γ′∪∆′ for which t� t′ holds. By the induction
assumption, this implies (M, t′) 6|= [> v c] or (M, t′) |=
[> v d] for all t′ with t � t′. And this in turn implies
by the semantics that (M, t) |= [c v d]. If ¬[c v d] ∈ ∆,
then by the second rule there is a tableau t′ = Γ′ ∪∆′ with
t � t′ such that [> v c] ∈ Γ′ and ¬[> v d] ∈ ∆′. By
the induction assumption, this entails that (M, t′) |= [> v c]
and (M, t′) 6|= [> v d] and thus that (M, t) 6|= [c v d] by
the definition of the semantics. For the cases of [> v ∼c]
and [> v c u d] in Γ or negated in ∆, the saturation rules
directly correspond to the semantics definition. While varN is
not reduced in one step in the case of [> v ∼c] – the rules
reduce to [c v ⊥], which is of the shape [c v d] discussed
above – the reduction of varN continues after finitely many
steps. The case of [> v c t d] ∈ Γ (or negated in ∆) is
analogous to that of [c v d] ∈ Γ (negated in ∆, respectively).

For formulae constructed using the propositional connec-
tives ¬,∧,∨,→, the reasoning procedure reduces formula
complexity with every step until the atomic formula level is
reached.


