Efficient Multiple Query Answering in
Switched Probabilistic Relational Models*

Marcel Gehrke, Tanya Braun, and Ralf Moller

Institute of Information Systems, University of Liibeck, Liibeck, Germany
{gehrke, braun, moeller}@ifis.uni-luebeck.de

Abstract. By accounting for context-specific independences, the size of
a model can be drastically reduced, thereby making the underlying infer-
ence problem more manageable. Switched probabilistic relational mod-
els contain explicit context-specific independences. To efficiently answer
multiple queries in switched probabilistic relational models, we combine
the advantages of propositional gate models for context-specific inde-
pendences and the lifted junction tree algorithm for answering multiple
queries in probabilistic relational models. Specifically, this paper con-
tributes (i) variable elimination in gate models, (ii) applying the lifting
idea to gate models, defining switched probabilistic relational models, en-
abling lifted variable elimination in computations, and (iii) the switched
lifted junction tree algorithm to answer multiple queries in such models
efficiently. Empirical results show that using context-specific indepen-
dence speeds up even lifted inference significantly.

Keywords: Lifting - Context-Specific Independence - Switched Models

1 Introduction

Performing inference is an important task in artificial intelligence but unfortu-
nately, inference in general is intractable [4]. To make the underlying problem
more manageable, context-specific independences help [2]. Given context-specific
independences in a model, inference may require fewer calculations if parts of the
model become independent given a context. One approach for Bayesian networks
is to look for patterns in conditional probability tables to identify context-specific
independences [2]. In such an approach, the context-specific independences are
implicitly encoded in the model, which can lead to huge conditional probability
tables. Another approach is to explicitly model context-specific independences
in a model, avoiding the blowup of tables if implicitly encoding the indepen-
dences in the tables, and providing specialised inference algorithms [7]. In this
paper, we study the problem of efficient inference to answer multiple queries in
models that contain explicitly encoded context-specific independences. We call
such models switched models as context-specific independences lead to model
parts being switched on or off.

* This research originated from the Big Data project being part of Joint Lab 1, funded
by Cisco Systems Germany, at the centre COPICOH, University of Liibeck

2 M. Gehrke, T. Braun, and R. Méller

To the best of our knowledge, the only approach for probabilistic relational
models that may be used to implicitly encode context-specific independence
comes from Gogate and Domingos [5] based on Markov logic networks [10].
They speed up inference by only counting worlds in which no clause evaluates to
false. For example, we could use a variable A to switch between some worlds. In
case A = true is observed, all worlds with A = false are not counted. Thereby,
one can implicitly encode context-specific independences. Unfortunately, this
approach may also result in large rules in a Markov logic network. Hence, efficient
inference in switched probabilistic relational models is still an open problem.

Therefore, we combine lifting [9], gate models [7], and junction trees [6] to
build an efficient formalism for inference in switched probabilistic relational mod-
els. Lifting allows for exploiting relational structures in a model. Gate models
(GMs) provide a formalism to explicitly model context-specific independence
using gates for switching, which also allows for modelling, e.g., interventions
[8]. Junction trees enable efficient online query answering of multiple queries.
Specifically, we use parameterised probabilistic models (PMs). PMs incorpo-
rate relational structures by parameterising random variables (randvars), called
parameterised randvars (PRVs), which are then combined into parametric fac-
tors (parfactors) to model relations with uncertainties. First, we extend PMs
with gates, resulting in parameterised gate models (PGMs). Then, we show that
variable elimination (VE) can be used for inference with GMs as well as lifted
variable elimination (LVE, Poole [9]) for inference with PGMs. Afterwards, we
introduce the switched lifted junction tree algorithm (SLJT) by extending the
lifted junction tree algorithm (LJT) [3], which uses LVE as a subroutine, to effi-
ciently answer multiple queries in PGMs. Thereby, SLJT solves the problem of
answering multiple queries in switched relational models efficiently. Specifically,
this paper contributes (i) VE in GMs, (ii) applying the lifting idea to GMs result-
ing in PGMs enabling LVE in computations, (iii) building a first-order junction
tree (FO jtree) for PGMs, and (iv) SLJT to reuse an FO jtree for multiple con-
figurations and efficient multiple query answering in PGMs.

In the following, we begin by recapitulating PMs for relational models and
GMs for context-specific independence. Afterwards, we parameterise GMs by
leveraging the lifting idea and introduce SLJT. Then, we evaluate SLJT against
implicitly modelling context-specific independences and specifying all possible
submodels corresponding to different switch configurations.

2 Preliminaries

This section specifies PMs, which combine lifting and factor graphs, first intro-
duced by Poole [9], and GMs, which combine factor graphs and context-specific
independences, first introduced by Minka and Winn [7].

2.1 Parameterised Probabilistic Models

PMs combine first-order logic with probabilistic models, representing first-order
constructs using logical variables (logvars) as parameters. For illustrative pur-

Query Answering in Switched Probabilistic Relational Models 3

poses, we use an example of an epidemic. In the example, we model an epidemic
as a randvar. Further, we model persons being sick as a PRV by parameterising
a randvar for sick with a logvar for persons. In the larger scheme of things, all
persons are influenced in the same way when faced with an epidemic and thus
are, without additional evidence, indistinguishable.

Definition 1. Let R be a set of randvar names, L a set of logvar names, @ a set
of factor names, and D a set of constants. All sets are finite. Fach logvar L has
a domain D(L) C D. A constraint is a tuple (X,Cx) of a sequence of logvars
X =(Xy,...,X,) and a set Cx C X7 D(X;). The symbol T for C' marks that
no restrictions apply, i.e., Cx = X" D(X;). A PRV R(Ly,...,L,),n >0is a
construct of a randvar R € R possibly combined with logvars Ly, ..., L, € L. If
n = 0, the PRV is parameterless and forms a propositional randvar. The term
R(A) denotes the possible values (range) of a PRV A. An event A = a denotes
the occurrence of PRV A with range value a € R(A). We denote a parfactor g
by ¢(A)c with A= (Ay,...,An) a sequence of PRVs, ¢ : x]_ R(A;) = RT a
function with name ¢ € @, and C a constraint on the logvars of A. A PRV A or
logvar L under constraint C is given by Ajc or Lic, respectively. We may omit

|T in A, LT, or ¢(A)T. A PM G is a set of parfactors {g"},.

The term [v(P) refers to the logvars in P, which may be a PRV, a constraint,
a parfactor, or a model. The term gr(P) denotes the set of all instances of
P w.r.t. given constraints. An instance is an instantiation (grounding) of P,
substituting the logvars in P with a set of constants from given constraints. If
P is a constraint, gr(P) refers to the second component Cx. Given a parfactor
¢(A)|c, ¢ is identical for the propositional randvars in gr(Ac).

Given R = {Sick, Epid, Travel, Treat, Nat, Man} and L = {X, P,D,W},
D(X) = {z1, 22,23}, D(P) = {p1,p2}, D(D) = {d1,dz}, and D(W) = {w1, w2},
we can build a boolean PRV Sick(X). With C = ((X),{(z1),(z2)}),
gr(Sick(X)|c) = {Sick(x1), Sick(x2)}. The set of gr(Sick(X)T) also contains
Sick(xzs). Adding boolean PRVs Epid, Travel(X), Treat(X, P), Nat(D), and
Man(W), we build a PM G.,={g;}7_,, with

— go=¢o(Epid, Sick(X), Treat(X, P))|T,
— g1=¢1(Epid, Sick(X), Travel(X))|r, and
— go=¢2(Epid, Nat(D), Man(W))t.

Parfactors gg, g1, and g2 have eight input-output pairs (omitted). Constraints
are T. Figure [I| depicts G, as a parfactor graph.

The semantics of a model is given by grounding and building a full joint
distribution. In general, a query asks for a probability distribution of a randvar
using a model’s full joint distribution and given fixed events as evidence.

Definition 2. With Z as normalising constant, a model G represents the full
joint distribution Pg = %ergr(G)f' The term P(Q|E) denotes a query in
G with Q a grounded PRV and E a set of events. Answering P(Q|E) requires
eliminating all randvars in G not occurring in P(Q|E).

4 M. Gehrke, T. Braun, and R. Méller

Fig. 1. Parfactor graph for Ge, Fig. 2. Gates representation of G, for x1

PMs allow for modelling relational aspects between objects including recur-
ring patterns in these relations. Next, we recap GMs, which allow for explicitly
modelling context-specific independence, i.e., switching, in propositional models.

2.2 Gate Models

GMs allow for representing context-specific independence [7]. A factor can be
gated, meaning that using a selector the factor can be turned on or off, repre-
senting context-specific independence. Gates allows for modelling, e.g., external
actions that change the state of the model or cutting off model parts depending
on value of information.

To illustrate the impact of gates, Fig. 2| shows a GM representation of G,
for z1. Compared to Ge,, the GM has two gates (dashed boxes), one gate for gg
and gr and one gate for g; and go, both with selector DoE. Both gates depend
on the same selector DoFE. Thereby, they are mutually exclusive, meaning when
one gate is on, the other is off. We highlight two purposes of gates. The first
purpose is switching. Assume only the gate for g exists and we are interested
in the marginal distribution of Sick(z1). The gate allows for turning off the
connection to causes of an epidemic. Given observations that many people are
sick, we might not care about the cause of an epidemic and cut off the cause
part to not add noise or employ unnecessary computation time. But, in case
the observation itself is uncertain or noisy, the cause part provides additional
support, which enlarges the model and adds computations.

The second purpose is intervention, which uses both gates. An intervention
on a randvar A, i.e., do(A = a) in the do calculus [§], changes a model structure
by eliminating the parent edges of A and setting A to a. The gates in Fig.
model an intervention on Epid, e.g., do(Epid = true). The original “parent” of
FEpid is go, its connection is removed upon intervention. Thus, the selector DoF
is introduced, which turns off go if DoE = true. Additionally, Epid needs to
be set to true. Setting DoE = true enables gg, which encodes the intervention
value, i.e., gg = ¢(Epid) maps true to 1 and false to 0. Further, we might know
that in case an epidemic is occurring, a travel ban will be in place. Thus, upon
DoFE = true, we also turn off g; and instead turn on gy to perform inference on
a smaller model, leading to fewer computations.

Query Answering in Switched Probabilistic Relational Models 5

Additionally, GMs permit reasoning about value of information: If interested
in P(Sick(z1)), information about Nat(d;) has a value if and only if knowing
Nat(dy) changes the marginal of Sick(x;). Thus, one could also consider setting
selectors based on results of marginal distribution queries.

Next, we present switched inference on PGM as an instance of switched
probabilistic relational models, specifying SLJT as an exact inference algorithm.

3 Switched Inference

We propose PGMs, leveraging lifting in GMs. Then, we show how LVE can
answer queries on PGMs and adapt LJT to handle gates.

3.1 Parameterised Gate Models

Minka and Winn [7] introduce GMs for factor graphs which do not model the
object/relation aspect that PMs model with logvars. Thus, we extend gates to
contain not only factors but parfactors. A PM that then contains gated parfac-
tors constitutes a PGM. Before looking at an example, we formally define PGMs
including gates and introduce their semantics.

Definition 3. A gate is denoted by ([, g;)°*="¥), s is the selector and g; are
the parfactors contained in the gate. A gate is turned off or on by raising the
factors to the power of 0 or 1 respectively, which is indicated by 0(s = key),
which is 1 if s has the value key and 0 otherwise. A PGM M consists of non-
gated parfactors gx and gated parfactors g; with selectors S. An assignment to
all selectors S is called a configuration {S = s}ges. Given a configuration s, the
semantics of M is given by grounding and building a full joint distribution

Pu=Z 1101 T1 »7= 11 11

i fegr(g:) k fegr(gr)

where Z is the normalising constant, j indezes gates, i indexes the parfactors in
j, and s; € s is the assignment to selector S; for j. Given a query term @, a set
of events E, and a configuration s, the term P(Q|E,s) denotes a query in M.

Figure [3] shows a representation of a PGM based on G.,. The parfactors gy,

g2, 9E, and gr are gated by the selector DoFE), i.e.,
g%(DoE_T)7 g;(DoE_T)’ gf(DoE_F)’ gg(DoE_F).

The PGM works as described for the GM w.r.t. ;. The two gates model an
intervention of Epid = true.

To obtain a PGM, various approaches are possible, e.g., (i) directly specify
a PGM, (ii) learn a PGM from data, or (iii) start from a GM and use, e.g., a
colouring mechanism [I] to lift the GM. Next, we investigate exact algorithms
for query answering in PGMs, for which we present LVE for single queries as
well as SLJT for multiple queries.

6 M. Gehrke, T. Braun, and R. Méller

Fig. 3. Graphical representation of the PGM of Geg

3.2 LVE for Query Answering

Based on the semantics, we need to define a way to answer queries for PGMs.
Inference algorithms such as expectation propagation, variational message pass-
ing, and Gibbs sampling already work with GMs [14]. One well-studied inference
algorithm for PMs is LVE, which performs computations in a lifted way, i.e., com-
putes marginals by summing out a representative as in VE and then factoring
in isomorphic instances. Here, we show that LVE (and as such VE) can be used
for inference on PGMs (or GMs).

Proposition 1. Given a query term Q and a configuration s, VE computes
P(Q,s) ina GM M.

Proof sketch. Applying a configuration s to a GM M leads to a plain factor graph
G, which represents a full joint distribution Pg. VE is a correct algorithm to an-
swer a query P(Q) in G [15]. Given Pg, VE sums over all randvars, which are not
query terms, and obtains the marginal distribution for @, i.e., P(Q) = >, P,
where v are the range values of the non-query terms A, i.e., v € R(A). Given the
factorisation in G and complying with rules of precedence and distributivity, VE
computes P(Q) efficiently by factoring out factors. Thereby, to compute P(Q),
VE avoids building the full joint distribution.

Proposition 2. Given a query term @ and a configuration s, LVE computes
P(Q,s) in a PGM M.

Proof sketch. Setting a configuration s in a PGM M leads to a plain PM G, in
which LVE computes a correct answer to a query P(Q) by applying correct LVE
operators to G, eliminating non-query terms [13]. The result is equivalent to one
computed in ¢gr(G) with VE [13].

Given another query, LVE starts with the original input model, evidence, and
configuration. Thus, we present SLJT incorporating gates into the cluster struc-
ture of LJT for efficient multi-query answering.

Query Answering in Switched Probabilistic Relational Models 7

3.3 Switched Lifted Junction Tree Algorithm

A configuration determines the parts of a PGM that make up the full joint
distribution. If we were to cluster a model based on a configuration, we could
efficiently handle gates that are switched on or off. At this point, we turn to LJT
[3], which uses a cluster representation of a PM for efficiently answering multiple
queries. In the following, we introduce SLJT and examine how SLJT leverages
LJT by automatically handling the effects of any given configuration on a PGM.

Clusters: LJT builds a cluster representation of a PM called an FO jtree, whose
nodes are clusters. Intuitively, a cluster is a set of PRVs that are directly con-
nected by parfactors. Each cluster has the parfactors that connect its PRVs as a
local model assigned. For SLJT, clusters are based on selectors and their assign-
ments. Consider the FO jtree with four clusters in Fig. [] derived from the exam-
ple PGM. Cluster C; contains Epid, Sick(X), Treat(X, M), linked by go. Clus-
ters Ca, C3 and C4 are based on the selector DoE. Cy contains Epid, Sick(X),
based on DoE = true, with gg and gr assigned. Cj contains Epid, Sick(X),
Travel(X), based on DoE = false, with gy assigned. C4 contains Epid, Nat(D),
Man(W), based on DoE = false, with gy assigned. If DoE(X) = true, Csy is
switched on. If DoE(X) = false, C3 and C, are switched on. C; does not have
a selector associated, it can be thought of as always switched on.

Query Answering: To answer queries on an FO jtree, LJT performs some pre-
processing using local models. A local model holds state descriptions about its
cluster PRVs, which is not available at another cluster. During preprocessing,
LJT makes all necessary state descriptions available for each node through mes-
sages. A message m from one cluster to a neighbour C; transports state de-
scriptions of its local model and messages from other neighbours to C;. LJT
uses LVE to calculate m, passing on the shared PRVs as a query and the local
model and respective messages as a model. Without considering the selectors in
the FO jtree in Fig. [d] LJT passes messages from Cy and C4 to C; and back.
With selectors present, message calculation changes: If a cluster is switched on,
LJT calculates a message based on a cluster’s local model and messages from
neighbours. If a cluster is switched off, LJT calculates a message based only on
messages from neighbours. Given a configuration of DoFE = true in the FO jtree
in Fig. [d] the messages from C3 and C, are empty without the local models and
no other incoming message. With DoE = false, the message from Cs is empty.

Cé(DoE:t'r‘ue) C
: (X M)
- - Treat(X, ,
Epid, Sick(X) Epid, Sick(X)
{9E, 97} (90}

S(DoE=false §(DoE=false
cll) i (PoE=false)
Epid,

Travel(X),
Epid, Sick(X) Nat(D), Man(W)
{g1}

g1 {g2}

Fig. 4. An FO jtree for the PGM of G, in Fig.

8 M. Gehrke, T. Braun, and R. Méller

After message passing, each cluster has all necessary state descriptions of the
model under the current configuration available in its local model and received
messages. To answer a query with a query term @, LJT finds a cluster that
contains) and answers P((Q) on the local model and messages with LVE.

The original FO jtree construction of LJT does not account for selectors as it
is designed for PMs. Thus, we extend the FO jtree construction to handle gates.

FO Jtree Construction: Algorithm [I] outlines how to build an FO jtree of a
PGM M. The guiding idea is to cluster M based on selector-key pairs. First,
SLJT partitions M based on keys and builds an FO jtree J for each partition.
An FO jtree is a cycle-free graph. The clusters are sets of PRVs from the input
model and the arguments of each parfactor of the model appear in one cluster.
A valid FO jtree also fulfils the running intersection property (RI), which says
that a PRV appearing in two clusters must appear in all clusters on the path
between them [6]. LJT constructs such an FO jtree for a given input model.

Now, SLJT has |P| valid FO jtrees with corresponding selector-key pairs as-
signed. To combine the FO jtrees into one valid FO jtree, SLJT takes a first
FO jtree J, at random or an ungated FO jtree if available. Then, SLJT iter-
atively connects J to the remaining FO jtrees J; by adding an edge from one
cluster of J to a cluster of J;. For the edge, SLJT chooses the two clusters with
the largest overlap in PRVs. Combining two FO jtrees in such a fashion may vi-
olate RI. As keys may be mutually exclusive, RI only has to hold on valid paths.
A valid path is a path between two clusters that are both switched on at the
same time by any configuration. Therefore, SLJT extends clusters with PRVs
until RI holds again on valid paths. After connecting all remaining FO jtrees to
J, SLJT returns J.

To construct an FO jtree for the PGM G, in Fig.[3] SLJT first groups the
parfactors. Here, each parfactor gets assigned its own group, as none of them
share the same selector-key pair. Then, SLJT builds an FO jtree for each group.
In this case, each FO jtree consists of one cluster, i.e., one FO jtree consisting
of Cy, one of Cy, and one of C3 and C,4. C; is not gated and therefore selected
as a starting point. Now, SLJT selects either C5 or C3 and C4 at random, e.g.,

Algorithm 1 FO jtree Construction

function SFOJT(PGM M)
Let P be a partitioning of M based on keys
for each partition P; € P do
Build FO jtree J; of P; and add to F
Take an FO jtree J out from F > Choose J s.t. P without a key or at random
while F not empty do
Take an FO jtree J; out from F
Connect J; to J > Edge between clusters sharing most PRVs
while RI does not hold on valid paths do
Extend clusters with PRVs
return J

Query Answering in Switched Probabilistic Relational Models 9

Cy. SLJT connects C; and Cy. With only two clusters, RI still holds. Lastly,
C3 and C,4 are added to the FO jtree. As C3 overlaps with both C; and Cq
with Epid and Sick(X), SLJT chooses one at random, e.g., C;. Adding an edge
between C; and Cj leads to the FO jtree depicted in Fig. [In the resulting
FO jtree, RI still holds on all paths and all paths are valid paths.

Theorem 1. The FO jtree construction of SLJT is sound.

Proof sketch. The initial FO jtrees built are valid. Their clusters contain PRVs
from the input model and the arguments of each parfactor appear in some cluster.
By combining one node of a cycle-free graph with exactly one node from another
cycle-free graph the result is again a cycle-free graph. Adding edges may only
violate RI, which SLJT systematically restores by extending clusters with PRVs.
Thus, Alg. [1] produces a valid FO jtree.

Algorithm Description: SLJT takes a PGM M, a configuration s, evidence E,
and a set of queries Q. Algorithm [2| shows an outline of SLJT. SLJT constructs
an FO jtree J as in Alg. [[] and then switches clusters in J on and off based on
s, followed by entering E into the clusters: At each cluster that contains the
evidence randvars, the local model absorbs E in a lifted way (cf. Taghipour et
al. [13]). Then, SLJT passes messages as described above. Finally, SLJT answers
the queries in Q or starts processing incoming queries online.

Theorem 2. SLJT is sound, i.e, calculates correct answers to queries on a
PGM M and a configuration s.

Proof sketch. SLJT constructs a valid FO jtree based on Theorem [I} which al-
lows for local computations for messages and queries [I2]. To answer queries
correctly, SLJT has to distribute state descriptions of local models through the
FO jtree. Therefore, SLJT uses the massage passing scheme of LJT, which co-
incides with the scheme by Shafer and Shenoy, which they show to be sound
[11]. Additionally, SLJT includes the local model of the current cluster only if
the selector of the cluster is on. In case the selector is off, the cluster only uses
the information of received messages, if there are any, to calculate the outgoing
message. Thus, after a message pass, each cluster holds all necessary state de-
scriptions under a given configuration and can answer queries about its PRVs.
Hence, as LJT is sound and SLJT calculates the same answers LJT would on
an FO jtree with only the parfactors, which are turned on, SLJT is sound.

Algorithm 2 Switched Lifted Junction Tree Algorithm

procedure SLIJT(PGM M, configuration s, evidence E, queries Q)
FO jtree J < SFOJT(M)
Enter evidence E into J
Pass messages on J
for each query Q € Q do
Answer @Q on a cluster in J

10 M. Gehrke, T. Braun, and R. Méller

SLJT allows for building an FO jtree for a PGM and then reuse the FO jtree
for multiple queries and configurations. Next, we evaluate the performance gain
by using the context-specific independences.

4 Evaluation

To evaluate SLJT, we use a variation of G, with 3 selectors. We compare SLJT
against implicitly specifying the context-specific independences in parfactors and
against specifying a model for each configuration. 3 selectors result in 8 configu-
rations, leading to 8 small models. Thus, we compare SLJT with a PGM against
LJT with a model containing an implicit encoding of the switches as well as LJT
with 8 models corresponding to configurations. For the evaluation, we compare
the runtimes w.r.t. message passing to prepare an FO jtree for query answering as
well as the runtime for answering two queries, namely P(Epid) and P(Sick(x1)).
Additionally, we evaluate the runtimes for |D(X)| € {10,100, 1000}. One claim
investigated in this evaluation is that it is advantageous to use explicit context-
specific independences also in the lifted case. Another claim is that SLJT re-
quires about the same runtime for query answering as LJT does on the models
corresponding to configurations.

Figure 5] shows the runtimes for message passing in ms and Fig. [6] shows the
runtimes of each of the two queries. The runtimes are the average of 10 runs.
In both figures, the x-axis shows different configurations. Thus, for = A the
runtimes for the first configuration are shown, for x = B the runtimes for the
second configuration are shown, and so on.

In Fig. || we can see that message passing on the large model with an en-
coding of the switches in parfactors takes the longest. The runtimes are about
the same for all configuration as the configuration is passed to LJT as evidence
leading to absorbing the variables used to encode the switching. Hence, the vari-
ables used for encoding switching behaviour can be thought of as eliminated
after evidence entering. Nonetheless, LJT still needs to perform a message pass
on a rather large model. Therefore, the runtimes for this model are the upper
bound in our evaluation. For the small models, we can see that runtimes for
message passing increase with the different configurations and that the runtimes
are bounded by the implicit encoding. The increase is incidental due to the sort-

5] slit slit implicit models
implicit Epid
™ models o Sick(x1)
- =
©
o
— ©
<
wn
o~
(=] o
T T T T T T T 1 T T T T T T T 1
A B [} D E F G H A B Cc D E F G H

Fig. 5. Message passing runtimes [ms] for ~ Fig. 6. Query answering runtimes [ms] for
|D(X) = 100|, x-axis: configurations |D(X) = 100|, x-axis: configurations

Query Answering in Switched Probabilistic Relational Models 11

it slit implicit models
implicit
models

Epid
Sick(x1)

5 10 15 20 25
5 10 15 20 25

0
0

Fig. 7. Message passing runtimes [ms] for ~ Fig. 8. Query answering runtimes [ms] for
|D(X) = 1000]|, x-axis: configurations |D(X) = 1000|, x-axis: configurations

ing of the configurations. Further, we can see that for configuration A and B,
the model results in an FO jtree with one parcluster as LJT does not spend
any time on message passing, but relatively long on query answering as can be
seen in Fig. [f] For SLJT, we can see that message passing only slightly variates
between the different configurations. SLJT always needs to compute the same
number of messages, as the FO jtree always remains the same. However, which
parcluster and thereby which parfactors are turned on and off depends on the
configuration leading to slight variations in the runtimes.

In Fig. [6] we can see that answering the query about Epid is always faster
compared to Sick(zq) because Sick(x1), x1 needs to be split from X. Implic-
itly encoding the switching behaviour in the model leads to largest runtimes for
answering Sick(z1). Regarding both queries, implicitly encoding the behaviour
leads to runtimes very close to each other over different configurations as de-
scribed above. Regarding the models based on configurations, LJT saves effort
during query answering with increasing effort during message passing. SLJT is
the fastest approach for both queries. SLJT always answers the queries on an
FO jtree with many rather small parclusters. Having small parclusters is really
advantageous for query answering and explains why the runtimes of SLJT are
often even slightly below LJT for the constructed small model corresponding to
the configuration. Overall, we can see that using context-specific independences
has a huge impact on runtimes.

Figures [7] and [§] shows runtimes for |D(X)| = 1000, the programs exhibit-
ing the same behaviour compared to each other as with |D(X)| = 100. The
setting |D(X)| = 10 also shows the same behaviour (omitted here). In sum-
mary, answering queries on an FO jtree with small parclusters is advantageous.
Additionally, specifying a model for each configuration is cumbersome, always
incurring an overhead for constructing an FO jtree, a step which we did not eval-
uate here. Overall, compared to the other two methods, SLJT efficiently uses
context-specific independence to significantly speed up inference.

5 Conclusion

To make inference more manageable, we investigate multiple queries in switched
probabilistic relational models, which explicitly handle context-specific indepen-

12

M. Gehrke, T. Braun, and R. Méller

dence. By leveraging lifting principles for GMs, which allows for representing
context-specific independence using gates, and then extending LJT to efficiently
handle switching behaviour, SLJT allows for efficient answering of multiple
queries in switched probabilistic relational models. Empirical results show that
using context-specific independence speeds up lifted inference significantly.

Future work focusses on including causal inference [14] and counterfactual

reasoning. Further, we look into decision support as gates with context-specific
independences seems to be an ideal formalism to model different actions.

References

1.

10.

11.

12.

13.

14.

15.

Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S.: Exploiting Symmetries
for Scaling Loopy Belief Propagation and Relational Training. Machine learning
92(1), 91-132 (2013)

. Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific indepen-

dence in Bayesian networks. In: Proceedings of the Twelfth international conference
on Uncertainty in artificial intelligence. pp. 115-123. Morgan Kaufmann Publishers
Inc. (1996)

Braun, T., Moéller, R.: Lifted Junction Tree Algorithm. In: Proceedings of the Joint
German/Austrian Conference on Artificial Intelligence (Kiinstliche Intelligenz). pp.
30-42. Springer (2016)

Cooper, G.F.: The computational complexity of probabilistic inference using
Bayesian belief networks. Artificial intelligence 42(2-3), 393-405 (1990)

Gogate, V., Domingos, P.M.: Probabilistic Theorem Proving. In: UAI 2011, Pro-
ceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelli-
gence, Barcelona, Spain, July 14-17, 2011. pp. 256-265. AUAI Press (2011)
Lauritzen, S.L., Spiegelhalter, D.J.: Local Computations with Probabilities on
Graphical Structures and their Application to Expert Systems. Journal of the
Royal Statistical Society. Series B (Methodological) 50(2), 157-224 (1988)
Minka, T., Winn, J.: Gates. In: Advances in Neural Information Processing Sys-
tems. pp. 1073-1080 (2009)

Pearl, J.: Causality. Cambridge university press (2009)

Poole, D.: First-order probabilistic inference. In: Proceedings of IJCAI. vol. 3, pp.
985-991 (2003)

Richardson, M., Domingos, P.: Markov Logic Networks. Machine learning 62(1),
107-136 (2006)

Shafer, G.R., Shenoy, P.P.: Probability Propagation. Annals of Mathematics and
Artificial Intelligence 2(1), 327-351 (1990)

Shenoy, P.P., Shafer, G.R.: Axioms for Probability and Belief-Function Propaga-
tion. Uncertainty in Artificial Intelligence 4 9, 169-198 (1990)

Taghipour, N., Fierens, D., Davis, J., Blockeel, H.: Lifted Variable Elimination:
Decoupling the Operators from the Constraint Language. Journal of Artificial In-
telligence Research 47(1), 393439 (2013)

Winn, J.: Causality with gates. In: Artificial Intelligence and Statistics. pp. 1314—
1322 (2012)

Zhang, N.L., Poole, D.: A Simple Approach to Bayesian Network Computations.
In: Proceedings of the 10th Canadian Conference on Artificial Intelligence. pp.
171-178. Springer (1994)

	Efficient Multiple Query Answering in Switched Probabilistic Relational Models

